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LMI-based Stability Analysis of a Geometric PID-type Attitude Control
Law
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Abstract— This paper presents an analytical framework for
analyzing the stability of a geometric PID controller, with a
prescribed structure, for attitude control on the Special Orthog-
onal Group SO(3). A key feature of the proposed approach
is the use of linear matrix inequalities (LMIs) to formulate
sufficient conditions which ensure that the closed-loop tracking
error system is almost globally asymptotically stable (AGAS).
To this end, a candidate Lyapunov function is considered which
is slightly more general than those traditionally employed in the
SO(3) literature. In particular, the Lyapunov function contains
terms which couple the attitude and velocity errors with the
integrator state, as well as matrix gains for four of the six
Lyapunov function coefficients. The LMI-based stabilization
conditions are then cast as a feasibility problem which can be
used to search for Lyapunov function coefficients that confirm
AGAS for a given PID controller with matrix gains. Using
the proposed approach, control designers can use linearized
models of the attitude kinematics and dynamics to tune the
PID gains, and then solve a semidefinite programming problem
to obtain AGAS guarantees for the corresponding geometric
nonlinear PID controller. The effectiveness of this method is
demonstrated on a practical problem involving the design and
analysis of a geometric PID controller for a hexacopter UAV
with local performance requirements specified in terms of rise
time, settling time, gain and phase margins, and closed-loop
bandwidth.

Index Terms— Attitude control, geometric PID control, al-
most global asymptotic stability (AGAS), Special Orthogonal
Group SO(3), linear matrix inequalities

I. INTRODUCTION

The attitude of an object rotating in three-dimensional
space is described globally and uniquely by the rotation ma-
trix parameterization [1]. Rotation matrices are elements of
a matrix Lie group known as the Special Orthogonal Group
SO(3). This is the set of real, orthogonal, 3-by-3 matrices
with determinant 1. Due to the complex nonlinear geometry
of rotational motion, geometric nonlinear control methods
which work directly with rotation matrices are becoming
increasingly popular [2]. In particular, the globally defined
and unique nature of the rotation matrix parameterization
ensures that geometric nonlinear controllers do not suffer
from singularities or unwinding, limitations that often arise
with other commonly-used attitude parameterizations such
as Euler angles, Rodrigues parameters, and quaternions [1].

Several researchers have addressed the problem of attitude
and position control on the matrix Lie groups SO(3) and
SE(3). The latter denotes the Special Euclidean Group,
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and encodes both the rotational and translational positions
for an object moving in three-dimensional space. Geometric
PD and PID controllers have received significant attention
(see [3], [4], [5], [6], [7], [8] and the references therein).
These controllers typically use fixed gains for the attitude
and velocity error correction terms, and integral action to
compensate for constant, or slowly-varying, disturbances.
Almost global asymptotic stability (AGAS) guarantees are
usually obtained using Lyapunov stability theory. However,
the Lyapunov analysis is often simplified either by using
scalar gains in the PID controller and/or scalar coefficients
in the Lyapunov function, or by fixing certain Lyapunov
function coefficients. The latter situation arises when some of
the Lyapunov coefficients are specified in terms of the gains
used in the PID controller, or when certain cross-terms are
omitted (by setting the corresponding coefficients to zero).

Similarly, the choice of input signal to the integrator can
also help simplify the Lyapunov analysis. A case in point is
the geometric PID controller proposed in [6]. There, the inte-
grator state is eliminated from the Lyapunov rate by choosing
the integrator input as a particular linear combination of the
attitude and velocity errors. Although the elimination of the
integrator state from the Lyapunov rate helps simplify the
Lyapunov analysis, it does so by imposing the requirement
that both the attitude and velocity errors be input to the
integrator. Thus, the PID controller in [6] excludes control
architectures which do not use velocity feedback in the in-
tegrator input. Examples of such controllers include cascade
PI/P controllers often employed in flight control systems such
as pitch-attitude hold autopilots ([9], Section 4.6). In these
control systems, an outer loop PI compensator (or a lag filter)
tracks attitude commands, whereas a proportional gain in the
inner (rate) loop provides the necessary damping.

Another potential limitation of existing geometric PID
controllers arises in the context of digital control systems and
pure integrators. More precisely, when pure integrators are
discretized, the corresponding discrete-time pole lies exactly
on the boundary of the unit disc, i.e., at the (1, 0) point. The
resulting discrete-time controller is only marginally stable,
and may produce undesirable effects due to, for instance,
limited numerical precision. In practice, a way around this
problem is to shift the pole of the continuous-time integrator
slightly to the left of the origin so that the corresponding
discrete-time pole lies strictly inside the unit disc. For a
geometric PID controller, this means that the input to the
integrator includes negative feedback of the integrator state
using a small gain.

Motivated by the various practical concerns outlined
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above, our goal in this paper is to analyze the closed-loop
stability of a geometric PID controller which uses matrix
gains and a prescribed architecture for the integrator. More
precisely, the input signal to the integrator includes nega-
tive feedback of the integrator state and excludes velocity
feedback. As this paper demonstrates, closed-loop stability
guarantees for the resulting geometric PID controller can be
obtained by extending existing analytical frameworks, and
by considering a slightly more general Lyapunov function
than is traditionally considered in the SO(3) literature. In
particular, we consider a candidate Lyapunov function which
includes cross-terms coupling the attitude and velocity errors
with the integrator state. Thereafter, we express the stabiliza-
tion conditions in the form of matrix inequalities in which
the various submatrices are linear functions of the unknown
Lyapunov function coefficients. The resulting linear matrix
inequalities (LMIs) are then used to formulate a feasibility
problem with the aim of finding Lyapunov function coeffi-
cients which ensure that the closed-loop system is almost
globally asymptotically stable (AGAS). Using the proposed
approach, control designers can use linearized models of the
attitude kinematics and dynamics to tune the PID gains, and
then solve a semidefinite programming problem to obtain
AGAS guarantees for the corresponding geometric nonlinear
PID controller. Lastly, we demonstrate the applicability of
our approach on a practical problem involving the design and
analysis of a geometric PID controller for a hexacopter UAV
with local performance requirements specified in terms of
rise time, settling time, gain and phase margins, and closed-
loop bandwidth.

The rest of the paper is structured as follows: after Section
IT describes the notation and basic concepts used in the
paper, Section III introduces the attitude control problem and
the geometric PID controller under consideration. A detailed
stability analysis of the closed-loop tracking error system is
carried out in Section IV, and the main results of the paper
are presented. Section V describes the case study, before
Section VI concludes the discussion.

II. PRELIMINARIES

For vectors =,y € R™, let z-y = 2"y denote the standard
inner (or dot) product, and let ||z|| = /x -z denote the
Euclidean norm. For a matrix M € R™ ™, the induced 2-
norm ||[M]| is given by ||[M|| = /Amax(M T M), where
Amax(-) represents the largest eigenvalue of a matrix. The
Special Orthogonal group SO(3) is the set of real, 3 x 3,
orthogonal matrices with determinant 1, that is,

SO(3)={ReR*3:RTR=1,det(R)=1}.

For vectors =,y € R?, the cross product satisfies  x y =
x*y, where

X

Iy 0 —X3 )
IX = | T2 = I3 0 —T7
I3 —XT2 T 0

The inverse of the cross (x ) operator, denoted by the vee (V)
operator, extracts the entries of the vector z from the skew-

symmetric matrix z*, i.e., (x*)¥ = x. Lastly, the cross and
vee operators satisfy the following identities [5]:

r*y=xxy=—-yxxz=—-y z, (1a)

tr[Az*] = —z- (A—A")Y, (1b)
XA+ AT e = ({u[A]l — A} x)™, (lc)
Rz*R" = (Rx)™, (1d)

for any z,y € R®, A € R3*3, and R € SO(3).

III. PROBLEM FORMULATION

This section formulates the attitude control problem under
consideration. Rigid-body rotational motion is modeled as:

R = Rw*,

Jw=—w*Jw+T,

2

where R € SO(3) describes the orientation of the body-fixed
frame relative to the inertial frame, w € R3 is the angular
velocity expressed in body coordinates, J = J T > 0 is the
inertia matrix, and 7 € R3 is the applied torque. In order
to formulate the reference tracking problem, we consider a
reference attitude which obeys the kinematics:

Ra = Raw?, 3)

where wy € R? is the desired angular velocity which is
bounded and whose time derivative, wy, is also bounded.
The attitude and velocity errors are defined as follows:

R, = RdTR, We := W — R;rwd. 4)
In addition, we define the attitude error vector as:
eR = %(Re — RNV, (5)
From (2)-(4), we obtain the tracking error system:
R, = Rew}
Joe = —wJw+ T+ JwX R} wg — JR] &4 ©
Next, we consider the following control torque:
T=u-+uc, (7)

where u € R? is the feedback component of the applied
torque, and uc € R3 is a cancellation torque which
compensates for the gyroscopic coupling w*Jw as well
as the contribution of the terms containing (wgq,wq). More
precisely, the cancellation torque is given as

uc = w Jw — JwX Rl wq+ JR] . 8)
Lastly, we consider the following PID-type feedback:

u=—Kpegr — Kpw. — Krey,
)]

ér = —Trer + er,

where the matrices (Kp, Kp, K7, T7) € R3*3 are symmet-
ric positive definite and assumed to be known. Consequently,
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the closed-loop tracking error system with the control torque
(7)-(9) is obtained as:

R, = RewS
Jol)e:—erR—KDwe—K[ej (10)
ér = —Trer+ep

In the next section, we will analyze the closed-loop stability
of the tracking error system (10). In particular, we will
derive sufficient conditions in the form of linear matrix
inequalities which can be used to check whether the PID
controller (9) almost globally asymptotically stabilizes the
desired equilibrium (R, w,er) = (I,0,0).

Remark 1: The PID controller (9) includes cascade con-
trollers in which an outer attitude loop uses PI-type com-
pensation to track attitude commands and an inner velocity
loop uses proportional feedback to generate the necessary
damping. More precisely, consider the control law

(1)

where wyer = ug + R;rwd is the velocity reference generated
by the attitude loop, and up is the output of the following
PI-type compensator:

U= Kw(wref - C«)),

ur = —Krer — Krey, éy=—-Trer +eg. (12)
We observe that:
u=K,(ug+ R;rwd —w) =K,(ug — we).
The cascade controller can then be expressed as:
u=—-K,Krer — K, w. — K ,Krey,
RER 1er (13)

ér = —Trer + eg.

Thus, the results presented in this paper also hold for the
cascade controller (11)-(12).

IV. MAIN RESULTS
A. Attitude error function

In order to analyze the closed-loop stability of the tracking
error system (10), we consider the following attitude error
function:

v — %tr[[ _ R (14)

Its time derivative is obtained as:

1 .

. 1 1
U= —itr[Re] = —§tr[ReweX] = W (R — RV,

where we have used the identity (1b). Using the expression

for the attitude error vector (5), we observe that:
U=cp-w (15)

Next, we obtain the time derivative of the attitude error
vector:

1o 1
¢ =g(Re = R)) = S(Rew +wXR)

SA(RIT — R},

where the last equality follows from the identity (1c). Con-
sequently, we express the rate of change of the attitude error
vector as:

€R = E(Re)wev (16)

where the mapping E : R3*3 — R3*3 is defined as follows:

E(M) := %(tr[M]I —-M") (17)

We recall that the attitude error R, € SO(3) can be
expressed as:

R. =1+ (sinf.)a* + (1 — cosb.)a™a™,

where (6., o) € RxS? represent the angle of rotation and the
axis of rotation, respectively. Moreover, using the MATLAB
Symbolic Computation Tool, we observe that the eigenvalues
of the matrix £ (R.)E(R,) are given by:

1 1
(1 + cosb.), 1+ cosb.), cos?b,.

3 30
Therefore, the matrix 2-norm satisfies ||E(R,)|| < 1.
B. Lyapunov function
Next, we use the attitude error function (14) to define the
following candidate Lyapunov function:
V i=2p11V + we - PosJwe + 2p21eRr - Jwe (18)
+er - Psser + 2er - Ps1eg + 2er - PysJw,

In the above expression, p;; > 0 and ps; > 0 represent
scalars, and (P31, P32, Pag, P33) € R3*3 denote matrices,
with PssJ and P33 being symmetric positive definite. We
note that the matrices (P51, P32) couple the integrator state
ey with the attitude and velocity errors (eg,w. ). Moreover,
using the fact that ([6], Proposition 1)

1
v > 5H6R||27

we bound the Lyapunov function as:

V >z Pa, (19)
where
€R p1il * *
XTi= |We |, P = p21J P22J * (20)
er P3; P3J Py

Consequently, a sufficient condition for V to be positive
definite is given as:

P >0, pa1 > 0. 20

Remark 2: Before proceeding further with the analysis,
we compare the candidate Lyapunov function (18) with that
used in [6]. In particular, the Lyapunov function considered
in [6] can be expressed as:

1 1
Vi, = kp¥ + iwe cJwe + coer - Jwe + 5/6]6[ -er, (22)

where (kp, k) are positive scalars employed in the propor-
tional and integral terms of the geometric nonlinear PID-
type attitude control law proposed in [6]. Comparing (18)
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and (22), we observe that the latter is a special case of the
former. In particular, by setting p1; = kp/2, Pa2 = (1/2)1,
po1 = ¢2/2, P33 = (k;/2)I, and P3; = P35, = 0, we obtain
the Lyapunov function (22). Moreover, for the closed-loop
tracking error system considered in [6], the Lyapunov rate VL
contains three terms involving the integrator state e;. These
terms are given by

ér - (krer) + (we + coer) - (—krer),

and their contribution to the Lyapunov rate is easily cancelled
if the integrator input is set as

€] = We + Co€R. (23)

This is precisely the choice made in [6] and requires that
both tracking errors (eg,w.) be input to the integrator (23).
As a result, this approach precludes the use of control
architectures, such as cascade PI/P controllers, in which
integral action or lag compensation is performed in the outer
attitude loop, and only proportional feedback is used in the
inner velocity loop. For such control architectures, it may be
advantageous to use a more general Lyapunov function such
as the one considered in (18).

Proposition 1: Consider the closed-loop tracking error
system (10) and the candidate Lyapunov function (18). Let
Ay denote the largest eigenvalue of the inertia matrix J.
Then, the Lyapunov rate along trajectories of (10) satisfies
the following relation:

V <z (M+ Q) (24)
where
My, * * 0 * *
M:=|Myy My x |, Q:= |0 0 x|,
M3z Msy M 0 Py E(R) O
(25)
and the submatrices M;; are defined as follows:
My == —2ps1 Kp + (P31 + P5)), (26a)
Moy := =2P» Kp + 2pa1Aj1, (26b)
Mss := —2Ps3Ty — (P32 K1 + K Pyy), (26¢)
Moy == piiI — p1 Kp — PosKp + J P}, (264d)
M3y := P33 —pa1 K — T P31 — P32 Kp, (26e)
M3y := —P3sKp — K1 Poy — T1 P32 J. (26f)

Proof: See Appendix. [ ]

Proposition 1 gives an upper bound (24) for the Lyapunov

rate V. Using this bound, we obtain the following sufficient
condition for V to be negative definite:

M+ A <O,
Q-A<O0,

(27a)
(27b)

where A € R%*? is a block diagonal matrix, with symmetric
positive definite blocks, defined as follows:

A 0 0
A=10 ol 0], Ay, Ag € R3X3, (28)
0 0 As

and a9 is a positive scalar. Substituting the expression for

Q, given in (25), we restate (27b) as:

ET(Re)Ps)
—As

—OéQI

—A; <0,
! P31 E(R.)

< 0. (29)

Then, taking the Schur complement, we restate (29) as:

A1, A3 >0,  axl —E'PJAJ'PyE>0.  (30)

Next, we recall that the largest singular value of the matrix
E(R.) is 1. Moreover, since «y is positive, we obtain the
following sufficient condition for (30):

A1, A3 >0,  ET(agl — P A 'Ps)E > 0.  (31)

Lastly, applying the Schur complement lemma, we obtain
the following sufficient condition for (31):

A, >0, [0‘21 *} > 0.

P31 As (52)
This brings us to the main result of the paper.

Theorem 1: Consider the closed-loop tracking error sys-
tem (10), the candidate Lyapunov function (18), and the
matrices (P, M, A), defined in (20), (25)-(26) and (28), re-
spectively. Suppose that there exist Lyapunov function coeffi-
cients (p11,p21, P;;) such that the LMIs (21), (27a), and (32)
are satisfied. Then, the desired equilibrium (R.,w.,e;) =
(1,0,0) of the closed-loop tracking error system (10) is
almost globally asymptotically stable.

Proof: The condition (21) ensures that the candidate
Lyapunov function (18) is positive definite. The condition
(32) ensures that (27b) holds, which, together with (27a)
ensures that the Lyapunov rate Vis negative definite. As a re-
sult, the tracking errors (eg, we, €r) converge asymptotically
to zero. Moreover, it can be shown, using similar arguments
as in ([10], Appendix A), that the undesired equilibria are
unstable, and that almost all the trajectories of the closed-
loop tracking error system (10) converge to the desired
equilibrium (R, w,,er) = (1,0,0). [ |

Remark 3: Theorem 1 formulates a feasibility problem
which can be used to analyze the closed-loop stability of
a given geometric nonlinear PID controller of the form
(9). Moreover, the LMI-based formulation can be used in
conjunction with linearization-based methods for tuning the
controller gains. More precisely, in the first step, a control
designer can use linearized models for the attitude kinematics
and dynamics to tune the matrix gains (Kp, Kp, K7, T7)
such that the linearized closed-loop error system satisfies
local stability and performance criteria. Then, in the second
step, the designer can solve the feasibility problem in The-
orem 1 to search for Lyapunov function coefficients which
guarantee almost global asymptotic stability for the closed-
loop tracking error system (10). This two-step approach is
detailed using the case study in Section V.

Remark 4: The Lyapunov function (18) employs the same
Morse-Bott function as used in the stability analysis carried
out in [6], and the gradient of this function is used by
the controller (9). As a result, all orientations with an
angle of rotation equal to +7 radians are equilibria of the
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A hexacopter configuration

Fig. 1.

resulting closed-loop tracking error system (10). The domain
of attraction can be improved by replacing the Morse-Bott
function by a Morse function such as the one used in [8].
In this case, the domain of attraction will encompass all
orientations except for those corresponding to three isolated
undesired equilibria.

V. CASE STUDY

In this section, we consider the problem of designing a
geometric PID-type attitude controller for a multicopter. In
particular, we use decoupled single-axis linearized models to
tune the controller gains. Then, we verify that the controller
gains satisfy the stabilization conditions given in Theorem
1, and apply these gains in the geometric controller (9).

A. Controller Design

For our case study, we consider the hexacopter depicted
in Fig. 1. Its inertia matrix is as follows:

0.0411 0 0
J=1 0 00478 0 kg/m?.
0 0  0.0599

Furthermore, for the purposes of controller design, we con-
sider the following decoupled single-axis linearized models
for the three axes:
fi = w;
Jiw; = —kp,§ — kp,w; — kr,er;

éri=—¢cer; +&

(33)

Here, J; > 0 denotes the principal inertia about the i-th
body-frame axis, w; denotes the angular velocity about the
corresponding axis, and (kp,kp, ks, €); represent positive
controller gains.

For each attitude axis, we design controllers which meet
the following specifications:

1) Closed-loop bandwidth of approximately 5 rad/s;

2) Rise time < 0.5's;

3) Settling time (2% criterion) < 5 s;

4) Phase margin > 60° and gain margin > 6 dB.
The controller gains are summarized in Table I. These gains
have been selected such that they yield approximately iden-
tical closed-loop properties for the roll, pitch, and yaw axes.
These properties are listed in Table II, and indicate that the

TABLE I
CONTROLLER GAINS USED IN (9).

Values

Kp  diag(6.1217;7.1198;8.9219)

Kp  diag(1.4284;1.6613;2.0818)
Ky diag(0.7754;0.9018; 1.1301)
T diag(0.001;0.001; 0.001)

TABLE I
CLOSED-LOOP PROPERTIES FOR THE GAINS IN TABLE I.

Property Value
Rise time [s] 0.416
Settling time [s] 3.67
Overshoot [%)] 2.57
Gain margin [dB] 48.8
Phase margin [°] 83.02

Loop crossover [rad/s] 35
Closed-loop bandwidth [rad/s]  5.003

corresponding controllers satisfy the design specifications.
We complete the design by confirming that these gains
satisfy the stabilizations conditions given in Theorem 1.
More precisely, we use the YALMIP and SeDuMi toolboxes
to verify that the LMIs (21), (27a), and (32) define a
feasible constraint set. Consequently, we conclude that for
the hexacopter model under consideration, the geometric
nonlinear PID controller (9), implemented using the gains in
Table I, almost globally asymptotically stabilizes the closed-
loop tracking error system (10).

B. Regulation & Disturbance Rejection

In this section, we demonstrate the disturbance rejection
and attitude regulation capability of the geometric PID
controller (9) designed in Section V-A, and compare the
performance of this controller with that of the geometric
PID controller proposed in [6]. Although the latter con-
troller uses scalar gains as opposed to the matrix gains
employed in (9), we select these gains in such a way that
the two controllers have similar closed-loop performance. In
particular, we tune the latter controller so that the closed-
loop bandwidths for the roll, pitch, and yaw channels equal
(5.024,5.115,5.281) rad/s. This allows us to obtain a fair
comparison between the two controllers.

We consider an initial condition for which the pitch
error equals 170°, and the roll and yaw errors are zero. In
addition, we assume that a constant disturbance torque of
(0,1,0)T Nm perturbs the attitude dynamics in (2). Both
controllers are tasked with regulating the attitude to the
desired equilibrium R = I and rejecting the constant (but
unknown) disturbance. For plotting the results, we resort to
the axis-angle representation. In particular, Fig. 2 depicts
the angle of rotation attained by both controllers as they
regulate the attitude. The plots demonstrate that both the
lag compensator-based design (33) and the pure integrator-
based design [6] achieve similar performance in terms of
attitude regulation and disturbance rejection. Moreover, the
pure integrator exhibits a long ‘tail’ whilst regulating the
error to zero, whereas the lag compensator reduces the error
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to approximately 0.001 at steady-state, i.e., to a steady-state
error of approximately 0.1%.

VI. CONCLUSION

This paper developed an analytical framework, based on
linear matrix inequalities (LMIs) and convex optimization,
for analyzing the stability of a PID-type attitude control law,
with a prescribed structure, on the matrix Lie group SO(3).
We hope that the approach presented herein will provide
practitioners with a more general framework for analyzing
the stability of geometric PID controllers for attitude con-
trol problems. As demonstrated in the case study, control
engineers can use this approach to design separate PID
controllers for each axis and then solve a feasibility problem,
via semidefinite programming, to confirm that the closed-
loop system, using a geometric PID controller with the same
gains, almost globally asymptotically stabilizes the desired
equilibrium. Moreover, we hope that our approach will add
to existing results on the use of convex optimization for the
analysis and design of geometric nonlinear attitude control
laws [11], [12], [13]. In future work, we hope to extend the
analytical framework presented here so that it also includes
performance considerations and yields a design procedure
which can be used to synthesize geometric nonlinear PID
controllers for attitude control applications.

APPENDIX
PROOF OF PROPOSITION 1

Proof: The time derivative of the candidate Lyapunov
function (18) is given by:

V =211V + 2w, - PaoJoe + 2paer - Jooe
+ 2p21€R - Jwe + 2e - Pager + 2ep - Paiég
+ 2¢é7 - P31eg + 2er - PygoJw,e + 2¢1 - PyoJw,
=2p11 W + 2(parer + Poswe + Poper) - Jive
+ 2p21eR - Jwe + 2¢f - Pa1€R
+ 2(Psi1er + PssJwe + Pszer) - é1

Substituting the equations for the closed-loop tracking error
system (10), we simplify the Lyapunov rate as:

V =2p1ier - we — 2pa1er - (Kper + Kpwe + Krer)
— 2(Pyowe + Pyyer) - (Kper + Kpw, + Kre)
+ 2po1we - JE(Re)we + 2€1 - P31 E(Re)we
+ 2(P31er + PsoJwe + Pazer) - (—=Ter + eR)

Re-arranging terms, we obtain:

V = —2psier - Kpep +2eg - Pyjer — 2w, - Pao K pwe
+2egr - (p11d — p21 Kp — KpPas + P3aJ )we
—2er - P3sTer —2ey - P3a Krer
—2er - (pa1 K1 + TPy + P3oKp — Ps3)er
—2er - (P3oKp + K1 Pao + TP3oJ)we
+ 2po1we - JE(Re)we + 2¢5 - P31 E(Re)we

Since p2; > 0 and the Ilargest singular value of
ET(R.)E(R.) is 1, we can bound the second-last term as
follows:

P21We - JE(Re)We S p21)\J||weH27

where A denotes the largest eigenvalue of the inertia matrix
J. Using this relation, we obtain the bound (24) for the
Lyapunov rate. n
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