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Abstract— We present some preliminary ideas on a data-
driven Model Predictive Control framework for continuous-
time systems. We use Chebyshev polynomial orthogonal bases to
represent system trajectories and subsequently develop a data-
driven continuous-time version of the classical Model Predictive
Control algorithm. We investigate the effects of the parameters
in our framework with two numerical examples and draw
comparison to model-driven MPC schemes.

I. INTRODUCTION

Deviation from familiar control schemes that utilise math-
ematical models is becoming more apparent in research. The
key principles of classical control schemes are being con-
verted into algorithms that can be driven only by system data.
Model Predictive Control (MPC) is one example. Its success
in the model-driven, discrete-time domain has been well-
documented since its formulation and many developments
of MPC have followed (see e.g. [1]). The majority of these
innovations have targeted discrete-time systems.

Previous extension of MPC into the continuous-time
domain was conducted such that the control inputs were
continuous-time signals that could drive the state of the
real-world system continuously and continuous-time math-
ematical models of systems could be used directly. Hence,
information about the system dynamics remained that would
otherwise have been removed by discretisation techniques.
This was first accomplished by means of so-called emula-
tors and subsequently series expansions to approximate the
trajectories of the system (see e.g. [2], [3]). Techniques that
were evolving in the discrete-time case were simultaneously
adopted in the continuous-time domain to improve designs
such as the replacement of transfer functions with state
space models (see e.g. [4], [5]). More recent advancements
have seen the employment of orthonormal functions in order
to facilitate the design of MPC schemes in continuous-
time with more desirable tuning capabilities (see [6]). Still
however, such control schemes rely on an accurate system
representation by a mathematical model.

Data-driven approaches to discrete-time MPC and other
control schemes such as Iterative Learning Control (ILC)
have been presented (see e.g. [7] and [8] respectively).
More recent developments in data-driven approaches have
followed from advances in the fundamental ideas of data-
driven control in the continuous-time domain (see e.g. [9]–
[11]). Subsequently, the last two authors of the present
paper introduced in [12] a Chebyshev basis approach for
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applying data-driven ILC ideas to continuous-time systems.
However, no MPC algorithm currently exists for controlling
continuous-time problems without any mathematical model
of the system.

In this paper, we present some preliminary ideas on the use
of Chebyshev polynomials for the application of data-driven
MPC in the continuous-time domain. We investigate the key
parameters involved in the described control scheme in sim-
ulations and show that this framework provides equivalent
results to schemes that use system models.

The remainder of this paper is structured as follows.
In Section II, we recall the basic definitions and concepts
of MPC (Section II-A) and of Chebyshev Polynomial Or-
thogonal Bases (CPOB) (Section II-B). Section III contains
the statement of a fundamental result relating CPOB rep-
resentations of ‘sufficiently informative’ input-output data
produced by a continuous-time linear time-invariant (LTI)
system, and the CPOB representations of all system tra-
jectories. Before this result is exploited, in Section IV
we consider an important condition in the applicability of
MPC in continuous-time. In Section V, we reformulate the
classical MPC problem into a data-driven problem defined
on an infinite-dimensional space of coefficient sequences.
An implementable version of the framework is analysed in
Section VI. We investigate key parameters and characteristics
in three simulations when our framework is applied to a sim-
ple numerical example and a problem from a model-driven
approach to MPC in continuous-time to draw comparison.
Section VII includes detailed discussions of the results of
the investigations; we conclude the paper and discuss future
work in Section VIII.

Notation

We denote by N and R respectively the set of natural and
real numbers. Rn denotes the space of n-dimensional vectors
with real entries. Rn×m denotes the set of n ×m matrices
with real entries; Rn×∞ the set of real matrices with n rows
and an infinite number of columns, and R∞×∞ the set of real
matrices with an infinite number of rows and columns. The
transpose of a matrix M is denoted by M⊤. The ith row of a
matrix M is denoted by Mi,:, and its ith column is denoted
by M:,i. If A and B are two matrices with the same number
of columns, we define col(A,B) :=

[
A⊤ B⊤]⊤. For a

continuous-time trajectory u(·), we denote its ith derivative
with respect to time t by u(i) and its restriction over I :=
[t0, t1] as u|[t0,t1] or u|I. For a linear operator L, its range is
denoted by R[L]. We denote by L2(I,R) the space of square-
integrable real-valued functions defined on a finite interval
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I := [t0, t1] ⊂ R and by ℓ2(N,R) the space of real square-
summable sequences. We denote by u(t−) and u(t+) the
left, respectively the right limit of the function.

II. BACKGROUND

A. Model Predictive Control

We formalise one version of the continuous-time MPC
design problem as follows. Consider the linear time-invariant
continuous-time system

d

dt
x(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t), x(0) = x0 , (1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp denote the
state, input and output at time t; A,B,C,D are system
matrices with appropriate dimensions. Let Ts ∈ R>0 denote
some fixed sampling time and Tp ∈ R≥Ts

some fixed
prediction horizon. We denote by γ ∈ N the time-step
index and define the time interval of a prediction horizon
by Iγ,p := [γTs, γTs + Tp] and of a sample by
Iγ,s := [γTs, (γ + 1)Ts] ⊂ Iγ,p. The length of a time-step
γTs − (γ − 1)Ts = Ts. The objective of one version
of MPC is to compute a control input u|Iγ,p

such that the
system output y|Iγ,p

tracks a given reference r|Iγ,p
. At each

time-step, the input uγ := u|Iγ,s
is applied to the system

resulting in the state xγ := x|Iγ,s
and output yγ := y|Iγ,s

.
The initial condition of each time-step is given by the value
of the state at the end of the previous time-step such that the
state is continuous. This objective holds for every time-step
until a final time-step γF ; we define the overall operating
time interval of the system by IF := [0, (γF + 1)Ts].

A squared 2-norm is defined by the following, with Q ≻ 0
and R ≻ 0 having compatible dimensions, in the output
and input spaces y ∈ L2(Iγ,p,Rp) and u ∈ L2(Iγ,p,Rm)
respectively

∥y∥2Q :=

∫
Iγ,p

y⊤(t)Qy(t)dt ; ∥u∥2R :=

∫
Iγ,p

u⊤(t)Ru(t)dt .

The control input for the current time-step is the following

uγ = argminuγ
{∥r|Iγ,p

− y|Iγ,p
∥2Q + ∥u(1)

|Iγ,p
∥2R} (2)

s.t.
d

dt
x(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),

xγ(γTs) = xγ−1(γTs) .

The full control input u over the whole interval IF =
[0, (γF + 1)Ts] is the concatenation of all trajectories uγ ;
similarly for the full system output y.

Clearly, this version of MPC in continuous-time relies
on the mathematical model for the system (1). We wish to
develop a framework that uses only system data and requires
no mathematical model of the system.

B. Chebyshev polynomial orthogonal bases

The Chebyshev polynomials are defined by
Ci(t) := cos(i arccos(t)), i ∈ N, and thus exist
within the interval I := [−1, 1], see e.g. Chapter 3 p.
14 in [13]. By linear translation and scaling, the interval
[−1, 1] can be transformed into any MPC prediction horizon
Iγ,p = [γTs, γTs + Tp]. We define the following variables

αγ :=
Tp

2
+ γTs ; β :=

2

Tp
, (3)

such that the Chebyshev polynomials on Iγ,p are defined by

Cγ,n(t) := cos(n arccos(β(t− αγ))), n ∈ N . (4)

Thus, Cγ,0(t) = 1, Cγ,1(t) = β(t − αγ), and
Cγ,n+1(t) = 2β(t− αγ)Cγ,n(t)− Cγ,n−1(t), n ≥ 1.

We define the weight function w(·) at time t by

wγ(t) :=
1√

1− (β(t− αγ))2
, t ∈ Iγ,p .

The Chebyshev polynomials on Iγ,p are orthogonal to each
other with respect to the inner product defined by ⟨f, g⟩wγ

:=∫
Iγ,p

f(t)g(t)wγ(t)dt, and they form a complete basis for
L2(Iγ,p,R), i.e. their linear span is dense in L2(Iγ,p,R).
Given this density, every f ∈ L2(Iγ,p,R) can be written as
a series

{∑∞
k=0 f̃kCγ,k

}
k∈N

where f̃k := ⟨f, Cγ,k⟩wγ
. The

coefficients f̃k can be computed effectively and accurately
using a sampling and interpolation procedure rather than
evaluating the aforementioned inner product, see Chapter 2
p. 7 in [13]. The convergence of this series to f depends
on the smoothness of f , see Remark 3 p. 3 in [11]. The
sequence of coefficients {f̃k}k∈N is square-summable, see
Theorem 23 p. 23 in [14]. We define the infinite vector of
Chebyshev polynomials Cγ :=

[
Cγ,0 Cγ,1 . . .

]⊤
and the

infinite vector of coefficients f̃ :=
[
f̃0 f̃1 . . .

]
. Hence,

we write
f =

∞∑
k=0

f̃kCγ,k = f̃Cγ . (5)

We call the right-hand side of (5) the polynomial transform
of f (see Section 2.2.2 p. 69 of [15]).

The notation of Section II.B p. 4628 in [12] is utilised for
vector functions. We call ΠN (f) the N th degree truncation
of the projection of f on the space of Chebyshev coefficient
sequences, and f − ΠN (f) the approximation error. It can
be shown that the approximation error decays with N .

If f ∈ L2(I,R) is differentiable and f (1) ∈ L2(I,R), then
the differentiation in the transform space equality holds:

f (1) =

∞∑
k=0

f̃
(1)
k Cγ,k (6)

with
[
f̃
(1)
0 . . . f̃

(1)
k . . .

]
=

[
f̃0 . . . f̃k . . .

]
DI ,

where DI ∈ R∞×∞ is a fixed differentiation matrix for
vector functions on I = [−1, 1] whose entries are computed
according to standard formulas, see Example 4 p. 4 in
[11]. For vector functions that are not on I but rather
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Iγ,p = [γTs, γTs + Tp], we denote by Dβ the matrix DI
scaled by β (see (3)), i.e. Dβ := βDI. It can be shown that
Dβ is a differentiation matrix for vector functions on Iγ,p.
We therefore state that for any f ∈ L2(Iγ,p,R),

f (1) = f̃ (1)Cγ = f̃βDICγ = f̃DβCγ . (7)

The derivative of any L2(Iγ,p,R) function can be computed
with CPOB and linear operations with the matrix Dβ .

The truncation of the derivative of the Chebyshev series
for f can be computed by partitioning the matrix Dβ , see
Section II.D p. 4 in [11].

III. ALL SYSTEM TRAJECTORIES FROM ONE

In this section, we state the fundamental result that enables
the CPOB representation of all system trajectories from one
‘sufficiently informative’ input-output trajectory produced by
a continuous-time LTI system.

The following is Definition 1 p. 589 in [9] for functions
on Iγ,p = [γTs, γTs + Tp].

Definition 1: Let Iγ,p = [γTs, γTs + Tp]. f : Iγ,p → Rm

is persistently exciting of order k on Iγ,p if:
a) f is (k − 1)-times continuously differentiable in Iγ,p;
b) For every v :=

[
v0 . . . vk−1

]
∈ R1×km it holds that

v


f(t)

f (1)(t)
...

f (k−1)(t)

 = 0 ∀ t ∈ Iγ,p =⇒ v0, . . . , vk−1 = 0 . (8)

We define the system lag ℓ of the input-state-output
representation (1) as in Section 3 p. 3 in [10]. Associate
to (1) its input-output behaviour on Iγ,p, defined by

BIγ,p
:=

{
col(u, y) ∈ C∞(Iγ,p,Rm+p) |

∃ x ∈ C∞(Iγ,p,Rn) s.t. col(u, x, y) satisfies (1)} . (9)

The linearity of the system (1) ensures that all possible
trajectories of BIγ,p belong to L2(Iγ,p,Rm+p) and thus can
be represented using CPOB. The projection of BIγ,p

on the
space of Chebyshev coefficient sequences is defined by

Π(BIγ,p
) :=

{
col(ũ, ỹ) ∈ ℓ2(N,Rm+p) |

∃ col(u, y) ∈ BIγ,p
s.t. col(ũ, ỹ) = Π(col(u, y))} . (10)

Given the CPOB representation f̃ of f ∈ L2(Iγ,p,Rr), we
denote by WL(f̃) the Lr ×∞ matrix

WL(f̃) := col
(
f̃Dj

β

)
j=0,...,L−1

. (11)

The following is Theorem 4 p. 6 of [10].
Theorem 1: Define BIγ,p

by (9), and let col (u, y) ∈
BIγ,p . Assume that (A,B) is controllable, and that u is
persistently exciting of order L > ℓ + n. Define WL(ũ),
WL(ỹ) by (11). Then dimR [col(WL(ũ),WL(ỹ))] = Lm+
n =: d.

Let Vu ∈ RLm×d and Vy ∈ RLp×d be such that
col(Vu, Vy) is a basis matrix for R [col(WL(ũ),WL(ỹ))];
note that Vu, Vy depend on Iγ,p. Define Π(BIγ,p

) by (10).
The following are equivalent:

1) col (ũ′, ỹ′) ∈ Π(BIγ,p);
2) There exists G ∈ Rd×∞ such that[

W(ũ′)
W(ỹ′)

]
=

[
Vu

Vy

]
G , (12)

3) There exists G ∈ Rd×∞ such that

(VuG)1,: = ũ′

(VyG)1,: = ỹ′

(VuG)1,:Di
β − (VuG)i+1,: = 0

(VyG)1,:Di
β − (VyG)i+1,: = 0 , (13)

i = 1, . . . , L− 1.
The Chebyshev representation of all possible system trajec-
tories can be derived directly from the Chebyshev representa-
tion of a single ‘sufficiently informative’ trajectory, as shown
by Theorem 1.

IV. APPLICABILITY OF MPC IN CONTINUOUS-TIME

Bumpless transfer in control improves tracking perfor-
mance by preventing impulsive changes in the control input
signal that cannot be accurately applied to the input of
a system (see e.g. [16]). The following result ensures a
continuous state, i.e. a bumpless transfer, between time-steps
for systems operating in continuous-time.

We first define the vector of system trajectory derivatives

we :=
[
u⊤ y⊤ · · · (u(L−1))⊤ (y(L−1))⊤

]⊤
. (14)

Proposition 1: If every uγ is persistently exciting of order
L in [γTs, (γ + 1)Ts] and if we(γT

−
s ) = we(γT

+
s ) then u

is persistently exciting of order L over the whole interval
IF = [0, (γF+1)Ts] and the underlying state of the system is
continuous at every time γTs and over IF = [0, (γF +1)Ts].

Proof: It can be shown (see [17]) that every state
variable x of an LTI system is computed as x = X( d

dt )(
u
y )

where X( d
dt ) = X0 + X1

d
dt + ... + XL−1

dL−1

dtL−1 is a state
map and Xi ∈ Rn×(m+p), i = 0, ..., L− 1.

If we(γT
−
s ) = we(γT

+
s ), then

lim
t→γT−

s

x(t) = lim
t→γT−

s

[
X0 X1 . . . XL−1

]
we(t)

=
[
X0 X1 . . . XL−1

]
lim

t→γT−
s

we(t)

=
[
X0 X1 . . . XL−1

]
we(γT

−
s )

=
[
X0 X1 . . . XL−1

]
we(γT

+
s ) = lim

t→γT+
s

x(t) ,

and x is continuous at γTs.
To prove persistency of excitation over the whole in-

terval IF , observe that uγ is persistently exciting on
Iγ,s = [γTs, (γ + 1)Ts] ⊂ IF so, from Definition 1, the
only thing to prove is that u is (L− 1)-times differentiable
at γTs. This follows from we(γT

−
s ) = we(γT

+
s ).

A control input trajectory that is the concatenation of
persistently exciting control input trajectories is therefore
itself persistently exciting and moreover gives rise to a
continuous state given that the conditions of Proposition 1
hold true.
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V. A CPOB BASED MPC DESIGN FOR
CONTINUOUS-TIME SYSTEMS

In this section, we reformulate the MPC design prob-
lem (2) using only ‘sufficiently informative’ input-output
data. We first give a data-based characterisation of all so-
lutions of (2) and then define a CPOB formulation of the
result of Proposition 1 such that the state of the system is
guaranteed to be continuous across IF = [0, (γF + 1)Ts].

Proposition 2: Under the assumptions of Theorem 1, uγ

solves the MPC design problem (2) on time-step γ, with
some reference r|Iγ,p

, if and only if there exists Gγ ∈ Rd×∞

that solves the following optimisation problem

min
Gγ

{
∥r|Iγ,p

− (VyGγ)1,:Cγ∥2Q + ∥(VuGγ)1,:DβCγ∥2R
}

s.t. (VuGγ)1,:Di
β − (VuGγ)i+1,: = 0

(VyGγ)1,:Di
β − (VyGγ)i+1,: = 0 (15)

i = 1, . . . , L− 1,

(VuGγ)1,:Di
βCγ(γTs) = u

(i)
γ−1(γTs)

(VyGγ)1,:Di
βCγ(γTs) = y

(i)
γ−1(γTs)

i = 0, . . . , L− 1.

Moreover, the optimal input uγ on time-step γ is

uγ = ((VuGγ)1,:Cγ)|[γTs,(γ+1)Ts]
.

Proof: The first two constraints appearing in (2) are
equivalent to requiring that col(uγ , yγ) is an input-output
trajectory of (1). Using Theorem 1 and the assumption of
persistent excitation of u, col(uγ , yγ) is a system trajectory
if and only if it satisfies (13), i.e. the first two constraints
in (15). The last constraint of (2) corresponds to requiring
that the underlying state of the system x is continuous,
equivalently the last two constraints in (15), the CPOB
representation of Proposition 1, must hold true.

Remark 1: The proposed design framework involves the
use of (high-order) derivatives of the input and output signals.
However, there is no need to measure them (which can be
difficult in practice) as they can be directly computed using
CPOB representations and (7).

Remark 2: In Proposition 2, we proposed a data-driven
MPC framework in continuous-time (15) that involves work-
ing on Gγ in an infinite dimensional space (i.e. an infinite
number of Chebyshev coefficients). In practice, for compu-
tational purposes, one would truncate the framework to use a
finite number N of Chebyshev coefficients. The following is
a truncated, implementable CPOB-based MPC approximate
design procedure that uses only a finite number N ∈ N of
Chebyshev coefficients. Denote by Cγ,N the truncation of
the basis vector Cγ to the first N + 1 entries, by Dβ,N the
(N + 1) × (N + 1) principal submatrix of Dβ , and by rC
the truncated CPOB representation of the reference r|Iγ,p

.
We reformulate the optimisation problem (15) for truncated
signals as follows. We solve for Gγ,N ∈ Rd×(N+1) the

following finite-dimensional version of (15)

min
Gγ,N

{
∥rC − (VyGγ,N )1,:Cγ,N∥2Q (16)

+ ∥(VuGγ,N )1,:Dβ,NCγ,N∥2R
}

s.t. (VuGγ,N )1,:Di
β,N − (VuGγ,N )i+1,: = 0

(VyGγ,N )1,:Di
β,N − (VyGγ,N )i+1,: = 0

i = 1, . . . , L− 1,

(VuGγ,N )1,:Di
β,NCγ,N (γTs) = u

(i)
γ−1(γTs)

(VyGγ,N )1,:Di
β,NCγ,N (γTs) = y

(i)
γ−1(γTs)

i = 0, . . . , L− 1.

We then compute the input uγ for the current time-step as

uγ = ((VuGγ,N )1,:Cγ,N )|[γTs,(γ+1)Ts]
.

VI. SIMULATIONS

A. A first-order example

Consider the dynamical system (adapted from [10])

d

dt
x = −x+ u , y = x . (17)

The system is operating over IF = [0, 8] with initial
condition x(0) = 0; the output is required to track a constant
reference trajectory with magnitude one. The system has a
lag of ℓ = 1 and order n = 1. It can be shown that the
input signal whose value at t is u(t) = −3e−4t − 2e−3t −
e−2t ∈ L2(Iγ,p,R) for any finite γ and Tp and is persistently
exciting of order L = 3 > ℓ+n, and gives rise to the output
y(t) = e−4t+e−3t+e−2t+e−t. Any input signal that belongs
to L2(Iγ,p,Rm) and is persistently exciting of order at least
3 could have been selected. The derivatives of these signals
can be computed effectively using the CPOB representations
of the signals and (7). It can be shown that the following is a
basis of R [col(WL(ũ),WL(ỹ))] (as defined in Theorem 1)
and can be used to characterise all system trajectories, see
(12), [

Vu

Vy

]
=


1 0 0 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1
0 0 1 0 0 0


⊤

.

1) The effects of the prediction horizon: We first inves-
tigated the effects of the prediction horizon with the values
of the parameters in (16) as Tp = 1, 2, 4, 8s; Ts = 0.1s;
R = 0.01; Q = 1 and N = 20. The output and input
trajectories are depicted in Figure 1.

2) The effects of the truncation index: The truncation
index of Chebyshev representations was studied with the
values N = 8, 10, 15, 20, 40; Tp = 4s; Ts = 0.1s;
R = 0.01 and Q = 1. Figure 2 depicts the output and input
trajectories.

The tracking error is defined by e := r − y. The finite-
horizon cost of each input-output trajectory pair u, y over
IF = [0, (γF +1)Ts] is defined by J := ∥e∥2Q + ∥u(1)∥2R
in which a squared 2-norm is defined by the following, with
Q ≻ 0 and R ≻ 0 having compatible dimensions, in the

372



Fig. 1. Output and input signals y, u with different values of Tp.

Fig. 2. Output and input signals y, u with different values of N .

output and input spaces y ∈ L2(IF ,Rp) and u ∈ L2(IF ,Rm)
respectively

∥y∥2Q :=

∫
IF

y⊤(t)Qy(t)dt ; ∥u∥2R :=

∫
IF

u⊤(t)Ru(t)dt .

Figure 3 shows the finite-horizon costs of the simulation with
the case of varying N as the sum of the tracking error and
control input trajectory derivative costs. The colours of the
bars correspond to the colours of the trajectories in Figure 2.

B. A non-minimum phase system

The following transfer function is from Example 1 p. 1596
in [6]

(0.1s+ 1)(−s+ 1)

(s+ 1)2(s+ 2)
. (18)

The system is operating over IF = [0, 15] with initial
condition x(0) = 0 and the output trajectory is required
to track a constant reference trajectory with magnitude one.
The system has a lag of ℓ = 3 and order n = 3. It
can be shown that the input signal whose value at t is

Fig. 3. Tracking error cost (colour); control input derivative cost (black),
and finite-horizon cost (overall height of bar) of the signals y, u with
different values of N in Figure 2.

u(t) = −7e−8t − 6e−7t − 5e−6t − 4e−5t − 3e−4t − 2e−3t −
e−2t ∈ L2(Iγ,p,R) for any finite γ and Tp and is persistently
exciting of order L = 7 > ℓ + n. It can be shown that a
basis of R [col(WL(ũ),WL(ỹ))] (as defined in Theorem 1)
is given by

[
Vu

Vy

]
=



2 5 4 1 0 . . .
0 2 5 4 1 . . .
0 0 2 5 4 . . .
...

...
...

...
...

. . .
1 −0.9 −0.1 0 0 . . .
0 1 −0.9 −0.1 0 . . .
0 0 1 −0.9 −0.1 . . .
...

...
...

...
...

. . .


where Vu ∈ R7×10 and Vy ∈ R7×10.

The optimisation problem (16) was simulated with
N = 18, 20; R = 0.00001; Q = 1; Tp = 10s and Ts = 0.1s.
The output and input trajectories are depicted in Figure 4; the
signals that are labelled ‘cmpc’ are from Example 1 p. 1596
in [6] with different numbers of orthogonal polynomials,
N = 1, 2, and pole location of the Laguerre model for the
future control signal p = 0.2.

Fig. 4. Output and input signals y, u for the non-minimum phase case
with different values of N in our framework and the continuous-time MPC
framework presented in [6].
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VII. DISCUSSION

We can draw from the examples in the previous section
some indications about the validity of our approach and some
clues about pressing issues for further research.

Comment 1 (Prediction horizon). The parameter Tp in our
framework plays a similar role to the prediction horizons
T2 and N2 in the classical model-driven MPC schemes
in continuous-time, see [3], and discrete-time, see [18],
respectively. It is stated in Section 4.2 p. 65 in [3] and shown
in Figure 5 p. 67 therein that larger values of T2 increase
the rise time of the system output trajectory. Accordantly, in
the discrete-time case, it is shown in Figure 5 p. 156 in [18]
that the rise time of the system output increases with larger
values of N2. We therefore expect that with increasing values
of Tp, we observe larger rise times. This trend is depicted in
Figure 1 with our framework.

Comment 2 (Chebyshev truncation index). The truncation
index N in our framework plays a similar role to the control
order Nu in [3]. Nu is used to tune the accuracy of the
computed predicted input to the actual optimal predicted
input (see Section 2.5 p. 60 and Section 4.4 p. 66 in [3])
and makes the algorithm computationally tractable. Thus,
the computational complexity of the algorithm is tuned
implicitly. It is shown in Figure 6 p. 68 in [3] that the rise
time decreases with larger values of Nu. We depict the same
trend in Figure 2 with N in our framework. Furthermore,
Figure 3 shows that the tracking error and finite-horizon costs
decrease and the control input derivative cost increases with
larger values of N .

Comment 3 (Comparison to model-driven MPC in
continuous-time using orthonormal functions). From Exam-
ple 1 p. 1596 in [6], we expect that the output trajectory
settles to the reference value within 15s and that an increase
in the number of orthonormal functions leads to a shorter
rise time in the control input. Figure 4 depicts that with our
framework, the output trajectory successfully tracks and is
within 2% of the reference in approximately 8.2s and 6.9s
with N = 18 and N = 20 respectively. We also observe that
the rise time of the control input with N = 20 is shorter than
that with N = 18. The algorithm presented in [6] requires
an augmented state space model of the system involving the
derivative of the control input in order to implement integral
action (see Section 3.1 p. 1590 in [6]). The dimensions
of the matrices in the mathematical model are therefore
increased and the computation of the control input at each
time step requires an extra process (see Section 4.2 p. 1592
in [6]); thus the computational complexity of the algorithm
increases. Not only does our framework remove the need for
any mathematical model of the system but the derivatives
of the system trajectories can be computed effectively and
accurately using linear operations with the differentiation
matrix introduced in Section II-B.

VIII. CONCLUSIONS

We presented some preliminary ideas on the development
of a data-driven MPC algorithm for continuous-time sys-
tems using Chebyshev polynomial bases. Our framework

provides a purely data-driven solution to the MPC problem
in continuous-time. An implementable and computationally
tractable version of the framework was simulated in order
to investigate the influence of the parameters involved in
our framework and draw comparison to model-driven MPC
algorithms in both discrete-time and continuous-time.

Future work includes the formulation of a sound frame-
work and rigorous guidelines for the design of data-driven
MPC control schemes in continuous-time using orthogonal
bases. In this paper, the fixed values of the design parameters
(e.g. the truncation index N ) are chosen in advance; the use
of time-varying parameters is an area for future research.
Adaptations to our framework for other classifications of sys-
tems and applications beyond LTI tracking problems should
be considered - such as linear time-varying systems and
repetitive control. A thorough analysis of the computational
complexity and theoretical guarantees (such as stability) of
our framework shall be conducted.
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