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Parameterization-Free Observer Design for
Nonlinear Systems: Application to the State
Estimation of Networked SIR Epidemics

Muhammad Umar B. Niazi*'

Abstract—Traditional observer design methods rely on certain
properties of the system’s nonlinearity, such as Lipschitz
continuity, one-sided Lipschitzness, a bounded Jacobian, or
quadratic boundedness. These properties are described by
parameterized inequalities. However, enforcing these inequalities
globally can lead to very large parameters, resulting in overly
conservative observer design criteria. These criteria become
infeasible for highly nonlinear applications, such as networked
epidemic processes. In this paper, we present an observer design
approach for estimating the state of nonlinear systems, without
requiring any parameterization of the system’s nonlinearities.
The proposed observer design depends only on systems’ matrices
and applies to systems with any nonlinearity. We establish
different design criteria for ensuring both asymptotic and
exponential convergence of the estimation error to zero. To
demonstrate the efficacy of our approach, we employ it for
estimating the state of a networked SIR epidemic model. We
show that, even in the presence of measurement noise, the
observer can accurately estimate the epidemic state of each node
in the network. To the best of our knowledge, the proposed
observer is the first that is capable of estimating the state of
networked SIR models.

I. INTRODUCTION

Nonlinear systems are ubiquitous in engineering, physics,
and biology. Accurately estimating their states is critical for
many applications, such as output feedback control, fault
diagnosis, and prediction. Observers, typically used for these
purposes, have been extensively studied over the past few
decades in the control systems community.

Traditional methods for observer design rely on the as-
sumption that the nonlinearity of the system satisfies certain
properties, which are defined through parameterized inequal-
ities. For example, Luenberger-like observers, proposed by
Thau in [1], have been designed using such parameterization-
based techniques. Various observer design criteria have been
proposed in the literature, such as Lipschitz continuity [2]—
[5], one-sided Lipschitz and quadratic inner-boundedness [6]—
[8], bounded Jacobian [9], [10], quadratic boundedness [11],
passivity [12], and dissipativity [13]. However, to ensure the
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global convergence of the observer, these parameterizations
have to be enforced globally, which results in very large param-
eters [14]. Because of this, parameterization-based techniques
lead to unnecessarily conservative observer design criteria,
limiting their applicability to highly nonlinear systems.

To overcome this challenge, we propose a novel observer
design approach that does not require any assumptions about
the system’s nonlinearity, making it parameterization-free.
The proposed approach essentially treats the nonlinearity as
an unknown disturbance in the estimation error dynamics.
Therefore, the goal of the observer is to not only track the
state but also the nonlinearity of the system. We establish
observer design criteria that guarantee both asymptotic and
exponential convergence of the estimation error to zero.

We demonstrate the effectiveness of our approach through
the state estimation of a networked SIR epidemic model.
State estimation of epidemic models is critical because the
infectious population is usually difficult to measure directly
and needs to be estimated. Moreover, parameterization-based
design becomes infeasible for epidemic models because their
nonlinearity, i.e., the mass action law, is quadratic in nature,
rendering the Lipschitz constant and other parameterizations
to be very large. Through simulations, we show that the
observer can effectively estimate the epidemic state in every
node even in the presence of measurement noise.

The main contributions of this paper include a
parameterization-free observer design approach and its appli-
cation to networked SIR epidemic processes. Notably, this
work is the first to propose an observer capable of estimating
the state of a networked SIR epidemic model, to the best of our
knowledge. Our previous work on the parameterization-based
observer design [5] can estimate the state of population models
of epidemic processes. Additionally, [15] demonstrated that
their parameterization-based observer can estimate the state of
a networked SIS epidemic model. However, neither of these
approaches can estimate the state of networked SIR models.
Therefore, our proposed parameterization-free approach not
only offers a promising alternative to traditional observer
design methods but also has the potential to be applied to a
wide range of nonlinear systems.

The paper is organized as follows. Section II outlines
the problem statement, while Section III introduces the
observer form utilized in this paper. In Section IV, we briefly
review the parameterization-based designs of this observer
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and highlight their limitations. Next, in Section V, we present
our parameterization-free observer design. The effectiveness
of our approach is demonstrated in Section VI, where we
apply it to a networked SIR epidemic model. Finally, we
conclude in Section VII with our closing remarks.

II. PROBLEM STATEMENT

We consider nonlinear systems that can be described as

(1a)
(1b)

t=Ax+ Gf(Hzx)
y=Cx

where z(t) € X C R"= is the state and y(¢) € R™ is the
measured output. The nonlinear function f : HX — R"f
and matrices A € R?=*"s G ¢ R"*=*" H ¢ R" X" and
C € R™*"= are known. Notice that the control input is
omitted in (1) only for brevity and without loss of generality.

We assume that the system (1) is asymptotically detectable.
That is, for any pair of solution trajectories ¢ — x(t;x,)
and ¢t — x(t;xp) initialized from z,,z, € X and defined
on t € [0,00), it holds that y(t;z,) = y(t;xp) implies
limy oo ||2(t;24) — 2(t;23)|| = 0. This assumption is a
necessary condition for the existence of an asymptotic state
observer [16]. In addition, we also assume that (A, C) is a
detectable pair, i.e.,

s — A

rank { c

} =ng, Vs Csg.
It is important to remark that, if the above condition is not
satisfied for (A, C'), one can always add and subtract A so

that (A + A, C) satisfies the above condition. In this case,
we can either choose

GfHz)=[ G -A ] [ f(fjm) ]
G \—__j;___/

where H = I,,, or

Gf(Hz) =Gf(Hz) — Ax
r

where G = 1,,, and H = I,,.
Subject to the above assumptions, our goal is to design an
observer

i=¢(zy), 2=0(zy)

such that the estimation error £(t) = &(t) — x(¢) satisfies

1E@1 < BIEO)], 1)

where 3 : R>9 x R = R>¢ is some class-KCL function. In
other words, we want lim;_, o, ||£(¢)|| = O irrespective of
the initial error £(0) € R"~.

(@)

ITII. PROPOSED FORM OF THE OBSERVER
We consider the observer form proposed in [5]

z=Mz+ (ML+ J)y+ Nf(n) (3a)
n=Hi+ K(y—Ct) (3b)
T =z+ Ly (3¢c)

where z(t) € R™ is the observer’s state and &(t) € R™ is
its output. The matrices M € R™*"= and N € R"=*"f are
chosen as

M=A-LCA—JC, N=I-LC 4)

whereas J, L € R"**™ and K € R"»*™ are gain matrices
that need to be designed.

Define the estimation error {(t) = &(t) — x(t), then the
error equation is given by

£ =ME+ NGf(n, Ha) )

where

f(n, Ha) = f(n) — f(Hz). ©)
Thus, our design objective is to find the gain matrices J, K, L
such that the estimation error satisfies (2).

Although the observer (3) has a different form than
traditional Luenberger-like observers [17], it is inspired by the
observer form developed by Luenberger [18]. This form of the
observer offers additional degrees of freedom for designing
L in a way that minimizes the impact of f in the error
dynamics (5). Also, the innovation term K (y(t) — CZ(t))
in the function f(n(t)) in (3a)-(3b) allows for designing K
such that the observer can effectively track the nonlinear
signal f(Hzx(t)) in (la). Furthermore, an additional gain
matrix J can be utilized to achieve stability of the matrix
M=A-LCA-JC.

The following lemma will be used in our analysis. It is
quite standard in the Lyapunov stability theory, and the reader
is referred to [19, Chapter 5] for more details and the proof.

Lemma 1. If there is a function V' : R"* — R that, for
every £(t) € R"=, satisfies

@ lE@I? < V(E®R)) < 2)&]%, for some 72 > 71 >0

(i) V(£(t) <0
then (5) is uniformly, globally asymptotically stable. In other
words, irrespective of the signal f(n(t),z(t)) in the error
equation (5), there exists a class-XCL function 3 such that (2)
holds.

Moreover, if, instead of (ii), V(§ (t)) < —aV, for some
a > 0, then (5) is uniformly, globally exponentially stable. In
other words, irrespective of the signal f(n(t),z(t)) (defined
in (6)), there exist constants ¢ = ¢(||£(0)]]) > 0 and A > 0
such that (2) holds with 3(||£(0)|,) = c(||€(0)|Ne=*t. O

The next section introduces observer design criteria that
rely on the Lipschitz continuity and quadratic boundedness
of the nonlinear function f. This approach is known as
parameterization-based design. Then, in the subsequent sec-
tion, we will propose a parameterization-free design, which
does not rely on any specific parameterization of f.
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IV. REVIEW OF PARAMETERIZATION-BASED OBSERVER
DESIGN AND ITS LIMITATIONS

In this section, we briefly review existing results related
to the parameterization-based design of observers, with a
particular focus on two commonly used parameterizations:
Lipschitz continuity and quadratic boundedness. However, it
is important to note that enforcing these parameterizations
globally can have limitations, which will also be discussed.

Assumption 1. The function f is Lipschitz continuous on X.
That is, there exists £ € R>( such that, for every z,2 € X,

If(HZ) - f(Hz)|| < | H(% — ). ©)

It is well-known that if f is continuously differentiable,
then ¢ can be computed by solving the following nonlinear
optimization problem

of

{= —(H . 8
sup g 112 ®)
Theorem 2 (Niazi & Johansson [5]). Let Assumption 1 hold.
If there exist a positive definite matrix P = PT € R™* and

gain matrices J, L € R"**" and K € R"»*"v such that
MTP+PM+PNGGTNTP+€2(H—KC)T(H—KC’) <0
)
where M, N are given in (4), then the estimation er-

ror £(t) globally asymptotically converges to zero, i.e.,
lim o0 [|€(8)]] = 0.

The algebraic Riccati inequality (ARI) (9) guarantees global
asymptotic stability of the error dynamics (5). To guarantee
global exponential stability under Lipschitz property, one can
adapt (9) to

(M +al, )TP+ P(M+ al,,) + PNGGTNTP
+0*(H - KC)T(H — KC) < 0.
(10)
for some o > 0. Moreover, note that both (9) and, given
a > 0, (10) can be equivalently represented as linear matrix
inequalities using Schur complement lemma.

Assumption 2. The function f is quadratically bounded on X'.
That is, there exists a positive definite matrix @) € R"=*"=
such that, for every z,2 € &,

If (H) — f(H2)|* < (& - 2)HTQH (2 —2). (1)

For general nonlinear functions f, finding a matrix @ such
that (11) holds is a difficult problem. However, if f is contin-
uously differentiable, then we can employ a method proposed

by [14] to compute a diagonal Q = diag(qi,...,qn,) by
solving the following nonlinear optimization problem:

Ng 8 ) 2
@; = sup Ny Z <8£J (Hx)) .

zeX J=1

12)

Theorem 3. Let Assumption 2 hold. If there exist a positive
definite matrix P = PT € R"* and gain matrices J, L €
R"= %"y and K € R™*™ such that

MTP+PM+PNGGTNTP+(H-KC)TQ(H-KC) <0
(13)

where M, N are given in (4), then the estimation er-
ror £(t) globally asymptotically converges to zero, i.c.,
limy o0 [|€(2)]] = 0.

Proof. The proof is similar to that of Theorem 2 in [5]. [

The Lipschitz continuity (7) and quadratic boundedness
(11) parameterizations bound the incremental change in the
nonlinear function f from above in terms of the incremental
change in its arguments. By enforcing these inequalities over
the whole state space X, it turns out that the Lipschitz constant
¢ and/or quadratic boundedness parameter () are very large.
This restricts the possibility to choose the gain matrices such
that they satisfy ARIs (9) and/or (13). For instance, in the
case of (13), the equivalent LMI feasibility problem is

sym(PA— RCA—-SC)+T (P-RC)G <0
* —1In,
T (H-KC)T
* - ! } =0

where J = P71S and L = P~!'R. Notice that when the
diagonal elements of () computed by (12) are very large, Q"
will have very small values. This will be compensated by
having T" with very large eigenvalues in the second inequality,
which will result in the violation of the first inequality.

In [6], [20], and [9], other parameterization-based designs,
such as the one-sided Lipschitz property, quadratic inner
boundedness, and bounded Jacobian, are presented in the
context of Luenberger-like observers. However, the design
criteria for one-sided Lipschitz and quadratic inner bound-
edness are found to be quite conservative; see [5] for more
details about these limitations. Moreover, the design in [9]
that uses a bounded Jacobian property of f is technically
incorrect, as explained in [5]. Although [21] also uses a
bounded Jacobian property for designing a Luenberger-like
observer with switching observer gain, designing a switching
signal remains an open problem. Finally, the design using the
dissipativity properties of f (n, Hz) in [13] results in nonlinear
matrix inequality, which is difficult to solve computationally.

In addition to the conservativeness of the parameterization-
based observer design criteria, finding parameterizations is
also a difficult task for general nonlinear functions, especially
for non-differentiable functions. Therefore, it is important to
have observer design criteria that does not rely on any specific
parameterization of the system’s nonlinearity.

V. PARAMETERIZATION-FREE OBSERVER DESIGN

In this section, we introduce an observer design that does
not rely on any parameterization of the nonlinearity f. This
parameterization-free approach allows us to establish design
criteria without requiring any global properties of f. Using this
approach, we essentially treat the nonlinearity as an external
disturbance in the error equation (5). As a result, the goal
of the observer design is to stabilize the estimation error by
effectively filtering out the nonlinearity by tracking it.
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Theorem 4. If there exist positive definite matrices P, (Q €
R™=*"= g scalar p > 0, and gain matrices J, L € R"=*"y
and K € R™*™ gsuch that

Od+TTAT' <0 (14a)
A>pl (14b)
where
| MTP+PM+Q PNG
¢ = { GTNTP —p[,,f ] 3
F:[H_KC O } (16)
Onfxnm Inf

with M, N given in (4), then the estimation error £(¢) globally
asymptotically converges to zero.

Proof. Note that n(t) — Hx(t) = (H — KC)¢(t), where n is
given in (3b). Also, for every 7, x, and A > 0, it holds that

ot ) AL o]
- { f(mgH:v) ] FTAF{ f(??,gHa:)

where {(t) = #(t) — x(t) is the estimation error, 7(t) is given
in (3b), f(n, Hx) in (6), and I in (16).
Let V. = (TP be a candidate Lyapunov function. It

satisfies Lemma 1(i) because
Amin(P)||§(t)||2 < fT(t)Pﬁ(t) < )‘maX(P)Hg(t)”Q‘

To show Lemma 1(ii), we take its time derivative, and add
and subtract certain terms on the right hand side

] >0 A7

V = (6TM + fTGTNT)PE + £TP(ME + NGf)
_[g]T[MTPJrPM PNG Hg]T
LS Onpxny f

n—Hzx

Using (17), we obtain

GTNTP

~ T p— :I:
i@@fipﬁfﬂ:{ ; ]A[" fH }

¢

V:—gTQH[ ~T(<I>+FTAF) [ fc]

f
n—Hz |7 {n—Hx}
2 A+ oL : 18
+[ 7 } (=A+pI) 7 (18)
where ® is given in (15), I" in (16), and
0 O
=10, |

Notice that if (14b) holds, then —A+pZ < 0 because pI > pZ

for p > 0. Moreover, if (14a) holds as well, then Vv < —E€TQK.

Since Q > 0, we have V <0. Hence, by Lemma 1, the error
equation (5) is (uniformly) globally asymptotically stable,
which concludes the proof. O

Note that by choosing some p > 0, substituting R = PL
and § = PJ, and using Schur complement lemma we can
obtain an LMI feasibility problem equivalent to (14) as

¢ IT

1
& I (19

p
where A = A~'. In (15), PM = PA — RCA — SC and
PN = P — RC. Then, the gain matrices are obtained as
J=P 1Sand L =P 'R.

For the global exponential stability of (5), we can have the
following modifications to Theorem 4.

Corollary 4.1. If the condition (14) is satisfied with @ >
aP > 0, for some o > 0, then the estimation error £(t)
globally exponentially converges to zero.

P>0,Q>o,[ }go,[\g

Proof. Assume (14) is satisfied, then (18) implies VvV <
—E£TQE. If Q > aP, then V < —aV. The result then follows
from Lemma 1. O

For a given a > 0, the LMI condition (19) can be obtained
with @ > aP instead of @) > 0. However, @ > 0 can be
made a decision variable in (19).

Corollary 4.2. If the condition (14) is satisfied with ¢ >
aly,, and P < I,,_, for some o > 0, then the estimation error
&(t) globally exponentially converges to zero.

Proof. Assume (14) is satisfied, then (18) implies VvV <
—€TQE. It Q > al,, > P, then V < —afT¢ < —aV.
Then, the proof is concluded by Lemma 1. [

Using Corollary 4.2, the LMI condition (19) is modified
by adding « >0, Q > al,and 0 < P < I.

In the next section, we demonstrate the effectiveness of
parameterization-free approach for the state estimation of
networked SIR epidemic processes.

VI. APPLICATION TO A NETWORKED SIR EPIDEMIC
MODEL

Consider a set of nodes V = {1,...,n} connected over
a digraph G = (V,€), where £ C V x V is the set of
edges. Every node i possesses a state (z5(t), z&(t), xk(t)) that
represents the fraction of susceptible, infectious, and recovered
individuals in its population. An edge (7,j) € £ implies that
the susceptible population of node i can be infected by the
infectious population of node j, where the weight of such a
connection is determined by the infection rate 3;w;;, where
B; > 0 is the infection susceptibility of 7 and w;; > 0 is the
contact rate of 7 with 7. The infectious population of each
node i recovers with a recovery rate §; > 0.

Mathematically, the deterministic SIR epidemic process
over G is described by

n
B =(1—af —2h) > Bwija] — b}
=1

(20a)

(20b)

i s i
Ty = 0;z]

where z§(t) = 1 — 2k (t) — zi(t).
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Assume that () is available through measurements at
each node . Define W = [w;;] to be the weighted adjacency
matrix of the digraph G, and let B = diag(f1,...,5n)
and D = diag(d1,...,0,). Let z(t) = [ z1(H)T ()T |7
with x1(t) = [ 2i(¢) 2P (t) |7 and ax(t) =
[ 2i(t) ai(t) |7, then (20) can be written as (1) with

_ BW—D On><n :l G_ l: _In
’ N 0n><n

A=17 D e
and f(Hz) = diag(z1(¢) +2r(t)) BWz1(t). The pair (A, C)
is observable if the recovery rates §; are distinct.

:|7H:IQTL

Fig. 1. Bidirected graph G considered for the simulation example.

We consider the number of nodes to be n = 10. We
generate a random bidirected graph G shown in Fig. 1 with
the probability of edge between each pair of nodes equal to
0.5, where the edge weight w;; is chosen in the interval (0, 2)
uniformly randomly. Each node has a self-loop indicating
infection spread within its population. The parameters [;
and ¢; are also chosen uniformly randomly from (0, 1) for
each ¢ = 1,...,n. For 100 realizations of random bidirected
graphs, we found that the Lipschitz constant ¢ of nonlinearity
f(Hz) ranges from 7.5 to 25.6, which makes the Lipschitz-
based design criterion (9) infeasible given that /2 would be
very large. Therefore, in this case, the parameterization-free
design criterion (14) is preferable.

Choosing p = 1, we use SeDuMi [22] in MATLAB to
solve the LMI (19) and obtain the observer gain matrices
J, K, L. Then, after using (4) to obtain matrices M and
N, the observer (3) is initialized as z(0) = —Ly(0). The
measurement output y(t) is assumed to be corrupted by a
noise v(t) ~ N(0,,,0.0011,, ). The state estimation of each
node is illustrated in Fig. 3, where it is important to point out
that our observer is capable of handling the noise effectively
in the estimation. The norm of the estimation error is plotted
in Fig. 2.

VII. CONCLUDING REMARKS

We proposed a novel parameterization-free observer design
approach for state estimation of nonlinear systems. We demon-
strated that traditional methods relying on parameterized
inequalities of the nonlinearity can lead to unnecessarily con-
servative observer design criteria when the parameterization is
enforced globally. In contrast, our proposed approach makes

1 T T T T
——Norm of Error [[£(¢)]| = ||£(t) — x(t)M

0 2 4 6 8 10
Time t

Fig. 2. Norm of the estimation error.

no assumptions about the system’s nonlinearity, rendering it
parameterization-free.

We established observer design criteria that guarantee both
asymptotic and exponential convergence of the estimation
error to zero by treating the nonlinearity as an unknown
disturbance in the estimation error dynamics, where the goal
of the observer is to track not only the state but also the
nonlinearity of the system. We also demonstrated the effec-
tiveness of our approach by using it for the state estimation
of a networked SIR epidemic model. This application is
particularly important, as state estimation of epidemic models
is crucial, and traditional parameterized methods become
infeasible due to the quadratic nature of the nonlinearity.

Our proposed parameterization-free approach offers a
promising alternative to traditional observer design methods
and has the potential to be applied to a wide range of nonlinear
systems. In conclusion, this work presents a significant
contribution to the field of observer design for nonlinear
systems and opens up new possibilities for state estimation in
various applications. The future work includes a systematic
method to handle process and measurement noises in the
nonlinear system.
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