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Abstract— Hill functions are often used in stochastic models
of gene regulation to approximate the dependence of gene
activity on the concentration of the transcription factor (TF)
that regulates the gene. However, it is generally unknown
how much error one may incur from this approximation.
We investigate this question in the context of transcriptional
networks (TNs). Under the assumption of rapid binding and
unbinding of TFs with their gene targets, we bound the
approximation error (in terms of the total variation distance)
between a mass-action stochastic model and a corresponding
model with Hill function propensities. To do so, we use a
combination of singular perturbation theory and moment
analysis for stochastic chemical reaction networks. We assume
throughout that TFs regulate genes in a one-to-one fashion, each
regulated gene produces a single TF, TFs do not multimerize,
and each gene only has a single TF binding site. These results
are pertinent for the modeling of TNs and may also carry
relevance for more general biological processes.

I. INTRODUCTION

A transcriptional network (TN) is a type of chemical reac-
tion network (CRN) which consists of transcription factors
(TFs) and genes (Figure 1a). In TNs, genes produce TFs, and
TFs regulate gene activities, i.e. the rates at which genes are
transcribed, via reversible TF-gene binding [1].

One often reduces deterministic TN models by exploiting
the separation between the timescale of binding and unbind-
ing of TFs with genes and the timescale of production and
decay of TFs. Per singular perturbation theory, this separation
justifies the “quasi-steady-state” approximation (QSSA) that
the time-derivative of the TF-gene complex concentration
is approximately zero after a short transient [2]–[4]. One
can use this approximation to determine how the activity of
a gene depends on the total concentration of the TF that
regulates it. When the binding strength between TFs and
genes is sufficiently weak, this dependence takes the form
of a Hill function [3].

Hill functions are also often used to approximate this
same dependence in the stochastic setting [5,6]. In [7,8],
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Fig. 1. Visualization of TNs via bipartite directed graphs. (a) A graph of
a general TN. An edge from gene G to TF P indicates that G produces
P. An edge from a TF P to a gene G indicates that P regulates G by
changing the rate at which G produces TFs. An “→” arrow from P to
G indicates that G produces more TF (positive regulation) when bound to
P than when unbound, and a “ ⊥” arrow indicates the opposite (negative
regulation). Unregulated genes, those that are not regulated by any TF, are
shown with dashed borders. (b) A graph of a TN from the restricted class
that we consider in this work. Unlike Figure 1a, in this TN, each TF regulates
at most one gene, each regulated gene produces only one TF, and no two
different TFs regulate the same gene.

the authors show that in the limit of weak TF-gene bind-
ing, stochastic models of various TNs using Hill function
propensities are accurate when the relevant timescales are
sufficiently separated. In [9], the authors showed an anal-
ogous result for the similar case of the Michaelis-Menten
approximation in stochastic enzyme kinetics.

The stochastic QSSA (sQSSA) is an analogue of the QSSA
that produces reduced stochastic models of two-timescale
CRNs [10]–[14]. The sQSSA is the approximation that
immediately after a slow reaction of the CRN occurs, the
fast reactions of the CRN fire enough times to make the
probability distribution of the CRN close to the stationary
distribution of a “virtual” CRN which only includes these
fast reactions [10]. For some CRNs, one can use singular
perturbation theory or related techniques to prove that the
sQSSA produces an accurate reduced model for sufficiently
large timescale separation [15]–[20]. Furthermore, for CRNs
with certain structures, expressions for the propensity func-
tions of the reduced model can be found explicitly [21,22].
In related work, Kwon et al. gave an algorithm that exploits
timescale separation and the moment dynamics of the fast
virtual process to approximately, but efficiently, simulate a
CRN and compute error bounds [23].

In this work, we consider a restricted class of TNs in the
limit of rapid binding and unbinding of TFs with genes. In
this setting, we provide an explicit bound on the error (mea-
sured in total variation distance) between a stochastic model
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of a TN using mass-action propensities and a simplified
stochastic model using Hill function propensities. Critically,
we do not assume weak binding between TFs and genes. To
obtain our results, we first justify the sQSSA for this class
of TNs using singular perturbation theory, and thereafter we
use the moment dynamics of the virtual fast CRN to bound
the error between the propensity functions of the resulting
reduced model and the Hill propensity functions. The class
of TNs we investigate are those of the form in Figure 1b,
namely those in which each TF can only regulate the activity
of one gene, each regulated gene can only produce a single
TF, and no two TFs regulate the same gene. We also assume
the TFs do not multimerize (e.g. do not homodimerize or
heterodimerize) and that each gene has only one TF binding
site. However, we do not assume that each gene appears in
a single copy. For simplicity, we ignore mRNA dynamics.

II. MATHEMATICAL BACKGROUND

We use N, Z, Z+, and R to denote the set of natural
numbers (excluding 0), integers, non-negative integers, and
real numbers, respectively. We use Zn

+ (Zn) to denote row
vectors with n non-negative integer (integer) entries. We
define 1S(x) to equal 1 if x ∈ S and 0 otherwise.

A. Continuous Time Markov Chains

A (minimal) Continuous Time Markov Chain (CTMC) is
a random process Y = {Y (t)}t≥0 whose sample paths at
each time t ≥ 0 take a value in some countable set Y ∪{∞}
with the property that the probability the process will be in
a given state at a given future time is entirely determined by
its present state [24]. Y is called the state space of Y .

The jump chain Ỹ0, Ỹ1, . . . of Y is the sequence of states
which Y visits, with Ỹ0 being the initial state. The amount
of time Y spends in state Ỹ k−1 between the (k − 1)th and
kth state transition is the kth holding time, Sk. The explosion
time of Y is defined by T∞

Y :=
∑∞

k=1 Sk. Following its
explosion time (and only following this time), Y is defined
to be in the special state ∞ (this is the meaning of minimal).
Y is non-explosive if T∞

Y = ∞ almost surely.
In agreement with the assumptions of the references [24]–

[26] we invoke in our proofs, all CTMCs in this work are
assumed to be minimal and have right-continuous trajectories
with finite left-limits (again see [24] for details).

B. Infinitesimal Generators and Stationary Distributions

An infinitesimal generator is a function Q : Y × Y → R
such that for each y, y′ ∈ Y , 0 ≤ −Q(y, y) < ∞, y ̸=
y′ implies Q(y, y′) ≥ 0, and

∑
y′′∈Y Q(y, y′′) = 0. Each

minimal CTMC Y with state space Y is associated with an
infinitesimal generator Q : Y × Y → R that completely
specifies the likelihood the CTMC will have a given state at
a given future time [24].

Two states y, y′ in Y communicate (with respect to Q) if
there is a nonzero probability that a CTMC with infinites-
imal generator Q and initial state y will have state y′ at
some point in the future and vice versa. Communication
is an equivalence relation on the set Y , partitioning it into

communicating classes (of Q). A communicating class C
is closed if the restriction of Q to the domain C × C is
itself an infinitesimal generator (i.e. if once in C the CTMC
cannot leave this set). A stationary distribution of Q is a
probability distribution π : Y → [0, 1] such that for all
y ∈ Y ,

∑
y′∈Y π(y′)Q(y′, y) = 0.

C. Stochastic CRNs

We define a stochastic CRN (SCRN) S to be an (ordered)
set of chemical species S1, . . . ,Sn, a state space Y ⊂ Zn

+,
and a finite collection of reactions (indexed by r) of the
form

∑n
i=1 ar,iSi →

∑n
i=1 br,iSi (ar,i, br,i ∈ Z+), each with

a propensity function υr : Y → [0,∞) and stoichiometry
vector ur := (br,1 − ar,1, . . . , br,n − ar,n), such that ur ̸= 0
for each r, and for each y ∈ Y , if y+ur /∈ Y then υr(y) = 0.

For each y0 ∈ Y , S has a naturally associated CTMC Y
with state space Y , initial state y0, and infinitesimal generator
Q : Y × Y → R given by

Q(y, y′) =
∑

r
υr(y)1{y′}(y + ur),

for y ̸= y′. We define this infinitesimal generator to be the
one determined by the set of stoichiometry vector-propensity
pairs {(ur, υr)}r. We call Q the infinitesimal generator of
S and refer to the communicating classes and stationary
distributions of S as those inherited from Q.

D. Total Variation Distance

Given two random variables Y and Y ′, both taking values
in Y , we define their total variation distance (TVD) to be
dTV (Y, Y

′) = 1
2

∑
y∈Y |P(Y = y)− P(Y ′ = y)|.

Conceptually, the total variation distance between two
random variables quantifies the degree to which their prob-
ability distributions do not overlap. The TVD will be our
primary metric of dissimilarity between random variables
corresponding to different stochastic models.

III. PROBLEM SETTING

We first describe the “full” SCRN, which is a model of
a TN of the form shown in Figure 1b that uses mass-action
propensities. We next define the “reduced” SCRN, which is
in essence the reduction of the full SCRN via the sQSSA.
Finally, we introduce the “Hill” SCRN, which has the same
reactions and chemical species as the reduced SCRN, but
uses Hill function propensities. Our ultimate goal is to bound
the TVD between the CTMCs associated with the full SCRN
and the Hill SCRN, under the assumption of rapid binding
and unbinding of genes and TFs. The reduced SCRN will
serve as an intermediary by which to achieve this goal.

A. Full SCRN

Fix n ∈ N, and for each i ∈ {1, . . . , n} fix some ḡi ∈ Z+

representing the total number of copies of gene i. Define
X := {(p1, . . . , pn, g1, . . . , gn, c1, . . . , cn) ∈ Z3n

+ : ∀i gi +
ci = ḡi}. Define X̄ := Zn

+.
For convenience, throughout the rest of this text,

the variable x always represents a vector of variables
(p1, . . . , pn, g1, . . . , gn, c1, . . . , cn) which belongs to X , and
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the variable x̄ always represents a vector of variables
(p̄1, . . . , p̄n) which belongs to X̄ . With this notation in mind,
let T : X → X̄ be defined by Tx = (p1 + c1, . . . , pn + cn).
Conceptually, Tx represents the total (unbound + bound)
number of TFs of each species associated with state x.

For each i ∈ {1, . . . , n}, let fi and bi be positive scalars,
and let αi, βi, κi, and γi be non-negative. Let Ω = VCNA >
0, where VC represents the cell volume and NA is the
Avogadro constant. Fix σ : {1, . . . , n} → {1, . . . , n}, which
represents the map from each gene Gi to the TF Pσ(i) which
Gi produces.

Now, for each ϵ > 0, consider the SCRN Sϵ with chemical
species P1, . . . ,Pn,G1, . . . ,Gn,C1, . . . ,Cn, state space X ,
and the following reaction-propensity pairs described by
mass-action kinetics for all i ∈ {1, . . . , n}:

Pi + Gi → Ci, υf,i,ϵ(x) =
1

ϵ

fi
Ω
pigi; (1a)

Ci → Pi + Gi, υb,i,ϵ(x) =
1

ϵ
bici; (1b)

Ci → Ci + Pσ(i), υα,i(x) = αici; (1c)
Gi → Gi + Pσ(i), υβ,i(x) = βigi; (1d)

∅ → Pi, υκ,i(x) = Ωκi; (1e)
Pi → ∅, υγ,i(x) = γipi; (1f)

Ci → Gi, υγ′,i(x) = γici. (1g)

Physically the Pi’s represent unbound TFs, the Gi’s represent
unbound genes, and the Ci’s represent TF-gene complexes.
Note that for notational simplicity, we do not explicitly
include the unregulated genes in the above model. We instead
use (1e) to model the production of TF Pi from the set
of unregulated genes. With reference to Figure 1b, if we
denote the unregulated genes in the TN by Gu

1 , . . . ,Gu
s with

respective copy numbers ḡu1 , . . . , ḡ
u
n, then κi =

∑s
r=1 κi,r ḡ

u
r ,

where κi,r is the molar production rate of Pi per copy of gene
Gu

r . Note also that ϵ is inversely related to the speed of the
binding and unbinding reactions, so we will ultimately be
interested in the behavior of this SCRN as ϵ approaches 0.

Fix x0 ∈ X . For each ϵ > 0, let Xϵ be the CTMC
associated with S having initial state x0.

B. Reduced SCRN

We first define a “virtual” SCRN R, with chemical species
P1, . . . ,Pn,G1, . . . ,Gn,C1, . . . ,Cn, state space X , and the
following reactions and propensities for all i ∈ {1, . . . , n}:

Pi + Gi → Ci, υf,i(x) =
fi
Ω
pigi;

Ci → Pi + Gi, υb,i(x) = bici.

Thus R consists of only the fast reactions of the full network.
For each x̄ ∈ X̄ , let Ex̄ = {x ∈ X : Tx = x̄}.

In other words, if we write x̄ as (p̄1, . . . , p̄n), Ex̄ is the
set of states in X for which the total (unbound + bound)
count of each TF species i is p̄i. E := {Ex̄ : x̄ ∈ X̄} is
the collection of communicating classes of R. Since each
such communicating class is finite and closed (binding and
unbinding does not change total TF counts), for each x̄ there

is a unique stationary distribution πx̄ : X → [0, 1] of R
which is supported on Ex̄ (see Theorem 3.5.2 in [24]).

We define the reduced SCRN S̄ as having chemical
species P̄1, . . . , P̄n, state space X̄ , and the following reaction-
propensity pairs (for all i ∈ {1, . . . , n}):

P̄i → P̄i + P̄σ(i), ῡ+,i(x̄) = αiEW∼πx̄ [Ci] + βiEW∼πx̄ [Gi];
(2a)

∅ → P̄i, ῡ+′,i(x̄) = Ωκi; (2b)
P̄i → ∅, ῡ−,i(x̄) = γip̄i, (2c)

where W = (P1, . . . , Pn, G1, . . . , Gn, C1, . . . , Cn) is a
vector-valued random variable. Note that this SCRN only
involves the TF species, P̄i, without distinction between
whether they are unbound or bound (we use the overbar
to emphasize this difference from Pi, which refers to the
unbound TF).

Remark 1. Note that the propensity functions ῡ+,i(x̄) are
weighted averages of υα,i(x) + υβ,i(x) over x ∈ Ex̄, with
the weights corresponding to the stationary distribution of
the fast subsystem R that is supported on Ex̄. Similarly,
ῡ+′,i(x̄) is the weighted average of υκ,i(x), and ῡ−,i(x̄) is
the weighted average of υγ,i(x)+υγ′,i(x). Thus, this SCRN
may be viewed as the reduced model for the full SCRN via
application of the sQSSA (see [10] for more details), where
we make a change of coordinates so that we only keep track
of total TF.

Let X̄ be the CTMC associated with S̄ having initial state
x̄0 := Tx0.

C. Hill SCRN

We define another SCRN S̄H with chemical species
P̄1, . . . , P̄n, state space X̄ , and the following reaction-
propensity pairs (for all i ∈ {1, . . . , n}):

P̄i → P̄i + P̄σ(i), ῡ
H
+,i(x̄) =

αiḡip̄i/Ω
p̄i/Ω +Ki

+
βiḡiKi

p̄i/Ω +Ki
; (3a)

∅ → P̄i, ῡ
H
+′,i(x̄) = Ωκi; (3b)

P̄i → ∅, ῡH
−,i(x̄) = γip̄i, (3c)

where for each i, Ki := bi/fi. The expressions αiḡi
p̄i/Ω

p̄i/Ω+Ki

and βiḡi
Ki

p̄i/Ω+Ki
are the Hill functions for the TF-bound and

TF-unbound gene activites, respectively. Note that due to
the assumption that TFs do not form multimers, the Hill
coefficient in the above expression is equal to 1.

Let X̄H be the CTMC associated with S̄H having initial
state x̄0.

IV. MAIN RESULTS

Our first lemma states that our CTMCs of interest are non-
explosive. The next lemma states that the joint probability
distributions of total TF counts of each species at a given
time are identical between the full SCRN and the reduced
SCRN in the limit of rapid binding and unbinding between
TFs and genes. In other words, the sQSSA indeed produces
an accurate reduced model when ϵ is small.
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Lemma 1. For each ϵ > 0, Xϵ, X̄ , and X̄H are non-
explosive.

Proof. See Appendix A.

Remark 2. To interpret the following results, it is helpful
to write Xϵ(t) as (Pϵ,1(t), . . . , Pϵ,n(t), Gϵ,1(t), . . . , Gϵ,n(t),
Cϵ,1(t), . . . , Cϵ,n(t)), X̄(t) as (P̄1(t), . . . , P̄n(t)), and
X̄H(t) as (P̄H

1 (t), . . . , P̄H
n (t)). Then TXϵ(t) = (Pϵ,1(t) +

Cϵ,1(t), . . . , Pϵ,n(t) + Cϵ,n(t)) represents the total counts
of each TF in the full system. Similarly, X̄(t) and X̄H(t)
represent the total TF counts in the reduced SCRN and Hill
SCRN, respectively.

Lemma 2. For all t ≥ 0,

lim
ϵ→0+

dTV (TXϵ(t), X̄(t)) = 0.

Proof. See Appendix B.

The following theorem, which is our main result, bounds
the error between the full SCRN and the Hill SCRN in the
same rapid binding and unbinding limit.

Theorem 1. For all t ≥ 0,

lim
ϵ→0+

dTV (TXϵ(t), X̄H(t)) ≤

(n− n01)tmax
i

ḡi|αi − βi|
ḡi/Ω

ḡi/Ω +Ki
, (4)

where n01 is the number of i such that ḡi ∈ {0, 1}.

Proof. See Appendix C.

Our last result states that if each gene only has a single
copy, the Hill approximation error is in fact zero. This result
may be seen either as a corollary of the above, or as an
application of the results of [21] (section 4.1.3) to our system.

Corollary 1. Suppose that for each i, ḡi ∈ {0, 1}. Then, for
all t ≥ 0,

lim
ϵ→0+

dTV (TXϵ(t), X̄H(t)) = 0.

V. EXAMPLES

(a) (b)

P1 G1 P2 P2 G2 P3 G3
P4

P1 G1Gu1 Gu1

Fig. 2. Example TNs. (a) Simple regulation network. (b) Incoherent
feedforward network.

A. Example 1: simple positive regulation

For our first example, we investigate a simple TN in
which the constituitively expressed TF P1 positively regulates
production of P2 (Figure 2a). The full, reduced, and Hill
SCRNs are respectively given by (1a)-(1g), (2a)-(2c), and
(3a)-(3c), with n = 2 and σ(1) = 2. Since P2 does not
regulate a gene, ḡ2 = 0.

The probability distributions for each SCRN were com-
puted and compared in TVD. For sufficiently large separation
of timescales (ϵ ≪ 1), we expect based on Theorem 1 that the
TVD between the full and Hill SCRNs will be smaller than or
approximately equal to the right-hand side of (4), as in cases
1-3 of Figure 3a. Note that if the binding strength is too large,
the bound becomes trivial (case 3). In line with Corollary 1,
if ḡ1 = 1, then the TVD can be made small by making ϵ
small, even when TF-gene binding is not weak (case 4). If ϵ
is not sufficiently small, the errors can substantially exceed
the bound (cases 5-6). As expected based on (4), when there
is both a large separation of timescales and weak binding
(ḡ ≪ ΩK), all three systems produce approximately the
same marginal distributions of downstream TF (Figure 3b).
When binding is not sufficiently weak, there can indeed be
discrepancies between the full and Hill systems (Figure 3c).
These last two results agree with findings in [7,8].

(a)

(b) (c)

Fig. 3. (a) Simulation results for simple positive regulation for six cases:
1. ḡ1 = 3, ϵ = 0.01, b1 = 300/hr; 2. ḡ1 = 3, ϵ = 0.01, b1 = 30/hr; 3.
ḡ1 = 3, ϵ = 0.01, b1 = 3/hr; 4. ḡ1 = 1, ϵ = 0.01, b1 = 3/hr; 5. ḡ1 = 3,
ϵ = 10, b1 = 300/hr ; 6. ḡ1 = 1, ϵ = 10, b1 = 3/hr. In each case,
t = .1hr, Ω = NA · 1µm3, f1 = 1Ω/hr, γ1 = γ2 = 1/hr, κ2 = 0/Ω/hr,
α1 = 10/hr, β1 = 0/hr, ḡ2 = 0, and κ1 = Kγ1, where K := b1/f1.
We let the initial state be x0 := (p1,0, p2,0, g1,0, g2,0, c1,0, c2,0) =
(ΩK, 0, ḡ1, 0, 0, 0). TVD is compared between the full SCRN (“Full”) and
both the reduced SCRN (“Red.”) and the Hill SCRN (“Hill”). The TVD
error bound (“Bound”) from (4) is also shown. Note this bound is only
guaranteed to hold in the limit of small ϵ. Probabilities are approximated
via the Finite State Projection Algorithm [27], with a guaranteed absolute
computation error of less than 10−4. (b) Marginal distributions of P2 count
in the full and Hill SCRNs for case 1. (c) Marginal distributions of P2 count
in full and Hill SCRNs for case 3.

B. Example 2: incoherent feedforward network

In the next example, we investigate the Hill approximation
for a TN with an incoherent feedforward loop (IFFL). How-
ever, unlike a standard IFFL, in this TN the output TF P4 is
produced by two different genes, each with its own regulator,
rather than a single gene that has two interacting regulators.
In particular, the network has direct positive regulation from
P1 to P4 along with indirect negative regulation from P2 to
P4 via P3 (Figure 2b). The full, reduced, and Hill SCRNs for
this circuit are defined respectively by (1a)-(1g), (2a)-(2c),
(3a)-(3c), with n = 4 and σ given by σ(1) = 4, σ(2) = 3,
σ(3) = 4.
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When properly parameterized, this TN displays robustness
of steady-state mean levels of P4 to disturbances in the
activity of upstream gene Gu

1 (Figure 4a). The transient
period during which the adaptation occurs is shown in Figure
4b. One can use Theorem 1 to investigate whether the simpler
Hill function model reliably reproduces the probability dis-
tribution of the more complicated reduced model during this
transient period. Indeed, the TVD error bound at t = 1 hr
is below 10% (Figure 4c). Note that simulations of the full
system were not included due to computational limitations,
but Proposition 2 guarantees that for sufficiently small ϵ, the
reduced SCRN well approximates the full SCRN.

(a)

(b) (c)

Fig. 4. Results from simulations of the system in Figure 2b, in
the “on” state (P1 and P2 are produced by Ḡu

1 ) and “off” state
(P1 and P2 are not produced). In both cases, the system is initial-
ized in the state x0 := (p1, p2, p3, p4, g1, g2, g3, g4, c1, c2, c3, c4) =
(0, 0, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0). For the on state, κ1 = κ2 = 100/Ω/hr,
and for the off state, κ1 = κ2 = 0/Ω/hr. The following other parameters
were used: ḡ1 = ḡ2 = 2, ḡ3 = 1, ḡ4 = 0, b1 = b2 = b3 = 100/hr,
f1 = f2 = f3 = 1Ω/hr, α1 = 1/hr, β2 = 1/hr, α3 = 100/hr,
γ1 = γ2 = 1/hr, Ω = NA · 1µm3, with all other parameters set to 0. (a)
Probability distributions of the downstream TF P4 in the reduced (“Red.”)
and Hill SCRNs at 10 hours, for the on and off states. For both of these
states, the reduced and Hill SCRNs are almost identical. The means of the
on/off distributions are shown with dashed/dotted lines. (b) Timecourse of
mean counts of P4 in the “on” state, with initialization in the (deterministic)
“off” steady-state, for both the reduced system and Hill approximation.
The corresponding deterministic Hill approximation trajectory is shown for
reference. (c) Empirical TVD (“Error”) for the on-state approximation at
1 hr. (from 107 simulations performed according to [28]; sampling noise
likely causes the empirical TVD to overestimate the true TVD), along with
the error bound (4).

VI. CONCLUSION

In this work, we derived a bound on the TVD error
incurred when using a Hill approximation for stochastic
modeling of a class of TNs in the limit of rapid reversible
binding of TFs to their target genes. This bound is non-
asymptotic in all model parameters other than ϵ, which
scales the reversible binding speeds. These results extend
previous work in which the reliability of the Hill function
approximation for stochastic TN models was investigated
under the additional assumption of weak TF-gene binding.
We demonstrated the utility of our result in evaluating the
potential error associated with the Hill approximation in
models of two TNs. Possible further work includes deriving

similar bounds when the same TF may bind to multiple
different genes, different TFs compete for the same gene,
and TFs may homodimerize and heterodimerize.

APPENDIX

In the proofs we use the following notation. Given a
CTMC Y with state space Y , for all S ⊂ Y we let τY,S =
inf{0 ≤ t < T∞

Y : Y (t) /∈ S} represent the exit time of Y
from the subset S, where inf ∅ = +∞. We also define ρY :
Y × [0,∞) → [0, 1] by ρY (y, t) = P(Y (t) = y, t < T∞

Y ).
Given t ∈ [0,∞), we let ρY (·, t) : Y → R be the map that
sends y to ρY (y, t). Given a function f : U → R and V ⊂ U ,
we let f |V : V → R be the restriction of f to the domain V .
We also let ∥f∥1 =

∑
u∈U |f(u)| be the 1-norm of f , and if

F : U × U → R, we let ∥F∥1 = supu∈U

∑
u′∈U |F (u, u′)|.

A. Proof of Lemma 1

Proposition 1. Let Y be a CTMC with state space Y ,
infinitesimal generator Q, and explosion time T∞

Y . Let
Ỹ0, Ỹ1, . . . be the jump chain of Y . Suppose that there exist
c1, c2 > 0 such that for all k ∈ Z+ and each y0, . . . , yk ∈ Y
such that P(Ỹ0 = y0, . . . , Ỹk = yk) ̸= 0, |Q(yk, yk)| ≤
c1k + c2. Then Y is non-explosive.

Proof. Fix t ≥ 0. Denote by S1, S2, . . . the holding times
of Y . Since T∞

Y =
∑∞

i=1 Si by definition, for each k ∈ Z+,

P(T∞
Y ≤ t) ≤

∑
y0,...yk∈Y

P(
k+1∑
i=1

Si ≤ t|Ỹ0 = y0, . . . , Ỹk = yk)

×P(Ỹ0 = y0, . . . , Ỹk = yk). (5)

Let E∗
0 , E

∗
1 , E

∗
2 . . . be independent exponentially distributed

random variables, with E∗
i having rate parameter c1i + c2.

Choose k ∈ Z+ and y0, . . . , yk ∈ Y such that P(Ỹ0 =
y0, . . . , Ỹk = yk) ̸= 0. Given Ỹ0 = y0, . . . , Ỹk = yk, the
collection of random variables S1, . . . , Sk+1 are independent
exponentially distributed random variables with respective
rate parameters |Q(y0, y0)|, . . . , |Q(yk, yk)| (see Chapter 2.6
in [24]). Since for each i ∈ {0, . . . , k}, |Q(yi, yi)| ≤
c1i+ c2 by assumption, we have that P(

∑k+1
i=1 Si ≤ t|Ỹ0 =

y0, . . . , Ỹk = yk) ≤ P(
∑k

i=0 E
∗
i ≤ t). This inequality

together with (5) gives that for each k, P(T∞
Y ≤ t) ≤

P(
∑k

i=0 E
∗
i ≤ t). However, by Theorem 2.3.2(ii) in [24],

P(
∑∞

i=0 E
∗
i ≤ t) = 0. Since limk→∞ P(

∑k
i=0 E

∗
i ≤ t) =

P(
∑∞

i=0 E
∗
i ≤ t) = 0, then P(T∞

Y ≤ t) = 0. As t
was arbitrary, P(T∞

Y < ∞) = P(∪∞
t=1{T∞

Y ≤ t}) ≤∑∞
t=1 P(T∞

Y ≤ t) = 0.

Proof of Lemma 1. We apply Proposition 1 to each CTMC:
Xϵ: Fix ϵ > 0, let x0 := (p1,0, . . . , pn,0, g1,0, . . . , gn,0,
c1,0, . . . , cn,0), and let Qϵ be the infinitesimal generator of
Xϵ. For any state y that Xϵ can access within k transitions,
|Q(y, y)| ≤ n(γ∗(p∗,0 + c∗,0 + k) + κ∗ + ( b∗ϵ + f∗

ϵ (p∗,0 +
c∗,0 + k))ḡ∗) + n2(α∗ + β∗)ḡ∗, where the subscript ∗ refers
to the maximal value of the relevant variable over all i.

X̄: Let x̄0 = (p̄1,0, . . . , p̄n,0) and let Q̄ be the infinitesimal
generator of X̄ . For any state y that X̄ can access within k
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transitions, |Q̄(y, y)| ≤ n(γ∗(p̄∗,0+k)+κ∗)+n2(α∗+β∗)ḡ∗.
An identical argument applies to X̄H .

B. Proof of Lemma 2
Our approach to this proof uses the finite state projection

(see [26,27]) to “project” our countable-state CTMC onto
one with a finite number of states, at which point we use
the results from [15,16]. To then return to the problem with
infinite states, we perform an interchange of the limits in
the finite state projection and singular perturbation. We note
that in [18,19], the authors offer another way to perform
model reduction via analysis of stochastic equations. We
instead prove this proposition via an approach similar to the
formalism of [15,16], leveraging niceties of our system of
interest (namely that each fast subsystem has only a finite
number of states). We first prove two propositions:

Let Y be a countable set and let A,B : Y × Y → R be
infinitesimal generators. Let C be the set of communicating
classes of A, and suppose that each C ∈ C is finite and
closed, so that A has a unique stationary distribution πC :
C → R supported on C. For each ϵ > 0, let Qϵ =

1
ϵA+B,

and let Yϵ be a CTMC with state space Y , initial state y0 ∈ Y ,
and infinitesimal generator Qϵ. Let C0 be the element of C
containing y0, and let Y be a CTMC with state space C,
initial state C0, and infinitesimal generator Q : C × C →
R given by Q(C,C ′) =

∑
y∈C

∑
y′∈C′ πC(y)B(y, y′), for

C ̸= C ′.

Proposition 2. Fix t ≥ 0. If there exists a non-explosive
CTMC Z with state space Y and a sequence of finite sets
S1 ⊂ S2 ⊂ . . . whose union is Y , such that for each ϵ > 0
and k ∈ N

P(τYϵ,Sk
≤ t) ≤ P(τZ,Sk

≤ t), (6)

then limϵ→0+
∑

C∈C

∣∣∣∑y∈C ρYϵ
(y, t)− ρY (C, t)

∣∣∣ = 0.

Proof. Fix t ≥ 0. We let k be the generic element of N.
Given a function f : Y → R with ∥f∥1 < ∞, let Tf : C →
R be defined by Tf(C) =

∑
y∈C f(y).

Enumerate the communicating classes of C as C1, C2, . . . ,
and for each k, let Dk = ∪k

i=1Ci and Dk = {C1, . . . , Ck}.
For each k and ϵ > 0, define θϵ,k : Y × [0,∞) → [0, 1] and
ηk : C × [0,∞) → [0, 1] to be the solutions to
d

ds
θϵ,k(y, s) =

∑
y′∈Dk

θϵ,k(y
′, s)Qϵ(y

′, y); θϵ,k(y, 0) = δy,y0 ,

d

ds
ηk(C, s) =

∑
C′∈Dk

ηk(C
′, s)Q(C ′, C); ηk(C, 0) = δC,C0

,

for all y ∈ Dk and C ∈ Dk, where for y /∈ Dk, we set
θϵ,k(y, t) = 0 and for C /∈ Dk, we set ηk(C, t) = 0.

Note that Qϵ|Dk×Dk
= 1

ϵA|Dk×Dk
+ B|Dk×Dk

, where
A|Dk×Dk

is “block-diagonal” in the sense that for each j ∈
{1, . . . , k}, each A|Cj×Cj

is itself an infinitesimal generator
and ADk×Dk

(y, y′) = 0 when y and y′ do not belong to the
same communicating class. Applying the results for singular
perturbation of finite CTMCs in [15,16],

lim
ϵ→0+

∥Tθϵ,k(·, t)− ηk(·, t)∥1 = 0. (7)

Theorem 2.5 (v) in [26] gives

lim
k→∞

∥ρY (·, t)− ηk(·, t)∥1 = 0, (8)

and theorem 2.5 parts (ii) and (iii) in [26] gives

∥TρYϵ
(·, t)− Tθϵ,k(·, t)||1 ≤ ∥ρYϵ

(·, t)− θϵ,k(·, t)||1
≤ P(τYϵ,Dk

≤ t). (9)

Let S0 = ∅, and choose r1 ≤ r2 ≤ · · · ∈ Z+ such that
rk → ∞ and Srk ⊂ Dk for each k. From the definition of the
exit time, P(τYϵ,Dk

≤ t) ≤ P(τYϵ,Srk
≤ t). By assumption,

for each k, supϵ>0 P(τYϵ,Srk
≤ t) ≤ P(τZ,Srk

≤ t). Since Z
is assumed non-explosive, P(τZ,Srk

≤ t) → 0 as k → ∞ by
the Lemma 2.1 in [26], so that limk→∞ supϵ>0 P(τYϵ,Dk

≤
t) = 0. Combining the above with (9) gives

lim
k→∞

sup
ϵ>0

∥TρYϵ(·, t)− Tθϵ,k(·, t)∥1 = 0. (10)

Given (10) and (7), Proposition 3.3.3 in [29], permits
exchanging these limits (with ∥ · ∥1 the underlying norm):

lim
ϵ→0+

TρYϵ(·, t) = lim
k→∞

ηk(·, t).

The above result together with (8) gives
limϵ→0+ ∥TρYϵ

(·, t) − ρY (·, t)∥1 = 0, which is equivalent
to our desired result.

In order to apply Proposition 2, one must somehow
construct the CTMC Z which in some sense bounds the
CTMCs Yϵ uniformly as in (6). The following proposition
provides the machinery for constructing such a CTMC.

Definition 1 (Increasing set). Let n,m ∈ N and let Y ⊂ Zn
+

be nonempty. We say a set Γ ⊂ Y is increasing in Y with
respect to a matrix L ∈ Rn×m with nonzero columns if for
each y ∈ Γ and y′ ∈ Y , (y′ − y)L ≥ 0 implies that y′ ∈ Γ.

Proposition 3. Let n,m ∈ N, Y ⊂ Zn
+ be nonempty,

and L ∈ Rn×m have nonzero columns. Let S and S̆ be
two SCRNs with the same chemical species, state space Y ,
and stoichiometry vectors u1, . . . , uR. Let υ1, . . . , υR and
ῠ1, . . . , ῠR respectively be the propensity functions of S and
S̆ associated with each reaction.

Fix y0 ∈ Y , choose S ⊂ Y , and let Y and Y̆ be
the CTMCs with initial state y0 associated with S and S̆,
respectively. Suppose that Y and Y̆ are non-explosive and
that for each r ∈ {1, . . . , R} the following conditions hold

• Y − S is increasing in Y with respect to L.
• if urL has at least one negative entry, then

supy∈Y ῠr(y) ≤ infy∈Y υr(y)
• if urL has at least one positive entry, then

supy∈Y υr(y) ≤ infy∈Y ῠr(y).
Then for all t ≥ 0, P(τY,S ≤ t) ≤ P(τY̆ ,S ≤ t).

Proof. This is a direct result of Theorem 3.4 of [25].

Proof of Lemma 2. For convenience, define Θ =
{α, β, κ, γ, γ′}, which represents the set of “slow” reaction
types in S, define Φ = {f, b}, which represents the set of
“fast” reaction types in S, and define Ξ = {+,+′,−}, which
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represents the set of reaction types in S̄. Throughout the rest
of this proof, let θ, ϕ, ξ be the respective generic elements of
Θ, Φ, and Ξ, and let be i the generic element of {1, . . . , n}.
We also let x := (p1, . . . , pn, g1, . . . , gn, c1, . . . , cn)
and x′ := (p′1, . . . , p

′
n, g

′
1, . . . , g

′
n, c

′
1, . . . , c

′
n) represent

generic elements of X , and we let x̄ := (p̄1, . . . , p̄n) and
x̄′ := (p̄′1, . . . , p̄

′
n) represent generic elements of X̄ .

For each i and ϕ, let uϕ,i be the stoichiometry vector
of the reaction in R associated with propensity υϕ,i. Let
A : X×X → R be the infinitesimal generator determined by
{(uϕ,i, υϕ,i)}ϕ,i (i.e. the one associated with R). Recall that
for each x̄ ∈ X̄ , πx̄ is defined to be the stationary distribution
of R (and thus also of A) supported on Ex̄ := {x ∈ X :
∀i pi + ci = p̄i}, with E := {Ex̄ : x̄ ∈ X̄} being the set of
communicating classes of R (and thus also of A), each of
which is finite and closed.

For each i and θ, let uθ,i be the stoichiometry vector of the
reaction in Sϵ that is associated with the propensity υθ,i. Let
B : X × X → R be the infinitesimal generator determined
by {(uθ,i, υθ,i)}θ,i. Let X be a CTMC with state space E ,
initial state Ex̄0 , and generator Q : E × E → R given by

Q(Ex̄, Ex̄′) :=
∑

x∈Ex̄

∑
x′∈Ex̄′

πx̄(x)B(x, x′)

=
∑

x∈Ex̄

∑
x′∈Ex̄′

πx̄(x)
∑

θ,i
υθ,i(x)1{x′}(x+ uθ,i)

=
∑

θ,i

∑
x∈Ex̄

πx̄(x)υθ,i(x)1Ex̄′ (x+ uθ,i)

=
∑
θ,i

EW∼πx̄ [υθ,i(W )]1{x̄′}(x̄+∆Tuθ,i) (11)

for x̄ ̸= x̄′, where ∆T : Z3n → Zn maps (∆p1, . . . ,∆pn,
∆g1, . . . ,∆gn, ∆c1, . . . ,∆cn) to (∆p1 + ∆c1, . . . ,∆pn +
∆cn).

The proof will consist of first showing

lim
ϵ→0+

∑
x̄∈X

∣∣∣∑
x∈Ex̄

ρXϵ
(x, t)− ρX(Ex̄, t)

∣∣∣ = 0, (12)

and subsequently showing that for each x̄, x̄′ ∈ X̄ ,

ρX(Ex̄, t) = ρX̄(x̄, t). (13)

Combining (12) and (13) then gives our desired result.
Towards showing (12), for each k ∈ N, let Sk = {x ∈

X : ∀i pi + ci ≤ k}. In light of Proposition 2, (12) follows
if we can find a non-explosive CTMC Z with state space X
such that for all ϵ > 0 and k ∈ N,

P(τXϵ,Sk
≤ t) ≤ P(τZ,Sk

≤ t). (14)

Define the SCRN S̆ with species
P1, . . . ,Pn,G1, . . . ,Gn,C1, . . . ,Cn, state space X , and the
following reaction-propensity pairs for each i ∈ {1, . . . , n}:

Pi + Gi → Ci, ῠf,i(x) = 0; Ci → Pi + Gi, ῠb,i(x) = 0;

Ci → Ci + Pσ(i), ῠα,i(x) = αiḡi;

Gi → Gi + Pσ(i), ῠβ,i(x) = βiḡi; Ci → Gi, ῠγ′,i(x) = 0;

∅ → Pi, ῠκ,i(x) = Ωκi;Pi → ∅, ῠγ,i(x) = 0.

Define L =
[
eP,1 + eC,1 . . . eP,n + eC,n

]
, where

eP,1, . . . , eP,n, eG,1, . . . , eG,n, eC,1, . . . , eC,n are the stan-
dard unit vectors of Z3n

+ . Fix ϵ > 0 and k ∈ N.

Let Z be the CTMC with initial state x0 that is associated
with S̆. Xϵ is non-explosive by Lemma 1, and Z is non-
explosive because its corresponding propensity functions
are bounded (Theorem 2.7.1(ii) in [24]). One can check
straightforwardly that the other conditions of Proposition 3
are satisfied with X , Sϵ, Sk, Xϵ, and Z respectively in place
of Y , S, S, Y , and Y̆ . Thus by Proposition 3, Z satisfies
(14). Since ϵ > 0 and k ∈ N were chosen arbitrarily, (12) is
indeed shown by Proposition 2.

Towards showing (13), note that, for each ϵ > 0, Xϵ is a
CTMC with state space X , initial state x0, and infinitesimal
generator Qϵ := 1

ϵA + B. For each i and ξ, let ūξ,i be
the stoichiometry vector of the reaction in S̄ associated with
propensity ῡξ,i. By definition, X̄ is a CTMC with state space
X̄ , initial state x̄0, and infinitesimal generator Q̄ : X̄ ×X̄ →
R given by

Q̄(x̄, x̄′) =
∑

ξ,i
ῡξ,i(x̄)1{x̄′}(x̄+ ūξ,i), (15)

for x̄ ̸= x̄′.
Next, note that there is a natural one-to-one correspon-

dence between X̄ and E given by x̄ ↔ Ex̄. Equation
(11) says that Q is determined by the propensity functions
υ̂θ,i(x̄) := EW∼Ex̄ [υθ,i(W )] and reaction vectors ûθ,i :=
∆Tuθ,i (with θ ∈ Θ, i ∈ {1, . . . , n}). But ûα,i = ûβ,i =
ū+,i, ûκ,i = ū+′,i, and ûγ,i = ûγ′,i = ū−,i, and moreover
υ̂α,i + υ̂β,i = ῡ+,i, υ̂κ,i = ῡ+′,i, and υ̂γ,i + υ̂γ′,i = ῡ−,i

(i.e. the sum of propensities associated with a given reaction
vector are the same for Q and Q̄). Comparing (15) and (11),
Q(Ex̄, Ex̄′) = Q̄(x̄, x̄′), which implies (13).

C. Proof of Theorem 1

Proof of Theorem 1. We first show that for all i ∈
{1, . . . , n} and all x̄ ∈ X̄ ,

|ῡH
+,i(x̄)− ῡ+,i(x̄)| ≤ |αi − βi|

ḡ2i
ḡi +ΩKi

. (16)

To show the above, choose i ∈ {1, . . . , n},
let x̄ = (p̄1, . . . , p̄n) ∈ X̄ , and let W =
(P1, . . . , Pn, G1, . . . , Gn, C1, . . . , Cn) be a random
variable with distribution πx̄. From the moment dynamics
(see [30]) of R, d

dtE[Ci] = fi
ΩE[PiGi] − biE[Ci] =

fi
ΩE[C2

i ] −
(
bi +

fi
Ω (p̄i + ḡi)

)
E[Ci] + fi

Ω p̄iḡi, where
Pi = p̄i −Ci and Gi = ḡi −Ci because πx̄ is supported on
Ex̄. But since πx̄ is a stationary distribution of X̄ ,

E[C2
i ]− (ΩKi + p̄i + ḡi)E[Ci] + p̄iḡi = 0. (17)

Since 0 ≤ Ci ≤ ḡi, we have that 0 ≤ E[C2
i ] ≤

ḡiE[Ci]. Using this fact and the above equation, it fol-
lows that p̄iḡi

p̄i+ḡi+ΩKi
≤ E[Ci] ≤ p̄iḡi

p̄i+ΩKi
, which implies∣∣∣E[Ci]− p̄iḡi

p̄i+ΩKi

∣∣∣ ≤ ḡ2
i

ḡi+ΩKi
. Together with the relation

E[Ci] + E[Gi] = ḡi, the above implies (16).
We now continue to the main proof. We use k as the

generic element of N and x̄ as the generic element of X̄ .
Let Q̄ and Q̂ be the respective infinitesimal generators of X̄
and X̄H . Let S1 ⊂ S2 ⊂ . . . be a sequence of sets, each
of which is finite and whose union is X̄ . We will use the
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finite state projection to “project” X̄ and X̄H onto each Sk

and find a bound on the TVD between the projections which
applies uniformly in k.

For each k, define ρ̄k : X̄ × [0,∞) → [0, 1] and ρ̂k :
X̄ × [0,∞) → [0, 1] to be the solutions to

d

ds
ρ̄k(x̄, s) =

∑
x̄′∈Sk

ρ̄k(x̄
′, s)Q̄(x̄′, x̄); ρ̄k(x̄, 0) = δx̄,x̄0

;

d

ds
ρ̂k(x̄, s) =

∑
x̄′∈Sk

ρ̂k(x̄
′, s)Q̂(x̄′, x̄); ρ̂k(x̄, 0) = δx̄,x̄0 ,

for all x̄ ∈ Sk, and for all x̄ ∈ X − Sk, set ρ̄k(x̄, t) =
ρ̂k(x̄, t) = 0. Define ∆ρk = ρ̄k − ρ̂k. Theorem 2.5 (v) from
[26] guarantees that limk→∞ ∥ρX̄(·, t)− ρ̄k(·, t)∥1 = 0 and
limk→∞ ∥ρX̄H

(·, t)− ρ̂k(·, t)∥1 = 0, so that

dTV (X̄(t), X̄H(t)) =
1

2
∥ρX̄(·, t)− ρX̄H

(·, t)∥1

≤ lim
k→∞

1

2
∥∆ρk(·, t)∥1. (18)

Define ∆Q = Q̄− Q̂. Then for each k and x̄ ∈ Sk,

d∆ρk
ds

(x̄, s) =
∑

x̄′∈Sk

∆ρk(x̄
′, s)Q̄(x̄′, x̄) + ρ̂k(x̄

′, s)∆Q(x̄′, x̄).

The solution to the above finite system of linear ODEs,
given the zero initial condition ∆ρk(·, 0) = 0, is given
by the convolution ∆ρk(x̄, t) =

∫ t

0

∑
x̄′,x̄′′∈Sk

ρ̂k(x̄
′′, t −

τ)∆Q(x̄′′, x̄′)eQ̄kτ (x̄′, x̄)dτ , where Q̄k = Q̄|Sk×Sk
. Thus

∥∆ρk(·, t)∥1 ≤
∫ t

0

∥ρ̂k(·, t− τ)∥1 ∥∆Q∥1
∥∥∥eQ̄kτ

∥∥∥
1
dτ

≤
∫ t

0

∥∆Q∥1 dτ, (19)

where ∥eQ̄kτ∥1 ≤ 1 because Q̄ is an infinitesimal generator.
It follows from [21] (section 4.1.3) that if ḡi = 1, ῡH

+,i(x̄) =
ῡ+,i(x̄). Using this fact in combination with (16), we have∑
x̄′∈X̄

|∆Q(x̄′′, x̄′)| = 2 |∆Q(x̄′′, x̄′′)|

= 2
∑
ξ,i

|ῡH
ξ,i(x̄

′′)− ῡξ,i(x̄
′′)| = 2

n∑
i=1

|ῡH
+,i(x̄

′′)− ῡ+,i(x̄
′′)|

≤ 2(n− n01) max
i=1,...,n

|αi − βi|
ḡ2i

ḡi +ΩKi
,

where ξ ∈ {+,+′,−}. Thus ∥∆Q∥1 ≤ 2(n −
n01)maxi=1,...,n |αi − βi|ḡ2i /(ḡi + ΩKi). This inequality,
with (18), (19), and Lemma 2, gives the result.
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