
Motion Planning for The Estimation of Functions*
Aneesh Raghavan, Giacomo Sartori and Karl Henrik Johansson

Abstract—We consider the problem of estimation of an un-
known real valued function with real valued input by an agent.
The agent exists in 3D Euclidean space. It is able to traverse
in a 2D plane while the function is depicted in a 2D plane
perpendicular to the plane of traversal. By viewing the function
from a given position, the agent is able to collect a data point lying
on the function. By traversing through the plane while paying a
control cost, the agent collects a finite set of data points. The set
of data points are used by the agent to estimate the function. The
objective of the agent is to find a control law which minimizes the
control cost while estimating the function optimally. We formulate
a control problem for the agent incorporating an inference cost
and the control cost. The control problem is relaxed by finding
a lower bound for the cost function. We present a kernel based
linear regression model to approximate the cost-to-go and use
the same in a control algorithm to solve the relaxed optimization
problem. We present simulation results comparing the proposed
approach with greedy algorithm based exploration.

I. INTRODUCTION

Exploration problems have received significant attention in
system identification, dual control theory and reinforcement
learning literature. The objective of exploration problems is to
find paths in discrete state space (for eg. graphs) or continuous
state space (of a dynamical system) which are optimal towards
the learning of unknown parameters. The systems have addi-
tional tasks (eg. maximizing rewards) which eventually leads
to trade-off. The trade-off between exploration vs. exploitation
has been studied extensively in the context of multi-armed
bandit problems, [1], [2]. Optimal exploration has been one
of the driving forces for reinforcement learning, [3], [4], [5].
Dynamic programming and regression trees are tools that have
been used extensively in exploration. The term exploration
is also used in the context solving dynamic programming
equations approximately [6], [7], [8].

In regression analysis, statistical learning theory and func-
tion approximation theory, it is well known that the functions
learned or approximated are dependent on the data given.
Optimal sampling for interpolation and regression problems
have been studied, e.g. [9], [10]. We consider a motion
planning problem where an agent explores the space it exists
in to construct a “data set” which is then used to estimate a
function. As the agent traverses through the space, data points
are collected one after another, sequentially, to construct the
data set. Two consecutive data points are constrained by the
dynamics and the ability of the system to maneuver. Thus, the

*Research supported by the Swedish Research Council (VR), Swedish
Foundation for Strategic Research (SSF), and the Knut and Alice Wal-
lenberg Foundation. The authors are with the Division of Decision and
Control Systems, Royal Institute of Technology, KTH, Stockholm. Email:
aneesh@kth.se, gsartori@kth.se, kallej@kth.se

Fig. 1. Estimation of a function in x− y plane by following a path in x− z
plane
problem we consider is not a traditional sampling problem,
where the data set is simply treated as a “set” without any
“ordering” or constraints among the data points.

A. Problem Description

We consider the problem of estimating a function by an
agent as depicted in Figure 1. The agent lives in 3D Euclidean
space, with three axes, x−y−z. The agent is able to move in
the x − z plane. The mapping from the independent variable
x to the dependent variable y is plotted on the x − y plane
(depicted in black). By viewing the function from position
(x, z), the agent is able to collect the data point (x, y). That is,
the x co-ordinate of the agent (that determines the independent
variable) along with the corresponding dependent variable are
collected as data point (x, y). Over the planning horizon m,
the agent moves through the x− z plane (blue trajectory) and
collects a finite number of data points, {(xj , yj)}mj=1 where
(xj , yj) ∈ R2. The positions at which it collects data points
are depicted as blue dots. For traversing through the x − z
plane, the agent has to pay a control cost. Using the data
points collected, the agent estimates the function from x to y
(depicted in red). The function estimated will depend on the
data points collected and the estimation technique. The objec-
tive of the agent is to find a control policy executing which, it
can collect data points which are optimal for estimation while
minimizing its control effort. For the rest of the paper, we

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 7144

use the term “function” and the term “curve” interchangeably.
Though curves include circles, ellipses, etc., we use the term
“curve” in a strictly function sense.

II. PROBLEM FORMULATION

A. Abstraction

1) Estimation of the function: We consider the estimation
technique given the data set {(xl, yl)}ml=1. Let X ⊂ R. Let
K : X × X → R be a kernel and the RKHS generated
by it be (H, ⟨·, ·⟩H , || · ||H). For the definition of kernels
and the spaces generated by them, we refer to [11]. We
consider the hypothesis space to be H , i.e., we want to find
a function f ∈ H that best estimates the mapping from
the independent variable x to the dependent variable y. The
estimation problem, specifically the regression problem, is
formulated as an optimization problem:

min
f∈H

C(f); C(f) =

m∑
l=1

(yl − f(xl))2 + ϱ||f ||2H .

Let K = (K(xj , xk))jk = (⟨K(x, xk),K(x, xj)⟩H) be the
kernel matrix. It is well known that the solution to the problem
is given by f∗(x) =

∑m
l=1 α

∗
lK(x, xl) (refer [11]), where

α∗ = (KTK + ϱK)−1KTy and y = [y1, . . . , ym]. It can be
shown that C(f∗) = yT

[
I−K(KTK+ϱK)−1TKT

]
y. Thus,

the error in fitting the data points depends on the data points
collected. If we consider the “inference cost” as C(f∗), then
the estimation cost depends on both the components of the
data points. However since y is a function of x, the minimum
leaning cost is essentially a function of x alone. The function
from x to y is unknown (which we are trying to estimate).
Instead of minimizing the learning cost for a particular y, i.e.,
y = [f(x1), . . . , f(xm)] we consider minimizing the cost for
any y , which is equivalent to minimizing the 2 norm (or
maximum eigenvalue) of K̄ = I−K(KTK+ ϱK)−1TKT .

2) The Control Problem: The state space of the agent is
R2, while the set of actions (action space) that it can take is
denoted by U . The state of the system at time t is denoted
by ζ(t) = [x(t), z(t)]. The observation of the system at t
is (x, y), where x = x(t) and the mapping from x to y is
to be estimated. No process noise or measurement noise is
considered. The agent is modeled as a discrete time system
with known dynamics,

ζ(t+ 1) = ϕ(ζ(t), u(t));C = [1, 0]

x(t+ 1) = Cζ(t+ 1), t = 0, . . .m− 1.

Thus, given ζ0, the initial state of the agent (where no data
point is collected), the control problem for the agent is:

min
{u(t)}m−1

t=0 ∈U

∣∣∣∣∣∣I−K(KTK+ ϱK)−1TKT
∣∣∣∣∣∣
2
+ ς

m−1∑
l=0

||u(l)||2

s.t ζ(t+ 1) = ϕ(ζ(t), u(t));x(t+ 1) = [1, 0]ζ(t+ 1),

t = 0, . . .m− 1, Kkl = ⟨K(x, x(l)),K(x, x(k))⟩H . (1)

The cost function is a linear combination of the estimation
cost and the control cost. The constraints ensure that (k, l)

component of matrix K corresponds to K(x(k), x(l)), where
x(k)(or x(l)) is the first component of ζ(k)(or ζ(l)), i.e.,
x co-ordinate of the system at time instant k(or l). This
problem can be viewed as a control theoretic approach to
the identification of its environment by an agent where the
problem as been traditionally studied through vision and image
processing techniques.

B. Literature Survey

Optimizing the maximum eigenvalue of a symmetric matrix
has been studied in the literature from a numerical optimiza-
tion perspective. We refer to [12], [13], [14] and the references
there in. These papers consider the matrix function of the
form A(x) =

∑m
j=1Ajxj + A0, {xj}mj=1 ⊂ R, where

{Aj}mj=0 are symmetric matrices. They present numerical
approaches based on convex optimization, specifically, interior
point methods and semidefinite programming to solve the
problem. This approach is not suitable for us as the matrix
function we consider is not of the form above. Submodular
optimization approach to study eigenvalues of submatricies has
been considered in [15]. Though λmax(·) might be convex,
typically its not differentiable. There have been studies to
approximate λmax(·) by differentiable functions.

C. Contributions

Our contributions are as follows. 1. First, we prove that the
minimization of the learning cost is equivalent to maximization
of the smallest eigenvalue of the kernel matrix. Using a lower
bound for the minimum eigenvalue of a square matrix, we
find a lower bound for cost function described in equation
(1) and obtain a relaxation of the control problem. 2. We
analyze the relaxed optimization problem through dynamic
programming and derive the equations satisfied by the value
function. 3. We present a kernel based estimation of the
cost-to-go and present a control algorithm using the same
to approximately solve the relaxed control problem. 4. We
present simulation results comparing the proposed control
algorithm with a greedy algorithm based exploration.

The outline of the paper is as follows. In Section III, we
present the relaxation of the control problem and the dynamic
programming solution to the relaxed optimization problem. In
Section IV, we discuss the estimation of the optimal cost-to-go
using linear regression and present the control algorithm utiliz-
ing the approximate value function. In Section V, we present
simulation results comparing kernel based control algorithm
and a greedy algorithm based exploration. We discuss some
concluding remarks and future work in Section VI. Notation:
We denote vectors obtained by concatenating other vectors and
matrices in boldface.

III. ANALYSIS OF THE PROBLEM

A. Relaxation of the Control Problem

Though 2-norm of a matrix is a convex function, it is
not necessary that the above optimization problem is convex.
Since we consider a exploration problem it is bound to have
a combinatorial aspect to it. We seek a relaxation of the

7145

problem that it is tractable.We consider the eigendecompo-
sition of K as K = OTΛO. O is the orthonormal matrix
obtained from the orthonormal eigenvectors of K. Thus,
K̄ = OT [I−Λ(Λ2+ϱΛ)−1Λ]O. It follows that the eigenvalues

of K̄ are 1− λ2i
λ2i + ρλi

where λi is an eigenvalue of K. Hence,

||K̄||2 = λmax(K̄) =
ϱ

λmin(K) + ϱ
.

Thus, minimizing the 2 norm of K̄ is equivalent to maximizing
the minimum eigenvalue of K. There are many lower bounds
for λmin(K) and include:

λmin(K) ≥

{
m− 1

Tr[K]

}m−1

(det(K)),

λmin(K) ≥ Tr[K]− 1

det(K)

mm

(m− 1)m−1

{
Tr[K]

m+ 1

}m+1

,

λmin(K) ≥ Tr[K]

m
−
√

(m− 1)(mTr[K2]− Tr[K]2)

m2

For proof of these bounds, we refer to [16], [17], [18]. We
consider the last inequality as the desired lower bound as it
can be expressed completely using the components of K. From
the CBS inequality it follows that,

Tr[K2] =

m∑
l=1,k=1

K2(xl, xk)

≤
m∑

l=1,k=1

K(xl, xl)K(xk, xk) = Tr[K]2

Thus,

λ2min(K) ≥ Tr[K]2

m2
+

(m− 1)Tr[K2]

m
− (m− 1)Tr[K]2

m2

−2Tr[K]

m

√
(m− 1)(mTr[K2]− Tr[K]2)

m2

≥ (m− 1)Tr[K2]

m
− (m− 2)Tr[K]2

m2
− 2

(m− 1)Tr[K]2

m2

=
(m− 1)Tr[K2]

m
− (3m− 4)Tr[K]2

m2

We note that for m large enough the second term in the in-
equality becomes small and hence the R.H.S of the inequality
stays positive. The objective is to maximize the lower bound.
We redefine the control problem as:

min
{u(t)}m−1

t=0 ∈U

(3m− 4)Tr[K]2−(m2 −m)Tr[K2]

m2
+ς

m−1∑
l=0

||u(l)||2

s.t ζ(t+ 1) = ϕ(ζ(t), u(t));x(t+ 1) = [1, 0]ζ(t+ 1),

t = 0, . . .m− 1, Klk = ⟨K(x, x(l)),K(x, x(k))⟩H , (2)

where ζ0 is given. The objective of this paper is to solve the
above optimization problem. We note that the cost function in
the optimization problem does not depend on the curve that is
being estimated. It only depends on the kernel and the sam-
pling points visited to learn the curve. Hence, irrespective of

the “true” curve, given a kernel, the control algorithm should
result in sampling points which maximize “information” for
learning of the curve while minimizing control cost.

B. Dynamic Programming

We analyze the problem mentioned in equation (2) using
a dynamic programming approach. We use the terms “value
function” and “optimal cost-to-go” interchangeably. Let am =
3m− 4

m2
and bm =

m− 1

m
. For convenience we denote the

state at j by ζj = ζ(j). The vector of all states until j is
referred to as the augmented state and is denoted as ζj , i.e.,
ζj = [ζ1, . . . , ζj]. Given, ζj , the stage cost at stage j is defined
below (equation (3)) where xl = Cζl, x = Cζ, and ϕ̃(ζ, u) =
Cϕ(ζ, u).

Sj(ζj , uj) =

j∑
l=1

2

[
amK(xl, xl)K(ϕ̃(ζj , uj), ϕ̃(ζj , uj))

− bmK2(xl, ϕ̃(ζj , uj))

]
+ (am − bm)K2(ϕ̃(ζj , uj),

ϕ̃(ζj , uj)) + ς||uj ||22, j = 1, . . . ,m− 1, S0(ζ,0 u0) =

(am − bm)K2(ϕ̃(ζ0, u0), ϕ̃(ζ0, u0)) + ς||u0||22 (3)

Thus
m−1∑
j=0

Sj(ζj , uj) is equal to the objective (cost function) of

the optimization problem mentioned in (2) with incorporation
of the constraints. We note that the stage cost at stage j not
only depends on the current state ζj , but the entire history
ζ1, . . . , ζj−1. This is due to the learning cost, where the
correlation between every pair of data points, K(xl, xk), has
to be taken into account. The dependency of Sj(·, ·) on ζj
deviates from the classical literature of dynamic programming,
where Sj(·, ·) usually only depends on ζj . This dependency
gets carried forward to the cost-to-go as well. The optimal
cost-to-go for (2) at stage j, Vj , as function of ζj is defined
using the dynamic programming equations as follows,

Vj(ζj) = min
u∈U

Sj(ζj , u) + Vj+1((ζj ;ϕ(ζj , u))),

j = 0, . . . ,m− 1, and Vm(ζm) = 0 ∀ ζm ∈ R2×m, (4)

where (ζj ;ϕ(ζj , u)) = [ζ1, . . . , ζj , ϕ(ζj , u)] ∈ R2×(j+1). This
set of equations can alternatively be expressed as,

Vj(ζj) =

m−1∑
l=j

min
ul∈U

Sl(ϕ
l−j(ζj , uj , uj+1, . . . , ul−1, ul)),where

ϕl−j(ζj , uj , . . . , ul) =
((

ζl−j−1
j ;ϕl−j−1(ζj , uj , . . . , ul−1)

)
, ul

)
,

ϕl−j−1(ζj , uj , . . . , uk) = ϕ
(
ϕl−j−2(ζj , uj , . . . , ul−2), ul−1

)
,

ζl−j−1
j =

(
ζl−j−2
j ;ϕl−j−2(ζj , uj , . . . , ul−2)

)
, ϕ1(ζj , uj , uj+1)

= ϕ
(
ϕ(ζj , uj), uj+1

)
, ζ1j = (ζj ;ϕ(ζj , uj)) for l ≥ j + 2 ,

ϕ1(ζj , uj , uj+1) = ((ζj ;ϕ(ζj , uj)), uj+1), ϕ
0(ζj , uj) = (ζj , uj).

The above equations only demonstrate the coupling between
stage costs through the optimal control law and do not provide
any remedy to solve the equations. If the equations were

7146

indeed solvable, then the control algorithm is executed from
state ζ0 with the optimal control law at stage j as (a function
of the augmented state)

u∗j (ζj) = min
u∈U

Sj(ζj , u) + Vj+1((ζj ;ϕ(ζj , u))).

Thus, {u∗j}
m−1
j=0 solves (2).

IV. ALGORITHMS

In this section, we present a numerical approach to approx-
imate V (·) defined in equation (4) and control algorithms to
approximately solve the optimization problem in (2).

A. Kernel Based Approximation of Value function

Consider a radial kernel function, i.e., K(x, y) = ψ(||x −
y||), where ψ(·) is positive definite function. and ψ(0) = 1.
The stage costs simplify to:

Sj(ζj , u) =

j∑
l=1

2

[
am − bmK2(xl, ϕ̃(ζj , u))

]
+ (am − bm)

+ ς||u||22, j = 1, . . . ,m− 1, S0(ζ, u) = (am − bm) + ς||u||22
A naive attempt to find Vj(·) satisfying equation (4) would be
to set the gradient of Sm−1(·, ·) with respect to respect to u
to zero.

∂S

∂u
=

j∑
l=1

2bm

[
K(xl, ϕ̃(ζj , u

∗))
∂K(x, y)

∂y

∣∣∣∣∣(
Cζl,ϕ̃(ζj ,u∗)

)
×∇uϕ̃(ζ, u)

∣∣∣(
ζj ,u∗

)]− ςu∗ = 0

Given this expression, finding a closed form expression for
u∗ does not seem to be reasonable. However, we note the

u∗(ζ) depends on K(Cζm−1, ζl),
∂K(x, y)

∂y
, etc. Ignoring the

other dependencies, it is reasonable to consider the dependence
of u∗(ζ) only on {K(Cζm−1, Cζl)}m−2

l=1 (and thus ||u||22 on
{K2(Cζm−1, Cζl)}m−2

l=1 . Given that K(·, ·) is a kernel map,
K2(·, ·) is also a kernel map. We consider the following
approximation procedure for Vm−1. For j = 1, . . . ,m − 1,
we uniformly sample pj points, Ej = {ζ̂j,1, . . . , ζ̂j,pj

} from
R2. We observe that learning costs and the control cost (as
noted above) depend on {K2(Cζm−1, Cζl)}m−2

l=1 . Thus, we
choose our regressors as

K2(Cζm−1, Cζ̂j,l)}
j=m−2,l=pj

j=1,l=1 ∪

{K2(Cζj , Cζ̂m−1,l)}j=m−2,l=pm−1

j=1,l=1

and consider a linear regression model as

V̂m−1({βj,l},ζm−1) =

m−2∑
j=1

pj∑
l=1

βj,lK
2(Cζm−1, Cζ̂j,l)+

pm−1∑
l=1

βm−1,l

m−2∑
j=1

K2(Cζj , Cζ̂m−1,l). (5)

Due to the dependence of the learning cost and u∗ only on the
x component of ζ, we consider only the x component in the

regression problem. For each vector in the Cartesian product
E =

∏m−1
j=1 Ej , denoted by ζ̂l, we solve the optimization

problem,

Vm−1(ζ̂m−1,l) = min
u∈U

Sm−1(ζ̂m−1,l, u).

Let NE =
m−1∏
j=1

pj . Thus, we obtain NE number of eval-

uations of the function Vm−1, one for every vector ζ̂l ∈
E. Our objective is to chose {βj,l}j=m−1,l=pm−1

j=1,l=1 , so that
V̂m−1({βj,l}, ζ̂m−1,l) = Vm−1(ζ̂m−1,l) ∀ζ̂l ∈ E. We have

NE number of linear equations while there are NV =
m−1∑
j=1

pj

number of variables. Thus, we have an overdetermined system
of linear equations. Let,

βm−1 = [β1,1 . . . , β1,p1
, β2,1, . . . ,β2,p2

, . . . , βm−1,1

. . . βm−1,pm−1
]T ∈ RNV .

To find β, we consider a least squares regression problem,

min
βm−1∈RNV

||Km−1βm−1 −Vm−1||, (6)

where Vm−1 = [Vm−1(ζ̂1), . . . , Vm−1(ζ̂NE)]
T and Km−1 is

defined as follows. For 1 ≤ l ≤ NE , define

lmod pm−1 = rm−1, lm−2 = l/pm−1, lm−2mod pm−2,

= rm−2.lm−3 = lm−2/pm−2, lq mod pq = rq, q ≥ 1, lq−1

= lq/pq−1, q ≥ 2. If rm−1 = 0, then rm−1 = pm−1. rq = rq

+ 1, 1 ≤ q ≤ m− 2.⇒ l =

m−2∑
s=1

(rs − 1)

[
s+1∏

v=m−1

pv

]
+rm−1.

For 1 ≤ k ≤ NV , let k̄ and r̄k be such that

k =

k̄∑
s=0

ps + r̄k, 1 ≤ r̄k ≤ pk+1, where p0 = 0, k̄ ≥ 0.

The element in the lth row and kth column of matrix Km−1,
(Km−1)l,k, is defined as,

K2(ζ̂m−1,rm−1 , ζ̂k̄+1,r̄k), if 1 ≤ k ≤
m−2∑
s=1

ps

m−2∑
j=1

K2(ζ̂j,rj , ζ̂m−1,r̄k), if
m−2∑
s=1

ps ≤ k ≤ NV . (7)

The solution to the optimization problem in (6) is given by
the normal equations,

β∗ =
(
Km−1

TKm−1

)−1

Km−1
TVm−1.

For j = 1, . . . ,m− 2, we define V̂j({βj,l}, ζj) as

V̂j({βk,l}, ζj) =
j−1∑
k=1

pk∑
l=1

βk,lK
2(Cζj , Cζ̂k,l)+

pj∑
l=1

βj,l

j−1∑
k=1

K2(Cζk, Cζ̂j,l). (8)

7147

and Kj is defined similar to Km−1. A backward induction
(j = m−1, . . . , 0) based algorithm is described in algorithm 1
which results in approximate value functions being computed
offline. During run time, given the initial state ζ0, the control
algorithm runs for m stages. The control input at stage j and
augmented state ζj , is computed as a minimizer,

argmin
u∈U

Sj(ζj , u) + V̂j+1((ζj ;ϕ(ζj , u))),

and this control algorithm is referred to as “KVC” algorithm.
Thus, {u∗j}

m−1
j=0 approximately solves the optimization prob-

lem in equation (2) as the optimal cost-to-go is approximated
by V̂j . The dynamic programming equations mentioned in
subsection III-B and the approximation procedure mentioned
above can be extended to ζ ∈ RN as along as the stage costs
satisfy (3).

Algorithm 1 Kernel Based Approximation of Value Functions
1: procedure KBVF
2: Initialize p1, . . . pm−1 ∈ N
3: j ← 1
4: while j ≤ m− 1 do
5: Uniformly sample Ej = {ζ̂j,1, . . . , ζ̂j,pj

} ∈ R2.
6: j ← j + 1

7: j ← m− 1, V̂m(ζ)← 0 ∀ζ ∈ R2

8: while j ≥ 0 do
9: Construct grid Ēj =

∏j
l=1El,

10: For all ζ̂j,l ∈ Ēj solve,

Vj(ζ̂j,l) = min
u∈U

Sj(ζ̂j,l, u) + V̂j+1((ζ̂j,l;ϕ(ζ̂j,l, u)))

11: Define Kj as in equation (7)
12: Define Vj = [Vj(ζ̂j,1), . . . , Vj(ζ̂j,|Ēj |)]

T

13: Solve for β∗
j =

(
Kj

TKj

)−1

Kj
TVj

14: Define V̂j(ζj) as in equation (8).
15: j ← j − 1

B. Greedy Algorithm

In this algorithm, at any stage j we only consider the
optimization of the one step stage cost, i.e., the cost-to-go
from stage j to stage j + 1. We ignore the cost-to-go from
j + 1 stage to the final stage, i.e., we consider Vj+1(·) = 0.
The approximation of Vj(·) is not needed. Given the initial
state ζ0, the control algorithm runs for m stages, where the
control input at stage j is computed as

min
u∈U

Sj(ζj , u).

V. SIMULATION RESULTS

In this section, we present simulation results comparing two
of the algorithms, namely, the KVC algorithm and the greedy
algorithm. The simulation setup is described as follows. We
considered the dynamics of the agent to be a stable discrete
time LTI system, i.e., ϕ(ζ, u) = Aζ +Bu, where,

A =

[
0.5 0.2
0 0.5

]
, B =

[
1
1

]
.K1(x, y) = exp

−(x− y)2

2σ2
1

.

Ā =

[
1.25 0.2
0 0.5

]
. K2(x, y) = (xy + c)d.

ς was set to 0.5. m was chosen to be 5. The initial state
was chosen as (x, z) = (30, 40). The set of values that the
control can take, U , was chosen as [−10, 10]. With respect to
Algorithm 1, p1, p2, p3 and p4 were set to 10.

f(x) = −0.569 log(x) + 2x2+x3+x4 − 0.00008x7

17560
+ 2.507,

is the function to be estimated. Now we describe the simulation
runs. The description of the figures mentioned in the following
is similar to the description of Figure 1 mentioned in subsec-
tion I-A, except that there are two data sets, trajectories and
estimated curves. These have been obtained by plotting the
results of the KVC and greedy algorithm in the same figure.
Simulation run 1: The simulation results with the Gaussian
kernel, K1(with σ1 = 1), are presented in Figure 2. We
observe that the performance of the greedy algorithm and the
KVC algorithm are similar. The data points collected by the
two algorithms are close to each other at stages j = 1, 2, 3, 4
and are different at j = 5. This leads to different curves being
estimated. Simulation run 2: The algorithms were simulated
with polynomial kernel, K2 (with c = 1, d = 2), while rest of
the simulation set up was retained from simulation run 1. The
results are plotted in Figure 3. By inspection, we note that the
data points collected by the agent in simulation run 1 and 2
are different from each other. Since the kernels are different,
the estimated functions are different as well. Simulation run 3:
We considered the Gaussian kernel and an unstable dynamical
system, ϕ(ζ, u) = Āζ + Bu, with Ā as above. We note that
(Ā, B) is stabilizable. In Figure 4, we plot the the results of
the greedy and KVC algorithm with ζ0 = (0, 20). The data
points and the trajectories followed are again close to each
other. However, the data sets and hence, the curves estimated
are different from simulation run 1 (Figure 2). We infer that
curves estimated (and the trajectories followed) are function
of the initial conditions. We note that ζ0 has not been plotted
in any of the figures as no data point is collected there.
In two of the simulation runs, the data set collected by the
agent using the greedy algorithm and the KVC algorithm are
similar or “close” to each other. It is well known that dynamic
programming suffers from the curse of dimensionality. In the
KVC algorithm, the dimension of the augmented state, ζj
grows as the planning horizon m increases. Estimating V̂j(·)
by computing it at 102 or 103 points in R2×j may not be
sufficient to obtain a estimate that is close to the true value
function. Further investigation is needed on the computational
aspect of estimation procedure in the KVC algorithm.

VI. CONCLUSION AND FUTURE WORK

To conclude, we considered a discrete time control problem
with the objective of estimating a curve. The problem was an-
alyzed using dynamic programming and an estimation method
for the value function was presented. The estimated value
function was utilized in the KVC control policy which approx-
imately solves the control problem. As future work, following

7148

Fig. 2. Learning of a curve with trajectories generated by the KVC and
greedy algorithm - Gaussian kernel (stable LTI system)

Fig. 3. Learning of a curve with trajectories generated by the KVC and
greedy algorithm - polynomial kernel (stable LTI system)

are of interest: (a) “ better ” quantification of the inference
cost; (b) quantifying the difference (in norm) between the
estimated and true value function; (c) computationally efficient
estimation of the value function.

REFERENCES

[1] A. N. Burnetas and M. N. Katehakis, “Optimal adaptive policies
for markov decision processes,” Mathematics of Operations Research,
vol. 22, no. 1, pp. 222–255, 1997.

[2] O. Caelen and G. Bontempi, “A dynamic programming strategy to
balance exploration and exploitation in the bandit problem,” Annals of
Mathematics and Artificial Intelligence, vol. 60, pp. 3–24, 2010.

[3] N. K. Jong and P. Stone, “Model-based exploration in continuous state
spaces,” in SARA. Springer, 2007, pp. 258–272.

Fig. 4. Learning of a curve with trajectories generated by the KVC and
greedy algorithm - Gaussian kernel (stabilizable LTI system)

[4] L. M. Zintgraf, L. Feng, C. Lu, M. Igl, K. Hartikainen, K. Hofmann,
and S. Whiteson, “Exploration in approximate hyper-state space for
meta reinforcement learning,” in International Conference on Machine
Learning. PMLR, 2021, pp. 12 991–13 001.

[5] A. Nouri and M. Littman, “Multi-resolution exploration in continuous
spaces,” Advances in neural information processing systems, vol. 21,
2008.

[6] S. M. LaValle, “From dynamic programming to rrts: Algorithmic design
of feasible trajectories.” Control Problems in Robotics, vol. 4, pp. 19–37,
2003.

[7] C. Atkeson and B. Stephens, “Random sampling of states in dynamic
programming,” Advances in neural information processing systems,
vol. 20, 2007.

[8] S. Sanner, R. Goetschalckx, K. Driessens, and G. Shani, “Bayesian real-
time dynamic programming,” in Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI-09). IJCAI-INT
JOINT CONF ARTIF INTELL, 2009, pp. 1784–1789.

[9] Y. Shin and D. Xiu, “On a near optimal sampling strategy for least
squares polynomial regression,” Journal of Computational Physics, vol.
326, pp. 931–946, 2016.

[10] R. Wang and H. Zhang, “Optimal sampling points in reproducing kernel
hilbert spaces,” Journal of Complexity, vol. 34, pp. 129–151, 2016.

[11] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine
learning,” The Annals of Statistics, vol. 36, no. 3, pp. 1171–1220, 2008.

[12] M. L. Overton, “On minimizing the maximum eigenvalue of a symmetric
matrix,” SIAM Journal on Matrix Analysis and Applications, vol. 9,
no. 2, pp. 256–268, 1988.

[13] F. Jarre, “An interior-point method for minimizing the maximum eigen-
value of a linear combination of matrices,” SIAM Journal on Control
and Optimization, vol. 31, no. 5, pp. 1360–1377, 1993.

[14] M. K. Fan and B. Nekooie, “On minimizing the largest eigenvalue of
a symmetric matrix,” Linear Algebra and its Applications, vol. 214, pp.
225–246, 1995.

[15] A. Clark, Q. Hou, L. Bushnell, and R. Poovendran, “Maximizing the
smallest eigenvalue of a symmetric matrix: A submodular optimization
approach,” Automatica, vol. 95, pp. 446–454, 2018.

[16] H. Wolkowicz and G. P. Styan, “Bounds for eigenvalues using traces,”
Linear algebra and its applications, vol. 29, pp. 471–506, 1980.

[17] J. K. Merikoski and A. Virtanen, “Bounds for eigenvalues using the
trace and determinant,” Linear algebra and its applications, vol. 264,
pp. 101–108, 1997.

[18] Q. Zhong and T.-Z. Huang, “Bounds for the extreme eigenvalues using
the trace and determinant,” Journal of Information and Computing
Science, vol. 3, no. 2, pp. 118–124, 2008.

7149

