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Abstract— We study the problem of routing plug-in electric
and conventional fuel vehicles on a city scale using incentives.
In our model, commuters selfishly aim to minimize a local
cost that combines travel time and the financial expenses of
using city facilities, i.e., parking and service stations. The
traffic authority can influence the commuters’ routing choice
via personalized discounts on parking tickets and on the
energy price at service stations. We formalize the problem of
optimally designing these monetary incentives to induce traffic
decongestion as a large-scale bilevel game, where constraints
arise at both levels due to the finite capacities of city facilities
and incentives budget. Then, we develop an efficient scalable
solution scheme with convergence guarantees based on BIG
Hype, a recently-proposed hypergradient-based algorithm for
bilevel games. Finally, we validate our approach via numerical
simulations over the Anaheim’s traffic network, showcasing its
advantages in terms of traffic decongestion and scalability.

I. INTRODUCTION

The problem of effectively managing traffic in large urban
areas is of paramount importance in modern society. The EU
alone incurs an annual cost exceeding 267 billion euros [1]
due to high traffic congestion in major cities, which is also
responsible for broad environmental damages, since higher
levels of traffic congestion lead to higher CO2 emissions
[2]. A traditional approach to mitigate congestion consists in
increasing road capacity or building alternative routes. Re-
cently, the focused has been shifted towards “non-invasive"
interventions such as tolling or incentives provision.

A popular concept within this area of research is con-
gestion pricing, which dates back to [3] and proposes to
heavily foll congested roads to influence commuters’ routing
choices — i.e., the Vehicle Routing Problem (VRP) — with
the overall objective of decreasing traffic congestion. Over
the years, a large body of research has addressed this topic,
most of which studies the effect that a given pricing scheme
produces in terms of network decongestion, see [4], [S] and
references therein. Arguably of higher interest is the problem
of computing an optimal set of incentives (or tolls) that
maximizes traffic decongestion. In [3], the authors use a
marginal congestion cost to design tolls, while in [6], the
authors set tolls that minimize system inefficiency.

These classical results are difficult to generalize whenever
the Traffic Authority (TA) has to meet some limitations, such
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as a finite budget for the incentives or localized interventions,
viz. act only over a limited number of roads/facilities in the
network. A natural extension to this constrained setup can be
obtained using the paradigm of bilevel games, wherein the
TA plays the role of the leader. When the TA intervention
is limited to tolls, this bilevel game is generally known
as restricted network tolling problem, and is inherently
ill-posed and, in practice, tractable only for small traffic
networks [7] or without optimality guarantees [8]. In [9],
the authors propose a data-driven method based on the
scenario approach to design robust tolls, while in [10],
[11], the authors propose a multi-level optimization problem
to compute optimal incentives focusing mostly on Plug-
in Electric Vehicles (PEVs). Yet, optimality guarantees are
missing, except for very simple scenarios [12]. In [13], [14]
the authors study the impact of service stations and parking
lots on the flow of commuters and show that incentive design
for such facilities can (indirectly) influence the VRP.

In summary, designing tolls to influence the VRP is a
well-studied topic. Yet, due to the inherent problem com-
plexity and lack of scalable algorithms, designing incentives
with limited budget resources and/or targeted interventions
remains elusive. Moreover, the study on how discounts on
facilities (rather than tolls) influence the VRP has been
limited. In this work, we aim at bridging both these gaps
by exploiting the potential of BIG Hype [15]. This novel al-
gorithm, specifically designed for large-scale bilevel games,
allows us to maintain the original problem complexity as well
as to guarantee local optimality of the proposed interventions.

The main contributions of this paper are the following:

o We formulate a bilevel game that describes the VRP
in an urban area where commuters park at predefined
facilities (parking lots and charging stations), whereas
the TA influences the commuters’ routing by providing
personalized discounts to access these facilities. We in-
troduce constraints at both levels to model the facilities’
capacity, the limits on the personalized discounts, and
the predefined limited budget that the TA has allocated.

o We tailor BIG Hype [15] on this problem to obtain an
efficient scalable algorithm with convergence guarantees
to a profile of locally optimal personalized incentives.

« We validate the effectiveness of the proposed approach
via numerical studies on the traffic network of the city
of Anaheim, California. Our findings demonstrate the
capability of the proposed approach in terms of both
traffic decongestion and scalability, thereby highlighting
its potential for addressing incentives design problems
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in real-world complex urban transportation networks.

II. PROBLEM FORMULATION

In this section, we formalize the VRP in an urban area
where a TA is able to affect the routing choice of a subset
of the commuters, by providing discounts for specific parking
lots, and for the electricity price at charging stations. Natu-
rally, the former influences those commuters owning either
a fuel vehicle (FV) or a PEV, while the latter only PEV
owners. We consider facilities in which commuters leave
their car for several hours during the day, e.g., the parking
lots used during working hours, and assume that the goal
of the TA is to alleviate traffic congestion. Nevertheless,
the proposed formulation can readily accommodate other
objectives, such as revenue maximization, see Remark 1. The
commuters’ goal is to minimize a combination of the travel
time and the monetary cost of using parking lots and service
stations. Only a subset of all commuters is reactive to the
proposed discounts, and thus takes part in the VRP, while
the rest is modelled as an exogenous demand contributing to
the congestion of the road network and the city facilities.

We model the transportation network as a strongly con-
nected digraph G = (V, &), where the nodes V represent
intersections or points of interest, while the edges £ C V xV
correspond to the roads connecting them. Given an edge
e € &, we denote e_,e; € V its starting and ending node,
respectively. The charging stations and parking lots located
at certain nodes of the network are described by the sets
C® C V and CP C V, respectively, with possible nonempty
intersection C° N CP # (). Further, we introduce C = C°UCP,
ne = |&|, ny = |V|, nc = |C¢|, and n, = |CP|.

A. Lower Level: Routing and Charging/ Parking Game

We group the commuters into N classes of similar char-
acteristics, referred to as agents and indexed by i € N =
{1,...,N}. Each agent i € N represents a population of
PEVs or FVs composed of P; vehicles sharing the same
origin and destination nodes, denoted by (0;,d;) € V x V,
with o; # d;. Each commuter aims at reaching d;, but
must park its vehicle at a node j € C and, if d; ¢ C,
complete its trip by travelling from j to d;. Each agent @
seeks to determine the fraction of vehicles that will park at
the lot £ € CP, denoted by gf’l € [0,1]. If 4 is composed of
PEVs, the fraction that will charge at each station j € C°,
is denoted by ¢;7 € [0,1]. If the vehicles in i are FVs,
then g;’/ = 0, for all j € C°. For conciseness, we let
g5 = (9;”)jev € R™, where g;” = 0 if j ¢ C°. Similarly,
we define ¢ == (gP“)scy € R, and the collective vectors
g° = (95 )ien and g® = (g})ien-

Further, the routing choice of agent ¢ is modelled via the
variable ¢$ € [0, 1], that represents the percentage of vehicles
traversing road ¢ € &, s0 ¢; = (¢5)cece, @ = (¢si)ien-
The consistency of the resulting vehicles flow is obtained by
imposing, at each node v € V, the following constraints:

—1,
3D

EEL =V EE_=V

V= 0;
)
otherwise

The goal of agent i € N is to choose ¢¢, ¢, and ¢; so as
to minimize a multi-objective cost function f; that combines
travel time, charging/parking cost, and last-mile cost.

The travel time of agent ¢+ € A is given by

fzt =1 Zseg Hd)fts(gs((ﬁ))v ()

where 7; is the (monetary) value of time, o.(¢p) =
> ien Pigf is the aggregate vehicles flow on road e, and
te(-) is the latency on e. Similarly to [13], [14], we derive
our latency function from that used by the Bureau of Public
Roads, yielding the following affine term

ts(gs((b)) =ae + bs(hs + JE(¢))7 3)

where a.,b. are positive constants, while h. represents the
flow of vehicles that are not reactive to the discounts or traffic
conditions and it is assumed fixed.

The charging cost is given by

FE= Y e 1igd (T — &), @)

where ¢; is the amount of electricity that all PEVs in class
i purchase to fully charge their batteries, ¢; > 0 is the base
price of electricity at station j € C°, whereas c;Z > 0 is the
discount provided for class ¢ in station j by the TA. We stress
that c;-’Z is a design variable of the TA. Among the PEVs in
each population 7 € N, a small percentage gi € [0,1] is
required to charge during the day due to an initial low state
of charge, yielding the local constraint

1'g5 > 3. 5)
Similarly, the cost of parking is given by

fZP = Zjecp QEJ (Eg - C?i)» (6)

where the price of parking at j € CP and the associated
discount are denoted by @, ¢, respectively. We denote the
stacked vector of all discounts by ¢ = (c¢');en € R™ with
¢ = (ch)jec, ¢ = (", ¢)"), and m == N(nc+ny).
Finally, the last mile cost, namely, the cost for travelling
from the charging station/parking j € C (where the vehicle

is parked) to their final destination d;, is given by
£ = nillgf + 9§ — gillys @)

where g; € R™ is a basis vector of all 0 entries except for
its d;-th component that is equal to 1, and W is a diagonal
matrix with positive elements. The weight in W;; represents
the discomfort that agent ¢ faces to reach d; from j € C.
There are several ways to model W that depend both on the
city’s structure, and on the different means of transportation
used to cover the last-mile trip. Hereafter, we assume that
the discomfort is proportional to the time required to move
from j to d; in free-flow conditions via the shortest path.
Notice that from (3), it follows that the time required to
travel through road ¢ € £ in free-flow conditions is a. > 0.
Moreover, we impose Wy,q, = € > 0, where € is a small
scalar, to ensure W = 0.
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To guarantee that vehicles are able to access their selected
facility, we limit the amount of vehicles of each class ¢ that
can use the charging stations via the following constraints:

Pgi? <677, Vjecs ®)

where éf’j > 0 denotes the maximum number of slots
allocated a priori for agent ¢ by the TA. Further, we impose
similar constraints also for the parking facilities.

We compactly denote the decision variable of each agent
i by yi = (¢s,65,97) € R™, and its local feasible set by

Yi={y: € [0,1]" [ (1), (5), (8) hold}, (€))

where n; := n. + 2n,,. Further, we let y == ((yi)ien) € Y
be the collective strategy profile of all agents, where ) =
[Licar Vi € R™ is the global feasible set and n := ), s 1.

Overall, each agent i € N is faced with the following
optimization problem:

fi(C> Yis O'(y)),

minimize
vi € Vi

where fi = fi+ f+ £+ fI™ and o(y) = ((0c)eee)
is the aggregate vehicles’ flow over G. Notably, f; depends
on the local variable y; as well as the aggregative quan-
tity o (y). Thus, the collection of inter-dependent problems
L(c) = {(P))}ien constitutes an aggregative game [16],
parametrized by the discounts ¢ designed by the TA.

(Ps)

B. Upper Level: Personalized Incentive Design

The TA chooses the personalized incentives ¢ with the goal
of minimizing traffic congestion in key areas of the network,
modelled via the Total Travel Time (TTT) function

90(07 O'(y)) = Z (h6+06(¢))(a€+b€(h6+a€(¢)))7 (10)
ee€p
where £p C £ is the subset of the road network that the
TA wants to decongest, e.g., the city center. It is important
to highlight that, the dependence of ¢ on c is implicit, i.e.,
the discounts ¢ shape the traffic pattern ¢ which, in turn,
determines the TTT over Ep.

Remark 1: The problem formulation described above can
easily be modified to address other scenarios in which the TA
is replaced by a private entity, e.g., the owner of the facilities,
that aims at maximizing the attained revenue. In this case,
(10) should be replaced by @ = — >, (fs + f7). O

To avoid large discrepancies in facility prices across vehi-
cle classes, we restrict the personalized discounts to the set
D= {c e R™|c} € [0, 0ic}]}, where 0 € (0,1). Further,
we assume that the TA has to compensate the facilities for
the provided discounts, but can only spend a limited budget
C > 0. Concretely, the TA’s budget constraint reads as

C(e,y) =) (Z Ggi 7T+ Pigf’€c§’€> <c.
iEN Njece ecr
1D

For computational reasons, we model (11) as a soft con-
straint by means of the smooth penalty function ¢°(c, y) :=
max {C*(c,y) — C, 0}2. Hence, the TA’s objective becomes

eale,y) = p(e,o) + pe®(c, y),

1

Outer Loop

TA

Compute hypergrad.: ﬁe‘n

Update discount: ¢f*!

pras]

7 - . ;
Update flow: g}
(O] @ @) Update sensitivity: 30+

I (y*+1, 1) ‘

Fig. 1: Schematic representation of the outer and inner loop
in Alg. 1 used to compute the optimal discount c*.

where 1 > 0 is a positive parameter.

C. Bilevel Game Formulation

Overall, our considered traffic model operates as follows:
the TA sends the personalized incentives c to the commuters,
which respond by updating their routing preferences that are
a solution to the parametric aggregative game L(c).

A relevant solution concept for £(c) is the Nash equilib-
rium that corresponds to a strategy profile where no agent
can reduce its cost by unilaterally deviating from it.

Definition 1: Given c, a strategy profile y* € ) is a Nash
equilibrium (NE) of £L(¢) if, for all i € N:

fi(c7 y;» O'(y*)) < fi(c? Yi» U((yia ytz)))v Vyi €Y. U

In our setting, y* is an NE of L(¢) if and only if it is
a solution to a specific Variational Inequality (VI) problem
[17, Prop. 1.4.2], namely, if it satisfies:

Fle,o(y*) (y—y*) >0, Yyel,

where F(c,o(y) = (Y, fie.yia(y))iex is the
so-called Pseudo-Gradient (PG) mapping. We denote
SOL(F(c,-),)) the set of solutions to (12). Next, we prove
existence and uniqueness of an NE.
Lemma 1: For any fixed profile of incentives ¢ € D, the
parametric game £(c) admits a unique NE. O
Proof: See Appendix A. [ ]
In view of Lemma 1, we can define the single-valued
parameter-to-NE mapping y*(+) : ¢ — SOL(F(c,-),Y), and
use to it express the TA’s incentives design problem as the
following single-leader multi-follower Stackelberg game:

(13)

(12)

minimli)ze erale, y™(e) =: oale),

(S
where the dependence of ¢ra on y*(-) highlights that the
TA anticipates the rational response of the commuters to c.

III. OPTIMAL INCENTIVE DESIGN VIA BIG HYPE

The implicit nature of y*(-) renders ¢ra non-smooth and
non-convex [15, §IV]. A globally optimal solution to (13)
can be theoretically found by recasting the problem as mixed-
integer program and using off-the-self solvers [18]. However,
the resulting computational complexity would drastically

3144



increase with the problem size [15, §V-B.3], making this
approach unsuitable in realistic scenarios. Therefore, we
focus instead on first-order methods that can exploit the
inherent distributed structure of (13) to give a locally optimal
solution in a computationally efficient manner.

In this work, we employ the algorithm presented in
[15], called BIG Hype (Best Intervention in Games us-
ing Hypergradients) and originally developed for a wider
class of bilevel games. It requires weak assumptions on
the upper level objective and utilizes readily-implementable
update rules. Further, it preserves the distributed structure
of the agents’ problem making it efficient even for a large
number of agents, see Section IV. In its core, BIG Hype
uses projected-gradient descent to obtain a local solution
of (13). Informally, the gradient of s, referred to as the
hypergradient, can be expressed using the chain rule as

Vé(e) = Vepna(e,y*(€) + Iy*(e) Vypra(e, y* ().

To compute V@ra(c), the TA requires knowledge of y*(c)
as well as its Jacobian Jy*(c), which is known as the
sensitivity and, intuitively, represents how the commuters
react to a marginal change in the discounts c.

Remark 2: Technically, BIG Hype computes a conserva-
tive gradient of ¢y, denoted by J $ra, which generalizes
the gradient for non-smooth non-convex functions [19]. O

The proposed hierarchical traffic-shaping scheme, ob-
tained by deploying BIG Hype on (13), is summarized in
Alg. 1, and consists of two nested loops, that we describe
in the following, aided by Figure 1. The TA sends the
current personalized discount ¢’ to each agent i computed
in the outer loop iteration k. Then, for each inner loop
iteration ¢, see Alg. 2, the commuters estimate their routing
and facility choice §¢"! € R™ along with their sensitivity
571 € R™*™ using the aggregative quantities o (%),
o (5), which are broadcast at the end of each iteration £
by the TA. The inner loop terminates once the estimates are
sufficiently accurate. Then, in the outer loop, the TA gathers
the approximate NE and its sensitivity, y*! and s**!, which
are used to update c via a projected hypergradient step.

Remark 3: The sensitivity update step in Alg. 2 requires
each agent ¢ to compute the auxiliary matrices S ;, Sz, ;, and
Ss 4, that store the partial Jacobian of the mapping Py, [y; —
~vF(c,o(y))] with respect to ¢, y;, and o, respectively.
This computation is non-trivial as it requires differentiating
through the projection operator Py, that projects on the set
Y;. Moreover, these local sensitivity updates only require
the knowledge of the aggregate sensitivity o(s), which
can be broadcast by the TA while maintaining the agents’
preferences private. ]

Next, we establish convergence of Alg. 1 to a critical
point' of (13) under appropriate choices of the step sizes
{a*}ren, v and the tolerance sequence {o"}ren.

Proposition 1: Let {a*}reny be non-negative, non-
summable and square-summable, let {o*}rcny be non-

negative and satisfy .7, afo* < oo, and let 7 be

'Any point ¢ € D that satisfies 0 € Jpra(c) + Np(c) is called a
critical point of (13), where Np denotes the normal cone of D.

ALGORITHM 1. Hierarchical Traffic Shaping

Parameters: Step sizes {a*}rcn, tolerances {o"}ren.
Initialization: k£ < 0, ¢ € D, y* c¢ R?, s ¢ R™*",

Iterate until convergence:
(TA)

Compute inexact hypergradient:
Vky = Vepma(e", y*) + (s5) T Vyera(ct, y*)
Update discounts:
1 = Pplc — aFTpk,]
Send c**! to (PEVs/FVs)
(TA+PEVs/FVs)

Estimate flows and sensitivity:
(y**1, s**1) = Inner Loop(c*t!, y*, sk, oF)

| k< k+1

sufficiently small. Then, any limit point of the sequence
{cF}1.en generated by Alg. 1 is a critical point of (13).
Proof: See Appendix B. [ ]
Any local minimum of @t is a critical point [19, Prop. 1].
However, the set of critical points can also include spurious
points, such as saddle points or local maxima, although such
occurrences are infrequent in practical scenarios.

IV. NUMERICAL SIMULATIONS

We deploy our proposed traffic-shaping scheme on a
modified version of the Anaheim city dataset [20]. For
demonstration purposes, we only considered a sub-network
of Anaheim consisting of 50 nodes and 118 edges with some
additional edges to ensure path connectivity.

The parameters a.,b.,h. are derived from Anaheim’s
original non-linear data via linearization as described in [14].
We let n; = 30[$/h] for all agents, while ¢; is drawn
uniformly at random in the interval [20,60]. We consider
two charging stations located at nodes 0 and 14, hence C¢ =
{0,14}. The associated prices are set to ¢ = 0.35 [$/kWh]
and ¢§, = 0.3 [$/kWh]. Parking lots are located in nodes 8
and 20, hence CP = {8, 20}, and the prices are ¢ = 17 $ and
@5y = 20$. The TA discounts are restricted to ¢;” € [0,0.2],
for all i € N,j € C° whereas 7 € [0,5], for all
i € N,j € CP. The access rate of class i to facility j is
setto 657 = 0.752% and 677 = 0.75L% forall i € N, j € C.

We consider 20 classes of PEVs and 20 classes of FVs
that amount to 5% and 15% of the total vehicles for their
respective type, ensuring a policy penetration rate of 20%.
Given the total vehicles ny.p, = 242584 on the network, each
class size is computed as P; = p; ”QVB“, where p; = 0.05 if
1 is composed of PEVs and p; = 0.20 otherwise. For each
PEV class, the minimum fraction of vehicles that need to
charge, g7, is randomly selected.

A. Impact of the discounts budget

We investigate the TTT reduction attained by our algo-
rithm as a function of the available budget. We consider
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ALGORITHM 2. Inner Loop

Parameters: step size 7.
Input: ¢, y, s, 0.
Define: hi(c,yi, o (y)) =Py, [y — vF(c,o(y))]
Initialization: / «+ 0, &(y°) = o(y ) o (5% = a(s),
<_0(WGA0&Z_Lh@yN(‘)
S27L = JQh (C yz, ( )) 531 = J3h (C, (y[))
Iterate
(PEVs/FVs) Vi € N (in parallel)
Update flow profile:
9 = hile, g, o(5"))
f¢=1:
S = Jihi(e, 3, o (g h),
Soi = Jahi(e, g o (),
Ss,i = Ishi(e, 5 o (g"))
Else:
| Do not update Sl,i; SQ’Z‘, 53’1‘

Update sensitivity:

5L = 8530 + S50 (31 + Sy
(TA)
Gather: "' == (y{ ™ )ien, 341 = (3 )ien
If [g =g >0 (=1
Else: ( =0
Broadcast: o (1), o(511), ¢
(€41
Until max {[|g°—g" ||, [ —3Y|} <o
Output. y=1"5=3"

both personalized and uniform discounts, where the latter
correspond to providing the same discount to all agents that
access a particular facility. In Table I, we present the TTT
reduction as a percentage of the TTT without intervention.
We observe that for large budgets of 20k $ both personalized
and uniform incentives perform similarly, and are able to
provide sensible decongestion of the network, around 3%.
The magnitude of these results is in line with those obtained
in other works using incentives for traffic decongestion.
For example, in an experiment performed in Lee county
almost 17M$ has been put in place to achieve a traffic
reduction of around 5% [21]. Further, we note that the
optimization problem with personalized incentives includes
fewer constraints than the one with uniform incentives. It
might therefore appear contradictory that with a 20k $ budget
the latter yields a better outcome. This behavior, however, is
a result of the local optimality of the generated solution. One
way to alleviate this is by experimenting with different al-

Discounts || 5k$ 10k$ | 20k$
Uniform 0% 1.3% | 3.2%
Personalized || 1.1% | 1.8% | 3.1%

TABLE I: Percentage of TTT reduction for different budgets.

300

200

—100

—200

—300

Fig. 2: Difference of the flows of PEV and FV with TA
intervention ¢* (i.e., discounts via BIG Hype) and without
TA intervention ¢ (i.e., NE under no discounts). Charging
stations and parking lots are denoted by green and gray nodes
respectively.

gorithm parameters and initializations. As the available bud-
get decreases, personalized incentives outperform uniform
incentives due to the more efficient and targeted allocation
of resources.

To showcase the effect of the TA’s discounting policy on
the routing game, we illustrate in Figure 2 the difference in
the flow of controllable vehicles, i.e., PEV and FV, with and
without TA intervention, considering a budget of 5k$ and
Ep = &. In this specific setting, the TA favours discounts
in the facility at node O to redirect vehicles towards that
node and decongest the areas around the remaining facilities,
resulting in a decrement of the TTT by 76 h every day.

B. Scalability with respect to the network size

Next, we explore the scalability of our proposed scheme
by considering sub-networks of Anaheim of increasing size,
starting from n, = 50 to n, = 400. We consider the
computational cost of the TA’s updates, in the outer loop, and
the agents’ updates, in the inner loop. Specifically, assuming
a distributed implementation, the inner loop cost corresponds
to the maximum computation time among all the agents. In
Figure 3, we present both computational costs as a function
of the number of nodes in the network.

To assess the overall computation time, we highlight that
the number of outer loop iterations required for convergence
is typically in the order of hundreds. Moreover, we can
employ large tolerances for the inner loop iteration as in
[15, §V], which allow running few inner iterations (usually
only one) for each outer loop iteration.

V. CONCLUSION

Smart incentives on the price of energy at service stations
and on the price for accessing parking facilities are a
viable option for the traffic authorities to promote traffic
decongestion. Compared to tolling, the effect is limited due
to the voluntary nature of such policies and their indirect
effect on the commuters’ routing preference. To compute the
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Fig. 3: Computation time of the inner and outer loops vs
network size. The solid lines are the average and the shaded
areas represent 11 the standard deviation over 100 iterations.

optimal set of discounts, BIG Hype produces highly scalable
solutions that can be applied to networks of large dimension.

The proposed model can be extended in many directions,
for example the traffic authority can be endowed with the
ability to impose tolls, yielding to a general formulation that
subsumes the restricted network tolling problem.
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APPENDIX
A. Proof of Lemma 1

A sufficient condition for existence and uniqueness of an
NE is that the PG F(c,-) is strongly monotone [17, Th.
2.3.3(b)]. Since F'(c,-) is an affine mapping, strong mono-
tonicity is equivalent to JF (¢, -) being positive definite [17,
Th. 2.3.2(c)]. Observe that the functions f! and f¢, fF, fim
depend only on ¢ and ¢, ¢¥, respectively. Therefore, after
applying an appropriate permutation we can express JF'(c, -)
as M = diag(My, M,), where My = J4F(c,-) and
M, = J,F(c,-). In the proof of [13, Lem. 1] it is shown
M, > 0, provided that ¢.(-) is an affine function. Moreover,
M, > 0 because f£+ fF+ fI™ is a strongly convex quadratic
that depends only on g;, for all i € . Thus, My and M,
are positive definite implying that M > 0, as desired. O

B. Proof of Proposition 1

To prove the claim, we will verify that Assumption 1 and
Standing Assumptions (SAs) 1—4 in [15] are satisfied by our
model, and then invoke [15, Th. 2]. Notice that the f;’s and
Y;’s readily satisfy SA 1. For SA 2, we showed in the proof
of Lemma 1 that F(c,-) is strongly monotone for any c.
Uniform strong monotonicity and Lipschitz continuity follow
from the fact the F is affine in (¢, y). SAs 3 and 4 hold since
F and @1a are semialgebraic and, thus, definable. O
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