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Abstract— We consider the distributed control of networked
linear time-invariant systems. Previous work has established
the spatial decay property of the centralized controller, which
allows truncating the centralized controller to obtain a κ-
hop distributed controller with small performance loss. This
paper makes a step further by showing a policy optimization
approach, Natural Policy Gradient (NPG), preserves the spa-
tial decay property of controllers. This enables “truncating”
Natural Policy Gradient to directly learn a κ-hop distributed
controller.

I. INTRODUCTION

Control of networked dynamical systems is a fundamental
problem with applications spreading across power networks
[1], vehicle platoons [2], traffic networks [3], and sensor net-
works [4]. In particular, there has been tremendous interest
in designing distributed controllers such that the controller at
each node only has access to the state information of itself
and possibly nearby nodes [5]. Such interest in distributed
controllers can be attributed to the fact that they are simple to
implement, require only local communication, and are more
scalable and practical compared to centralized controllers.

Despite the interest in distributed controllers, even for the
simplest setting with linear dynamics and quadratic costs,
designing the optimal distributed controller is extremely
challenging in general. On one hand, computational in-
tractability results have been established in the worst case
[5]; on the other hand, many approaches have been proposed
to design the optimal distributed controller under specific
problem settings, e.g. the nested information structure [6],
finite-dimensional linear policy [7], [8], quadratic invariance
[9], sparsity invariance [10], system level synthesis [11], [12].

Recently, a promising line of work approaches the dis-
tributed control problem from a spatial decay perspective [8],
[13]–[16]. The main idea is that when the dynamics follow
a network structure, it is shown the optimal centralized
controller satisfies the spatial decay property, namely, the
control gain between the control action at node i and the
state at node j decays when the distance between i and
j increases. Here, the distance is measured with respect to
the network graph that underlies the system dynamics. The
spatial decay rate varies by the specific setting, e.g. [8] proves
exponential decay rates for spatially invariant systems; [13],
[14] proves exponential decay rates for networked systems,
[16] proves sub-exponential decay rates for a general class of
exponentially decaying dynamical systems, and [15] proves
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polynomial decay rates for a networked Markov Decision
Process.

The significance of these spatial decaying results is that
it allows truncating the optimal centralized controller to a
κ-hop distributed controller, i.e. setting the gains between
nodes with distance larger than κ to 0. Such a κ-hop
distributed controller can be implemented in a distributed
manner as it only requires communication with κ-hop neigh-
bors. Further, the performance loss resulting from truncating
is (sub)-exponentially small in κ. In other words, using a
small κ will already have near-optimal performance when
compared with the optimal centralized controller.

However, the aforementioned work only studies the spatial
decay property of the optimal centralized controller and its
truncation to the κ-hop distributed controller; there is a lack
of study on how to learn the κ-hop distributed controller
when the system matrices are unknown. Parallel to this effort,
a recent line of work [17]–[23] (see [24] for a review)
studies policy optimization for dynamical systems, which
searches for the optimal centralized controller when the sys-
tem dynamics are unknown. Specific methods inlcude policy
gradient, natural policy gradient, etc [17]. Given the ability
of the policy optimization methods to learn controllers, it is
natural to ask: is it possible to use policy optimization to
learn near-optimal κ-hop distributed controllers?

Contribution. In this paper, we make a step towards
understanding the above question. Our key result is that
if we start from a spatially decaying controller, we show
that Natural Policy Gradient (NPG) preserves the spatially
decaying property of the controller (Theorem 8). This means
that Truncated NPG (TNPG), which directly learns a κ-hop
distributed controller, has error decaying in κ in each step of
the iteration (Theorem 9) when compared with the original
NPG. Our results also lead to open questions regarding
the uniform boundedness of the decay constant throughout
the TNPG iterations and the overall convergence of TNPG,
which we leave as future directions. Beyond the theoretical
analysis, we show numerical simulations that validate our
results and conjectures.

We note that the work in [25] establishes similar partial
results as ours, particularly the decay property of the P
matrix (cf. Theorem 8.1). What differentiates our work
from [25] is that our goal is to search for near-optimal
truncated controllers with convergence guarantee, using the
spatial decay property as an intermediate tool; whereas [25]
focuses specifically on the spatial decay property of spatially-
decaying systems.

Notation. For a set S, its cardinality is written as |S|. The
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set of positive integers is denoted as Z+, the reals: R, and
the set of real m × n matrices: Rm×n. We then denote the
spectral norm of a matrix A as ∥A∥, the minimum singular
value of A as σmin(A), Tr(A) the trace of A (assuming
A is square), and denote ∥v∥p for the Lp-norm of vector
v. A ≻ 0 denotes that A is a positive definite matrix. For
a matrix A, we use lowercase letters a(i, j) to denote A’s
sub-blocks which are indexed by i, j, hence we may write
the matrix A as a sequence of sub-blocks A = (a(i, j))i,j∈V
for some index set V . Similarly, for a vector v, we may write
v = (v(i))i∈V . For a distribution D we denote x ∼ D for
a random variable x to be distributed as D; we also denote
its expectation as E[x]. We further denote O(·) as the usual
big-O notation and poly(x) as a polynomial of x.

II. PRELIMINARIES

A. Problem Formulation

We consider a graph G := {V, E}, where V := {1, . . . , N}
is the set of nodes and E is the set of edges. We let NG(i)
denote the set of neighbors of i in the graph (including i
itself), and dG(i, j) denote the shortest path distance between
node i and j in the graph. We also make the following
assumption on the polynomial growth of the cardinality of
τ -hop neighborhoods, which is standard in the literature [14].

Assumption 1. For any τ -hop neighbourhood of a node,
that is NG(i, τ) := {j ∈ V : dG(i, j) < τ}, there exists
positive constants CP ≥ 1 and d s.t.

|NG(i, τ)| ≤ CP τ
d, ∀i ∈ V and τ ≥ 1. (1)

Given the graph G, we consider the following networked
Linear Time Invariant (LTI) system:

xt+1(i) =
∑

j∈NG(i)

a(i, j)xt(j) + b(i, j)ut(j), i ∈ V. (2)

Here, xt(i) ∈ Rnxi , and ut(i) ∈ Rnui are the state and
control at node i ∈ V at time t ∈ Z+; furthermore, a(i, j) ∈
Rnxi

×nxj and b(i, j) ∈ Rnxi
×nuj . We also denote nx =∑

i∈V nxi and nu =
∑

i∈V nui . Given x(i), u(i) at node i,
the stage cost at node i is given by,

ℓi(x(i), u(i)) := x(i)⊤q(i, i)x(i) + u(i)⊤r(i, i)u(i),

where q(i, i) ∈ Rnxi
×nxi and r(i, i) ∈ Rnui

×nui are
symmetric and positive definite matrices. Given the stage
costs, the nodes seek to minimize the sum of their stage
costs for an infinite horizon:

min E

[ ∞∑
t=0

x⊤
t Qxt + u⊤

t Rut

]
(3)

s.t. xt+1 = Axt +But, x0 ∼ D,

where xt := (xt(i))i∈V , ut := (ut(i))i∈V , A :=
(a(i, j))i,j∈V , B := (b(i, j))i,j∈V , Q := (q(i, j))i,j∈V , and
R := (r(i, j))i,j∈V (we note that a(i, j) = 0 and b(i, j) = 0
for {i, j} /∈ E , and q(i, j) = 0 and r(i, j) = 0 for i ̸= j). In
addition, D is the distribution for the initial state, which we
assume has correlation matrix Σ0 := E

[
x0x

⊤
0

]
≻ 0.

An important class of controllers for (3) is the class of
linear controllers ut = −Kxt, where K is the control
gain. An important concept for these controllers is stability,
defined below.

Definition 2. The controller K is (L, γ)-stable for L >
0, γ ∈ (0, 1) if ∥K∥ ≤ L and ∥(A − BK)t∥ ≤ Lγt for
all t ∈ Z+.

Throughout the paper, we also make the following assump-
tions.

Assumption 3. We assume Q ≻ 0, R ≻ 0, (A,B) is
controllable, and (A,Q1/2) is detectable.

It is well known that under the above assumption, the
optimal policy is the linear state feedback law: u∗(x) =
−K∗x where K∗ = (k∗(i, j))i,j∈V is the optimal gain
matrix. However, the optimal controller, K∗, is usually dense
and impractical to implement. Therefore, it is preferred to
focus on distributed controllers. Specifically, we consider the
class of κ-hop distributed controllers defined as follows.

Definition 4. A controller K = (k(i, j))i,j∈V is said to be
κ-hop distributed if k(i, j) = 0 when dG(i, j) ≥ κ.

Thus, a κ-hop distributed controller is structured such that
the control action at node i has a non-zero gain from the
state at node j only when i and j are within distance κ.
Therefore, a κ-hop distributed controller is more practical to
implement than a centralized controller, at least for small κ.

The goal of our paper is to search for a κ-hop distributed
controller that minimizes (3). Towards this end, we utilize
policy optimization, which we review next:

B. Policy Optimization

Restricting to the class of linear stabilizing state feedback
control policies: ut = −Kxt, we may rewrite the cost in (3)
as

C(K) := E[x⊤
0 PKx0], (4)

where

PK = Q+K⊤RK + (A−BK)⊤PK(A−BK). (5)

It has been shown in [17] the gradient of (4) is

∇C(K) = 2 ((R+B⊤PKB)K −B⊤PKA)︸ ︷︷ ︸
:=EK

ΣK , (6)

where ΣK is the state correlation matrix defined as

ΣK := EK

[ ∞∑
t=0

xtx
⊤
t

]
,

and EK is taken w.r.t. the randomness on x0 and assumes the
state trajectory is generated by the controller ut = −Kxt.
[17] also considers the Natural Policy Gradient (NPG),

∇NC(K) = ∇C(K)Σ−1
K = 2EK . (7)

The concept of NPG naturally leads to the NPG algorithm:

Kt+1 = Kt − ηEKt , (8)
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for some step size η. The key contribution of [17] is that (4)
satisfies the so-called gradient dominance property:

C(K)− C(K∗) ≤ ∥ΣK∗∥
σmin(R)

∥EK∥2F , (9)

where ∥·∥F denotes the Frobenius norm: ∥A∥2F = Tr(A⊤A)
which is induced by the inner product: ⟨A,B⟩F = Tr(A⊤B).

A significant consequence of the gradient dominance prop-
erty is that the NPG algorithm (8) converges linearly to the
optimal LQR cost.

Lemma 5 (Lemma 15 in [17]). Applying a single NPG step
K ′ = K − ηEK with η ≤ 1

∥R+B⊤PKB∥ , we have for µ :=

σmin(Σ0) and λ := σmin(R)
∥ΣK∗∥ ,

C(K ′)− C(K∗) ≤ (1− ηλµ) (C(K)− C(K∗)).

As can be seen from above, after applying one step of
NPG, the optimality gap (C(K) − C(K∗)) shrinks by a
fixed constant, and hence the NPG converges to the optimal
controller with a linear convergence rate. It is natural to
ask whether NPG can learn κ-hop distributed controllers,
which is the main focus of Section III. Before we present the
main results, we review one final concept, spatially decaying
matrices, which will be the key to our analysis later.

C. Spatially Decaying Matrices

From [14], it is known that the optimal centralized con-
troller K∗ to (3) is spatially exponentially decaying, i.e.
∥k∗(i, j)∥ decays exponentially as the graph distance be-
tween i and j increases. This motivates us to restrict the
class of policies we search through to such controllers. To
formalize this, we define the general spatial decay property
below.

Definition 6. Given a matrix A = [a(i, j)]i,j∈V and a weight
w = [w(i, j)]i,j∈V where each w(i, j) ∈ R+, the decay
constant of A under weight w is defined as

αw(A) := max
i∈V

∑
j∈V

∥a(i, j)∥w(i, j)

+ max
j∈V

∑
i∈V

∥a(i, j)∥w(i, j). (10)

Throughout this paper, we will be using the class of
(D, δ)-sub-exponential decay weights defined as follows:

w(i, j) = exp(DdG(i, j)
δ) (11)

for D ∈ (0,∞) and δ ∈ (0, 1). Under this weight, we call a
matrix A a sub-exponentially decaying matrix. Furthermore,
one implication of Definition 6 is as follows:

∥a(i, j)∥ =
1

w(i, j)
∥a(i, j)∥w(i, j)

≤ αw(A) exp(−DdG(i, j)
δ). (12)

In other words, the block a(i, j) decays sub-exponentially
when dG(i, j) increases. We note that for the above definition
to be not vacuous, we need αw(A) to not depend on N ,

the size of the network; as otherwise, setting αw(A) =
exp(DNδ) will render (12) degenerate.

Further, it is straightforward to prove the following prop-
erties whose proofs are given in Appendix A.

Lemma 7. Given (D, δ)-sub-exponential decay weights w,
matrices A and B, we have

αw(A+B) ≤ αw(A) + αw(B), (13)
αw(AB) ≤ αw(A)αw(B). (14)

III. MAIN RESULTS

Our first key result is that, the NPG update equation pre-
serves the spatial decaying structure. This result is formally
stated below.

Theorem 8. Suppose K is (L, γ)-stable and is a sub-
exponentially decaying matrix in the sense of Definition 6
with weights (11) and decay constant αw(K). Then, the
matrix EK in NPG (7) is also sub-exponentially decaying
with decay constant

αw(EK) ≤ (αw(R) + αw(B)2αw(PK))αw(K)

+ αw(B)αw(PK)αw(A),

with

αw(PK) ≤ αw(K)2e
O

(
(log(αw(K)))

1
1−log2(1+θ)

)
,

where θ =
1+ 1

3−2δ

2 ∈ (0, 1) and the O(·) notation hides
everything that does not depend on αw(K); the precise form
of αw(PK) is given in (19). As a result, a single step of NPG,
K ′ = K − ηEK , will produce a controller K ′ that is also
sub-exponentially decaying with decay constant,

αw(K
′) ≤ αw(K)3e

O

(
(log(αw(K)))

1
1−log2(1+θ)

)
. (15)

The precise form showing dependence on all constants is
given in (20).

The consequence of the above result is that, if we start
from a sub-exponentially decaying stable controller, the
NPG algorithm will produce controllers that are also sub-
exponentially decaying. Further, the NPG EK is also sub-
exponentially decaying. As a result, “truncating” the NPG to
κ-hop distributed controllers will lead to only a small error.
Such a truncated NPG directly learns a κ-hop distributed
controller, and since the truncation error is small, we expect
it to have similar convergence properties as the original NPG
(Lemma 5).

More specifically, the truncated NPG is described as
follows

Kt+1 = Kt − ηTG(EKt
, κ), (16)

for some step size η. We can define the truncation operator
in terms of a (dense) gain matrix K; its truncation is Kκ :=
(kκ(i, j))i,j∈V defined as follows:

kκ(i, j) = TG(k(i, j), κ) :=

{
k(i, j), dG(i, j) < κ,

0, dG(i, j) ≥ κ.
(17)
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Overloading notation, we may write Kκ = TG(K,κ).
Leveraging Theorem 8, we also show the following single-

step error guarantee for the truncated NPG.

Theorem 9. Suppose K is (L, γ)-stable and is a κ-hop
distributed controller with decay constant αw(K). Then,
for η ≤ 3

8∥R+B⊤PKB∥ , one step of truncated NPG, K ′ =

K − ηTG(EK , κ), will produce another κ-hop distributed
controller K ′ that satisfies:

C(K ′)− C(K∗) ≤ (1− ηλµ) (C(K)− C(K∗))

+ 5η
C(K ′)

σmin(Q)
ϵ(κ), (18)

where n∗
x := maxi∈V nxi

, and the truncation error is:
ϵ(κ) := αw(EK)2Nn∗

xe
−2Dκδ

which is sub-exponentially
decaying in κ. αw(EK) is given as in Theorem 8.

The first term in Theorem 9 is similar to Lemma 5 in that
the optimality gap shrinks. The second term is a result of
the truncation and is small due to the sub-exponential decay
property, provided κ is large.

While we can in principle apply Theorem 8 and Theorem 9
multiple times to analyze the convergence of TNPG across
multiple iterations, the decay constant αw(K) will increase
after each NPG step and will remain unbounded. This can
be seen from the results in Theorem 8, and one can check
α(K ′) ∼ epoly(logα(K)). Therefore, our existing results
cannot directly lead to the convergence of TNPG. However,
we conjecture that our bound in Theorem 8 is not tight.
Our numerical simulations show that αw(K) will remain
uniformly bounded throughout the NPG iterations. How to
show the boundedness of αw(K) throughout the iterations,
and how to prove the overall convergence of TNPG and its
model-free, distributed implementation, remains our ongoing
work. Finally, we note that while the results above hold for
NPG, we conjecture that similar results (i.e., Theorems 8 and
9) should also hold for vanilla policy gradient. In particular,
we expect that the decay constant of the gradient in (6) will
be larger due to the extra factor of ΣK .

IV. PROOF

A. Proof of Theorem 8

By Lemma 7, it is easy to see that

αw(K
′) ≤ αw(K) + ηα(EK),

and further,

αw(EK) ≤ (αw(R) + αw(B)2αw(PK))αw(K)

+ αw(B)αw(PK)αw(A).

Therefore, it is critical to bound αw(PK), that is PK pre-
serves the sub-exponential decay property. Note that PK can
be written as,

PK =

∞∑
n=0

((A−BK)⊤)n(Q+K⊤RK)(A−BK)n.

Therefore, to show PK is sub-exponentially decaying, we
need to show that each (A − BK)n is sub-exponentially

decaying with decay constant αw((A−BK)n) converging to
0 as n → ∞. This is expected as we know (A−BK)n con-
verges to the zero matrix since K is (L, γ)-stable. However,
we note that directly applying the sub-multiplicative bounds
in Lemma 7 is not sufficient for proving αw((A − BK)n)
converges to 0, as the sub-multiplicative bound leads to
αw((A−BK)n) ≤ (αw(A−BK))n, yet αw(A−BK) may
not be smaller than 1. Therefore, to bound αw((A−BK)n),
we need to relate it to the fact that (A−BK) is (L, γ)-stable.
More specifically, we prove a general result that shows how
the decay constant for the power of a matrix changes when
the power increases.

Lemma 10. If M is sub-exponentially decaying with decay
constant αw(M), the weight w is as in (11), and ∥Mn∥ ≤
Lγn for some L > 0, γ ∈ (0, 1), then

αw(M
n) ≤ C

−1/θ
L γn

(
C

1/θ
L αw(M)

γ

) 1+θ
θ nlog2(1+θ)

,

where CL := max(1, 2CL1−θ) with C and θ defined in (23).

The proof of Lemma 10 can be found in Section IV-B.
From Lemma 10, we can see that αw(A

n) can be controlled
by two factors: the first of which is γn which decays to
0 exponentially fast; the second factor increases with n,
though in a sub-exponential manner (note log2(1 + θ) < 1).
Therefore, αw(A

n) decays to 0 exponentially.
With the help of Lemma 10, we now proceed to prove

Theorem 8. Applying Lemma 10 to AK := A − BK, we
have that

αw(A
n
K) ≤ C

−1/θ
L γn

(
C

1/θ
L αw(AK)

γ

) 1+θ
θ nlog2(1+θ)

.

Then from the definition of PK , we have that,

αw(PK) ≤ (αw(Q) + αw(K)2αw(R))

∞∑
n=0

αw(A
n
K)2

≤ αQK
C

−2/θ
L

∞∑
n=0

γ2n

(
C

1/θ
L αw(AK)

γ

) 2(1+θ)
θ nlog2(1+θ)

= αQK
C

−2/θ
L

∞∑
n=0

γnen log γ+nlog2(1+θ) log ζ(AK)

≤
αQK

C
−2/θ
L

1− γ
e
(log ζ(AK))

1
1−ξ

[
| ξ
log γ |

ξ
1−ξ −(ξ|log γ|ξ)

1
1−ξ

]
,

(19)

where ζ(AK) :=

(
C

1/θ
L αw(AK)

γ

) 2(1+θ)
θ

, αQK
= αw(Q) +

αw(K)2αw(R), and ξ = log2(1 + θ).
Therefore, we have that for NPG: K ′ = K − ηEK

αw(K
′) ≤ αw(K) (1 + ηαw(R))

+ η(αw(B)2αw(K) + αw(B)αw(A))

·
(
αw(Q) + αw(R)αw(K)2

(1− γ)

)
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·max
{
1, 4CP

[
1 +

( 2d

Dδ(2− 2δ)

)d/δ]
L1−θ}−2/θ

· exp

[(
2(1 + θ)

θ

) 1
1−log2(1+θ)

·
(
logαw(AK)− log γ +

1

θ
logmax

{
1, 4CP

· (1 +
(

2d

Dδ(2− 2δ)

) d
δ

L1−θ)

)} 1
1−log2(1+θ)

·
( ∣∣∣∣ log2(1 + θ)

log γ

∣∣∣∣ 1
1−log2(1+θ)

−1

−
(
log2(1 + θ)

· |log γ|log2(1+θ)

)1/(1−log2(1+θ)))
.

]
(20)

This concludes the proof of Theorem 8.

B. Proof of Lemma 10

We acknowledge that our proof of Lemma 10 is based on
a modification of the analysis in [26]. To start, we prove
the following Lemma 11, which reveals a few important
properties of the sub-exponential weight (11).

Lemma 11. Consider the weight in (11) and define an
auxiliary weight v(i, j) := exp(D(2δ − 1)dG(i, j)

δ). Then,
the following conditions hold

w(i, j) ≤ w(i, k)v(k, j)+ v(i, k)w(k, j), ∀i, j, k ∈ V
(21)

max
i∈V

∥(vw−1)(i, ·)∥∞ +max
j∈V

∥(vw−1)(·, j)∥∞ ≤ 2, (22)

and
inf
τ>0

a(τ) + b(τ)t ≤ Ctθ, ∀ t ≥ 1 (23)

where the notation (vw−1)(i, ·) is the vector containing the
products v(i, j)w−1(i, j) for all j ∈ V and similarly for

(vw−1)(·, j), C = 2CP

(
1 +

(
2d

Dδ(2−2δ)

)d/δ)
, and θ =

2−2δ−1

3−2δ
; the functions a(·) and b(·) are defined as

a(τ) := max
i∈V

∑
j∈NG(i,τ)

v(i, j)+max
j∈V

∑
i∈NG(j,τ)

v(i, j) (24)

and

b(τ) := max
i∈V

max
j∈V\NG(i,τ)

vw−1(i, j)

+ max
j∈V

max
i∈V\NG(j,τ)

vw−1(i, j). (25)

The proof of Lemma 11 can be found in Appendix A. In
Lemma 11, we can see that (21) is a stronger condition than
the triangle inequality in the view that the auxiliary weight
v, is a slower growing weight than w, as seen in (22). The
final condition (23) will be useful later when we split the
summation over V into NG(i, τ) and V \ NG(j, τ).

With the help of Lemma 11, we are now ready to prove
Lemma 10.
Proof of Lemma 10. We denote Mn = (mn(i, j))i,j∈V .
Given a positive integer τ , we note that∑
j∈V

∥mn(i, j)∥v(i, j)

=

 ∑
j:dG(i,j)<τ

+
∑

j:dG(i,j)≥τ

 ∥mn(i, j)∥v(i, j)

≤ max
j∈V

(∥mn(i, j)∥)
∑

j∈NG(i,τ)

v(i, j)

+

 ∑
j∈V\NG(i,τ)

∥mn(i, j)∥w(i, j)

 max
j∈V\NG(i,τ)

vw−1(i, j)

≤ ∥Mn∥
∑

j∈NG(i,τ)

v(i, j) + αw(M
n) max

j∈V\NG(i,τ)
vw−1(i, j),

where in the last inequality, we have used ∥mn(i, j)∥ ≤
∥Mn∥, i.e. the norm of the submatrix is upper bounded by
the norm of the entire matrix. Repeating the same bound for∑

i∈V∥mn(i, j)∥v(i, j) and by the definition of αv(·), a(τ),
and b(τ) (in Lemma 11), we have

αv(M
n) ≤ a(τ)∥Mn∥+ b(τ)αw(M

n)

≤ inf
τ>0

a(τ)∥Mn∥+ b(τ)αw(M
n)

≤ C∥Mn∥1−θαw(M
n)θ, (26)

where the third inequality is from (23).
Since w satisfies (21), we have that for any Z = XY ,

where Z = (z(i, j))i,j∈V , X = (x(i, j))i,j∈V , Y =
(y(i, j))i,j∈V ,

∥z(i, j)∥w(i, j) ≤
∑
k∈V

∥x(i, k)y(k, j)∥w(i, j)

≤
∑
k∈V

∥x(i, k)∥w(i, k)∥y(k, j)∥v(k, j)

+
∑
k∈V

∥x(i, k)∥v(i, k)∥y(k, j)∥w(k, j).

Taking the summation over j ∈ V , we get that

αw(Z) ≤ αw(X)αv(Y ) + αv(X)αw(Y ). (27)

Then using (26) and (27), we get

αw(M
2n) ≤ 2αw(M

n)αv(M
n)

≤ 2αw(M
n)1+θC∥Mn∥1−θ

≤ 2Cαw(M
n)1+θL1−θγn(1−θ). (28)

Further, using Lemma 7, we have,

αw(M
2n+1) ≤ αw(M

2n)αw(M)

≤ 2Cαw(M)αw(M
n)1+θL1−θγn(1−θ). (29)

Next, we will use an induction argument based on (28) and
(29) to finish the proof. We first define

bn := (2CL1−θ)1/θαw(M
n)γ−n,

and rewrite (28) and (29) as

b2n ≤ b1+θ
n , b2n+1 ≤ c0b

1+θ
n , (30)

for all n ≥ 1 and c0 := max(1, (2CL1−θ)1/θ)αw(M)γ−1.
Then we show by induction our sequence bn is bounded
above by

bn ≤ c
∑k

i=0 ei(1+θ)i

0 ,
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for n =
∑k

i=0 ei2
i where ei ∈ {0, 1}, ek = 1. We first note

that b1 = (2CL1−θ)1/θαw(M)γ−1 ≤ c0, so the base case is
satisfied. For even n+ 1, we let n+ 1 =

∑k
i=1 ei2

i, and so
n+1
2 =

∑k
i=1 ei2

i−1 =
∑k−1

j=0 ej+12
j . Therefore, from the

induction hypothesis and (30),

bn+1 ≤ b1+θ
n+1
2

≤ c
(1+θ)

∑k−1
i=0 ei+1(1+θ)i

0 = c
∑k

i=1 ei(1+θ)i

0 ,

so the induction hypothesis is true for n+1. The case when
n+1 is odd is similar so we omit the details here. Thus, the
induction is concluded.

Then, applying the inequality
k∑

i=0

ei(1 + θ)i ≤
k∑

i=0

(1 + θ)i =
(1 + θ)k+1 − 1

θ

≤ 1 + θ

θ
(1 + θ)k =

1 + θ

θ
(2k)log2(1+θ)

≤ 1 + θ

θ
nlog2(1+θ),

we have that

αw(M
n) ≤ C

−1/θ
L γn

(
C

1/θ
L αw(M)γ−1

) 1+θ
θ nlog2(1+θ)

,

(31)
where CL := max(1, 2CL1−θ). This concludes the proof.

C. Proof of Theorem 9

Denoting GK := TG(EK , κ) and G⊥
K := EK − GK , our

proof starts with a bound on the error caused by truncation
G⊥

K , which is a direct consequence of Theorem 8.

Lemma 12. We have the following bound on G⊥
K:

Tr((G⊥
K)⊤G⊥

K) ≤ ϵ(κ) := αw(EK)2Nnx∗e−2Dκδ

.

Proof. We denote EK = (eK(i, j))i,j∈V , then

∥G⊥
K∥2F = Tr

(
(G⊥

K)⊤G⊥
K

)
=
∑
i∈V

∑
k:dG(i,k)≥κ

Tr
(
eK(i, k)⊤eK(i, k)

)
≤
∑
i∈V

∑
k:dG(i,k)≥κ

nxi
∥eK(i, k)∥2

≤ n∗
x

∑
i∈V

 ∑
k:dG(i,k)≥κ

∥eK(i, k)∥

2

≤ Nn∗
xαw(EK)2e−2Dκδ

,

where n∗
x = maxi∈V nxi

and the last inequality can be
shown from the definition of the decay constant in (10):∑
k:dG(i,k)≥κ

∥eK(i, k)∥ =
∑

k:dG(i,k)≥κ

∥eK(i, k)∥w(i, k) 1

w(i, k)

≤ e−Dκδ

αw(EK).

Our proof also uses the following result in [17].

Lemma 13 (Lemma 6 in [17]). The cost C(K) in (4)
satisfies

C(K ′)− C(K) = −2Tr(ΣK′(K −K ′)⊤EK)

+ Tr(ΣK′(K −K ′)⊤(R+B⊤PKB)(K −K ′)). (32)

We begin with a κ-hop policy K. We can write our
Truncated NPG update as K ′ = K − ηGK . Then from (32),
we get

C(K ′)− C(K) = −2ηTr(ΣK′G⊤
KEK)

+ η2Tr(ΣK′G⊤
K(R+B⊤PKB)GK). (33)

Analyzing the first term in (33), we have that

Tr(ΣK′G⊤
KEK) = Tr(ΣK′E⊤

KEK)

− Tr(ΣK′(G⊥
K)⊤EK),

for which the second term can be bounded as

2ηTr(ΣK′(G⊥
K)⊤EK) = 2η⟨Σ1/2

K′ E
⊤
K ,Σ

1/2
K′ (G

⊥
K)⊤⟩F

≤ η

4
∥Σ1/2

K′ E
⊤
K∥2F + 4η∥Σ1/2

K′ (G
⊥
K)⊤∥2F

=
η

4
Tr(ΣK′E⊤

KEK) + 4ηTr(ΣK′(G⊥
K)⊤G⊥

K).

Denoting RK := R+B⊤PKB, for the second term in (33),
we have

Tr(ΣK′G⊤
KRKGK) =

Tr(Σ
1/2
K′ G

⊤
KR

1/2
K R

1/2
K GKΣ

1/2
K′ ) = ∥R1/2

K GKΣ
1/2
K′ ∥2F

= ∥R1/2
K (EK +GK − EK)Σ

1/2
K′ ∥2F

≤ 2∥R1/2
K EKΣ

1/2
K′ ∥2F + 2∥R1/2

K G⊥
KΣ

1/2
K′ ∥2F

≤ 2∥RK∥
(
Tr(ΣK′E⊤

KEK) + Tr(ΣK′(G⊥
K)⊤G⊥

K)
)
.

Then taking η ≤ 3
8∥RK∥ , and combining the above upper

bounds into (33), we have for λ := σmin(R)
∥ΣK∗∥ ,

C(K ′)− C(K) ≤ −ηTr(ΣK′E⊤
KEK)+

5ηTr(ΣK′(G⊥
K)⊤G⊥

K)

≤ −ληµ(C(K)− C(K∗)) + 5η∥ΣK′∥ϵ(κ)

≤ −ληµ(C(K)− C(K∗)) + 5η
C(K ′)

σmin(Q)
ϵ(κ),

where we have used (9), Lemma 12, and the fact that
C(K ′) = Tr((Q+K ′⊤RK ′)ΣK′) ≥ ∥ΣK′∥σmin(Q).

V. NUMERICAL SIMULATIONS

For our simulations, we consider the AC network in [14],
described below.

Example 14. The frequency control of a DC-approximated
AC power system can be written as a networked control
problem. The graph of this model is GDC := {VDC , EDC}
with NDC nodes (busses) and weighted edges with weights
(kDC)ij (normalized line susceptances). Forward Euler with
sampling time ts,DC gives[
θt+1

ωt+1

]
=

[
I (ts,DC)I

−(ts,DC)LDC I

] [
θt
ωt

]
+

[
0

0.5(ts,DC)I

]
ut,

where θt denotes the vector of phase angles of each bus at
time t, θt = (θt(i))i∈VDC

, and ωt is the vector of frequencies
of each bus at time t, ωt = (ωt(i))i∈VDC . LDC is the

4491



Fig. 1. Subexponential Decay Constants αw(Kt) for the AC network.

Fig. 2. Performance of truncated NPG on the AC network.

weighted laplacian of GDC . For Q = (0.52)I and R = I ,
the discrete system above is stabilizable and detectable.

Setup. We use the graph and susceptance data from the
IEEE 118-bus dataset described in [27]. We set ts,DC =
.005ms, (kDC)ij = BijV

2
ref/M where Bij is the line

susceptance, M = 10−5kgm2, Vref = 132kV, and simulate
the model via its discretization. We run (16) for T = 400
time steps with stepsize η = 0.1 on the AC network with
K0 generated via pole placement. The poles of A − BK0

were sampled from the standard normal distribution and were
ensured to be stabilizing.

Results. We calculate the decay constants αw(Kt) under
the weight in (11) with constant D = log 2 and the sub-
exponential power δ = 0.75. As noted previously, our simu-
lation results in Fig. 1 suggest that the decay constant bound
of αw(Kt+1) ∼ epoly(logα(Kt)) (Theorem 8) is not tight and
support our conjecture that the decay constant should be
uniformly bounded throughout the Truncated NPG iterations.
The overall convergence of the truncated NPG is shown in
Fig. 2, where we plot ∥P −P ∗∥/∥P ∗∥ against parameter κ,
where P = PKT

is the solution to (5) for KT (the controller
at the final time step T ), and P ∗ is the corresponding LQR
solution. This quantity ∥P −P ∗∥/∥P ∗∥ can be viewed as a
surrogate of the optimality gap C(KT ) − C(K∗) [14]. As
κ increases, we see a decrease in the surrogate optimality
gap, which is consistent with the single-step error bound in
Theorem 9.

VI. CONCLUSION

In this work, we have shown that an NPG update from
a spatially decaying controller preserves its spatial decay
property. Furthermore, we have also shown that the trun-
cation of the updated controller to a κ-hop distributed
controller exhibits an error that decays with κ. As for future
work, we are interested in analytically showing boundedness
on the spatial decay of NPG iterations beyond one step
and ultimately, near-optimal convergence guarantees for the
truncated NPG algorithm and its model-free and distributed
implementation.
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APPENDIX

A. Proof of Weight Lemmas

Proof of Lemma 7: (13) follows directly from the triangle
inequality on norms. As for (14), take AB = (ab(i, j))i,j∈V

∑
j∈V

∥ab(i, j)∥w(i, j) =
∑
j∈V

∥∥∥∥∥∑
k∈V

a(i, k)b(k, j)

∥∥∥∥∥w(i, j)
≤
∑
k∈V

∥a(i, k)∥w(i, k)
∑
j∈V

∥b(i, k)∥w(j, k),

where in the second line we apply the triangle inequality,
property of the metric in w, and swap the sums. The weight
w must obey the triangle inequality as it is an increasing
function of the metric dG with δ ∈ (0, 1). This proves (14)

Proof of Lemma 11: Proof of (21). For the condition in (21)
to hold, we will use the inequality

1 ≤ sδ + (2δ − 1)(1− s)δ, for s ∈ [1/2, 1]. (34)

Denote the RHS of (34) f(s). The inequality then comes
from the fact that f(1/2) = f(1) = 1 and f is a continuous
concave function of s on [1/2, 1].

We divide the proof of (21) into two cases. In the first
case, we assume dG(i, k) ≥ dG(k, j). Then, using triangle

inequality, we have,

w(i, j)

≤ exp

(
D(dG(i, k) + dG(k, j))

δ

(
dG(i, k) + dG(k, j)

dG(i, k) + dG(k, j)

)δ
)

≤ exp
(
D(dG(i, k)

δ + (2δ − 1)dG(k, j)
δ)
)

= w(i, k)v(k, j),

where the last inequality uses (34) and the assumption. By
symmetry, when dG(k, j) ≥ dG(i, k), we must have that
w(i, j) ≤ v(i, k)w(k, j). As a result, we can upper-bound
w(i, j) by combining the two cases

w(i, j) ≤ w(i, k)v(k, j) + v(i, k)w(k, j).

Proof of (22). Immediately, we have that

vw−1(i, j) = exp
(
D(2δ − 2)dG(i, j)

δ
)
≤ 1.

Proof of (23). From the definition of a(τ), if we consider
the first term, we have

max
i∈V

∑
j∈NG(i,τ)

v(i, j)

≤ max
i∈V

∑
j∈NG(i,τ)

exp(D(2δ − 1)dG(i, j)
δ)

≤ CP τ
d exp

(
D(2δ − 1)τ δ

)
where we have used the assumption (1). Doing the same for
the second term in a(τ), we have that

a(τ) ≤ 2CP τ
d exp

(
D(2δ − 1)τ δ

)
≤ 2CP τ

deDτδ

,

Similarly, for b(τ), we have, from vw−1(i, j) =

eD(2δ−2)dG(i,j)δ and 2δ − 2 ≤ 0, that b(τ) ≤ 2 exp(D(2δ −
2)τ δ). Then the optimization problem on the LHS of (23)
can be upperbounded by the following:

2CP inf
τ≥1

τdeDτδ

+ eD(2δ−2)τδ

t,

where we have used CP ≥ 1. Then picking τ δ =
1

(3−2δ)D
log t, we get the upper bound

2CP

((
1

D(3− 2δ)
log t

)d/δ

+ 1

)
t1/(3−2δ) ≤ Ctθ,

where we have set θ =
1+ 1

3−2δ

2 ∈ (0, 1) and also used the
following simple bound:

log t ≤ Cbt
δ(1−θ)/d

which holds for Cb = d
(1−θ)δ , and set C =

2CP

(
1 +

(
Cb

D(3−2δ)

)d/δ)
. Hence w in (11) satisfies (23).
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