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Optimization of Utility-based Shortfall Risk:
A Non-asymptotic Viewpoint

Sumedh Gupte!' and Prashanth L. A.2 and Sanjay P. Bhat?

Abstract— We consider the problems of estimation and op-
timization of utility-based shortfall risk (UBSR), which is a
popular risk measure in finance. In the context of UBSR
estimation, we derive a non-asymptotic bound on the mean-
squared error of the classical sample average approximation
(SAA) of UBSR. Next, in the context of UBSR optimization, we
derive an expression for the UBSR gradient under a smooth
parameterization. This expression is a ratio of expectations,
both of which involve the UBSR. We use SAA for the numerator
as well as denominator in the UBSR gradient expression
to arrive at a biased gradient estimator. We derive non-
asymptotic bounds on the estimation error, which show that our
gradient estimator is asymptotically unbiased. We incorporate
the aforementioned gradient estimator into a stochastic gradient
(SG) algorithm for UBSR optimization. Finally, we derive non-
asymptotic bounds that quantify the rate of convergence of our
SG algorithm for UBSR optimization.

Index Terms— Utility-based shortfall risk, risk estimation,
stochastic optimization, non-asymptotic bounds, stochastic gra-
dient.

I. INTRODUCTION

Optimizing risk is important in several application do-
mains, e.g., finance, transportation to name a few. Financial
applications rely heavily on efficient risk assessment tech-
niques, and employ multitude of risk measures for risk esti-
mation. Risk optimization involves risk estimation as a sub-
procedure for finding solutions to optimal decision-making
problems in finance. Value-at-Risk (VaR) [1], Conditional
Value-at-Risk (CVaR) [2] are two popular risk measures.
The risk measure VaR, which is a quantile of the underlying
distribution, is not the preferred choice owing to the fact
that it is not sub-additive. In a financial context, the latter
property implies that diversification does not increase risk.
CVaR as a risk measure satisfies sub-additivity property and
falls in the category of coherent risk measures [3].

A class of risk measures that subsumes coherency is con-
vex risk measures [4]. A prominent convex risk measure is
utility-based shortfall risk (UBSR). In this paper, we consider
the problems of UBSR estimation and optimization. UBSR
is a convex risk measure that has a few advantages over the
popular CVaR risk measure, namely (i) UBSR is invariant
under randomization, while CVaR is not, see [5]; (i) Unlike
CVaR, which only considers the values that the underlying
random variable takes beyond VaR, the loss function in
UBSR can be chosen to encode the risk preference for each
value that the underlying random variable takes. Thus, in the
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context of both risk estimation and optimization, UBSR is
a viable alternative to the industry standard risk measures,
namely, VaR and CVaR.

The existing works on UBSR are restricted to the case
where the underlying random variables are bounded, cf. [6].
In this paper, we extend the UBSR formalism to unbounded
random variables. We now summarize our contributions
below.

1) We extend UBSR to cover unbounded random variables
that satisfy certain integrability requirements, and establish
conditions under which UBSR is a convex risk measure.

2) For a sample average approximation (SAA) of UBSR,
which is proposed earlier in the literature, we derive a mean-
squared error bound under a weaker assumption on the
underlying loss function. More precisely, we assume the loss
function to be bounded above by a quadratic function, while
the corresponding bound in [7] assumed linear growth.

3) For the problem of UBSR optimization with a vector
parameter, we derive an expression for the gradient of
UBSR. Using this expression, we propose an m-sample
gradient estimator. We establish O(1/m) and O(1/y/m)
mean-squared error bounds for Lipschitz and smooth loss
functions, respectively.

4) We design a stochastic gradient (SG) algorithm using
the gradient estimator above, and derive a non-asymptotic
bound of O(1/n) under a strong convexity assumption with
a Lipschitz loss function. Here n denotes the number of
iterations of the SG algorithm for UBSR optimization. A
similar proof leads to a O(1/+/n) bound for a smooth loss
function.

Related work. The authors in [8] introduced UBSR for
bounded random variables and the authors in [9] illustrated
several desirable properties of UBSR. In real-world financial
markets, the financial positions continuously evolve over
time, and so must their risk estimates. In [10], the authors
showed that UBSR can be used for dynamic evaluation of
such financial positions. In [5], the authors have proposed
estimators based on a stochastic root finding procedure
and they provide only asymptotic convergence guarantees.
In [11], the authors have used sample average approximation
(SAA) procedure for UBSR estimation and have proposed
an estimator for the UBSR derivative which can be used
for risk optimization in the case of a scalar decision param-
eter. They establish asymptotic convergence guarantees for
UBSR estimation and also show that the UBSR derivative
is asymptotically unbiased. In [6], the authors perform non-
asymptotic analysis for the scalar UBSR optimization, while
employing a stochastic root finding technique for UBSR
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estimation. In comparison to these works, we would like
to the note the following aspects: (i) Unlike [5], [11], we
provide non-asymptotic bounds on the mean-squared error of
the UBSR estimate from a procedure that is computationally
efficient; (ii)) We consider UBSR optimization for a vector
parameter, while earlier works (cf. [11], [6]) consider the
scalar case; (iii) We analyze a SG-based algorithm in the
non-asymptotic regime for UBSR optimization, while [11]
provides an asymptotic guarantee for the UBSR derivative
estimate; (iv) In [6], UBSR optimization using a gradient-
based algorithm has been proposed for the case of scalar
parameterization. Unlike [6], we derive a general (multi-
variate) expression for the UBSR gradient, leading to an
estimator that is subsequently employed in the stochastic
gradient algorithm mentioned above. A vector parameter
makes the bias/variance analysis of UBSR gradient estimate
challenging as compared to the scalar counterpart, which is
analyzed in [6].

The rest of the paper is organized as follows: In Section II,
we introduce the notations. In Section III we extend the
UBSR risk measure for unbounded random variables. In
Section IV, we describe the SAA-based UBSR estimation
technique, and derive error bounds on the estimator. In
Section V, we derive the UBSR gradient theorem, and
propose as well as analyze a stochastic gradient scheme
for UBSR minimization. In Section VI, we provide the
concluding remarks. Due to space constraints, we provide
detailed proofs in the longer version of this paper, available
in [12].

II. PRELIMINARIES

For p € [1,00), the p-norm of a vector v € R? is given

by
d
Ivll, £ (Z Ivz'”>
1=1

while [|v||,, denotes the supremum norm. Matrix norms
induced by the vector p-norm are denoted by ||-|,,, and the
special cases of p = 1 and p = oo denote the maximum
absolute column sum and maximum absolute row sum,
respectively. The spectral norm is denoted by ||-]|.

Let (2, F, P) be a standard Borel probability space. Let
L0 denote the space of F-measurable, real random variables
and let E(-) denote the expectation under P. For p € [1, 00),
let (L7, |||l ;»)) denote the normed vector space of random

variables X : Q — R in L° for which || X||,, £ (E[|X|p])%
is finite. Further, we let (L*°,]||;~ ) denote the normed
vector space of random variables X : Q — R in L°, for
which, || X ||~ = inf{M € R:|X| < M as.} is finite. Let
p € [1,00) and let Z be a random vector such that each Z; is
F-measurable and has finite p'” moment. Then the LP-norm

1

of Z is defined by ||Z],, 2 (E[ HZHﬂ) v
Let ux and py denote the marginal distributions of
random vectors X and Y respectively. Let H(ux, pry)
denote the set of all joint distributions having ux
and puvy as the marginals. Then, for every p > 1,

1
P
9

Wolix, i) 2 (inf {[ ||z =yl n(da dy) =y € H})"”
denotes the p-Wasserstein distance associated with X and
Y. Note that vectors and random vectors are distinguished
from their scalar counterparts by the use of boldface fonts.

Throughout this paper, we shall use [ : R — R to
denote a continuous function that models a loss function, for
instance, of a financial position. Let & denote the space of
random variables X € L° for which the collection of random
variables {{(—X —¢) : t € R} is uniformly integrable.
With P being finite, uniform integrability implies that for
every X € A}, we have: sup,cg [, |I[(—X — t)|dP < oo.
While the integrability condition is not necessary for defining
UBSR, we have incorporated it into the definition of Aj.
This condition is used to characterize the UBSR as a unique
root of a decreasing function, and this characterization is
useful in the analysis of UBSR estimation and optimization
techniques. Note that L> C AX; holds for any continuous
function /. Under suitable assumptions on [, A; also con-
tains unbounded random variables. For example, choosing a
Lipschitz continuous loss function ! ensures that X} contains
all square-integrable random variables.

III. UBSR FOR UNBOUNDED RANDOM VARIABLES

Let X € X} denote the random variable representing the
payoff or utility, e.g., of a financial position. Formally, a
financial position is a mapping X : Q@ — R, where X (w)
is the net worth of the position after its realisation. Then,
—X denotes the loss incurred, and the UBSR is the smallest
amount to be added to X so that the expected loss is below a
certain acceptable threshold, say A. We formalize the notion
of UBSR [4] below.

Definition 1: With the loss function / and a given thresh-
old A € R, the risk measure UBSR of X € AX] is defined as
the function SR; ) : &7 — R, where

SR A (X) £ inf{t e RIE[I(—X —t)] < A}. (D)
Following [13], we define the acceptance set associated with
the UBSR risk measure as follows:

./41,)\ = {X e X : SRl,A(X) < O}. 2)

Observe that the set A; » contains all random variables X
whose expected loss E[I(—X)] does not exceed A.

As an example, with [(z) = exp(fz) and A = 1,
SR; »(X) is identical to the entropic risk measure [14],
which is a coherent risk measure and enjoys several advan-
tages over the standard risk measures VaR and CVaR. The
other popular choice is I(z) = %,, for = > 0 and 0 otherwise,
with p > 1.

A. Characterization of UBSR

We discuss the problem of quantifying the risk SRy x(X)
of a financial position X € A). To this end, we recall an
alternative characterization for SR; »(X). Consider a real-
valued function gx : R — R associated with the random
variable X as

gx(t) EE[I(-X —t)] — X 3)
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Note that SR; »(X), if it exists, is a root of gx (-). We now
introduce the following assumptions on X,/ and A\ under
which the existence and uniqueness of this root follows.

Assumption 1: There exists t,, ¢ € R such that gx (t,) <
0 and gx(t) > 0.

Assumption 2: The function ! is an increasing function
such that Vt € R, P(I'(—X —t) > 0) > 0.

Assumption 3: The function [ is continuously differen-

tiable, and the collection of random variables {I'(—X —t) :
t € R} is uniformly integrable.
The first assumption is required for the existence of UBSR,
while the other assumptions ensures that gx is strictly
decreasing, a property we exploit in UBSR estimation. The
last assumption is required for interchanging the derivative
and the expectation. Similar assumptions have been made in
the context of UBSR estimation in [11], [6] that also assume
that random variables have bounded support. In contrast, we
extend the analysis to unbounded random variables using an
added assumption of uniform integrability.

The result below establishes that UBSR is the unique root
of the function gx defined in eq. (3).

Proposition 3.1: Let Assumptions 1 to 3 hold. Then gx
is continuous and strictly decreasing, and the unique root of
gx coincides with SR »(X).

See [12, Appendix I] for the proof.

Remark 1: A similar result for bounded random variables
has been stated in [8, Proposition 4.104] under the assump-
tion that the loss function [ is convex and strictly increasing.
We generalize this to unbounded random variables. Unlike
[8], our proof does not require the convexity assumption,
and we relax the strictly increasing assumption by replacing
it with Assumption 2.

B. Wasserstein Distance Bounds on UBSR

We provide results for UBSR estimation and optimization
under two different assumptions on the underlying loss
functions. These assumptions are specified below.

Assumption 4: [ is Lq-Lipschitz, i.e., there exists L; > 0
such that for every z,y € R, |l(z) —I(y)| < L1 |z — y|.

Assumption 4': 1 is convex and Ly-smooth, and has sub-
linear derivative, i.e., there exist Ly > 0,a > 0 and b > 0
such that for every =,y € R, we have

) ~ 1) V@) -2 < 22, @)
b<l'(x) <alz|+b, (5)

where b simultaneously satisfies Assumption 5.

Using the assumptions above, we derive bounds on the
difference between the UBSR values of two random variables
X and Y. The bounds obtained are in terms of the 1-
Wasserstein and 2-Wasserstein distances between the cor-
responding marginal distributions px, gy . Under Assump-
tion 4, such a result has been obtained in [7]. We provide a
simpler proof which generalizes to both, Lipschitz and non-
Lipschitz loss functions. The Lipschitzness assumption im-
plies that the derivative is bounded, which is often restrictive.

Assumption 4’ relaxes this condition to allow for unbounded,
but sub-linear derivatives.

In addition, we require the following assumption for all
the results.

Assumption 5: There exists b > 0 such that for every
The result below provides a Wasserstein distance bound for
smooth loss functions. This bound will be used in Section
IV for establishing error bounds for UBSR estimation.

Lemma 1: Suppose Assumption 4’ and Assumption 5
hold, and there exists 7' > 0 such that || X|,. < T for
every X € &;. Then for every X,Y € X, we have

[SRiA(X) — SRiA(Y)]

< %WZQ(MXvuY) + %WQ(NX”U/Y), (6)
where a,b, Lo are as specified in assumptions 4 and 5. See
[12, Appendix I] for the proof.

In [7], the authors establish the following bound under
assumptions 4 and 5:

L
[SRIA(X) = SRA(Y)| < S Wilpx.py). ()

While the inequality above is useful for deriving bounds
for UBSR estimation, Assumption 4 is restrictive since it
excludes quadratic losses, which appear naturally in mean-
variance optimization. Assumption 4’ covers such loss func-
tions, and we bound UBSR difference between two distribu-
tions using the 2-Wasserstein distance in this case.

Next we briefly discuss the properties that are associated
with risk measures. These properties satisfy certain desirable,
investor preferences. Readers are referred to [8], [13] for a
detailed study.

C. Convexity of the UBSR Risk Measure

We define the notions of monetary and convex risk mea-
sures below [8]. To do so, we use X to denote an arbitrary
set of random variables.

Definition 2: A mapping p : X — R is called a monetary
measure of risk if it satisfies the following two conditions.

1) Monotonicity: For all X;, Xo € X such that X; < X,
a.s., we have p(X1) > p(Xa).
2) Cash invariance: For all X € X and m € R, we have
p(X +m) = p(X) —m.
Definition 3: A monetary risk measure p is convex if for
every X1, X5 € X, and « € [0, 1], the following holds:

plaXy + (1 - a)Xz) < ap(X1) + (1— a)p(Xa).  (®)

In this paper, we focus on UBSR, which is a convex risk
measure. Existing works [8] have shown that UBSR risk
measure is convex for the restricted case of bounded random
variables (X C L°). Using a novel proof technique in the
following proposition, we extend this convexity of UBSR to
unbounded random variables.

Proposition 3.2: Suppose Assumptions 1 to 3 hold for
[ and every X € AXj. Then SR;,(-) is a monetary risk
measure. In addition, if [ is also convex, then A; y is convex,
and SR; »(-) is a convex risk measure.
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See [12, Appendix I] for the proof. This result is useful in
showing that the problem of UBSR optimization falls under
the class of stochastic convex optimization problems.

IV. UBSR ESTIMATION

In this section, we discuss techniques to compute UBSR
for a given random variable X. In practice, the true distri-
bution of X is unavailable, and instead one relies on the
samples of X to estimate the UBSR. We use the sample
average approximation (SAA) technique [15] for UBSR
estimation of a random variable X € AX}. Such a scheme was
proposed and analyzed in [11]. We describe this estimation
scheme below. Recall that SR ;(X) is the solution to the
following stochastic problem:

minimize ¢, subject to E[I(—=X —t)] < A )

Since we do not have access to the true distribution of X,
instead of solving eq. (9) we use m i.i.d samples {Z;},
(also denoted as a random vector Z) from X to solve the
following problem to estimate SR ;(X):

1 m
minimize ¢, subjectto — Y I(=Z; —t) <A (10)
m =1

For m > 1, define the function SR,, : R™ — R as follows:

m

1
£ mj R|— —z;i —t) < .11
SRy (2) Zmin t € - ngl l(—z;—1t) <A (11)

Then, SR,,(Z) is the solution to eq. (10) and an estimator
of SR; »(X). For the analysis of this UBSR estimator, we
make the following assumption on the random variable X:
Assumption 6: 3¢ > 2,T > 0 such that || X, is finite
and || X, <T.
The result below presents error bounds for the UBSR esti-
mator SR, (Z).
Lemma 2: Let A,, & SR;\(X) — SR,.(Z). Suppose
Assumption 6 holds for ¢ > 4 and assumptions 4 and 5
hold. Then, we have

C
\/—%, and E [\Amﬂ < Nk
where C7 = % and Cy = 1085# respectively. See [12,
Appendix II] for the proof.
The result below is a variant of Lemma 2 that caters to
smooth loss functions.

Lemma 2': Suppose Assumption 6 holds for ¢ > 8 and
assumption 4’ and assumption 5 hold. Then we have

EflAn]] <

03 2 C’4
EHAm” < Wa and E [|Am| } < ﬁ7
where Cs = M and C; = (270/33‘2%, See

[12, Appendix II] for the proof.

The constants C1, ..., Cy appearing in the lemmas above
are derived based on a result in [16], and depend inversely
on ¢, i.e., assuming a higher moment bound leads to lower
constants. The conditions on ¢ in both lemma 2 and lemma 2'

are required to obtain a tight bound on the Wasserstein
distance between X and its empirical estimate Z. Interested
readers are referred to [16] for more details.

While computing SR,,,(Z) requires solving a convex op-
timization problem, a closed form expression is not available
for any given loss function. Instead, it is possible to obtain
an estimator within d-neighbourhood of SR,,(Z) for any
6 > 0 using bisection search. For details on the bisection
search algorithm, refer [12].

V. UBSR OPTIMIZATION

Let © C R? be a compact and convex set. Given a function
F : ©®xR — R and a random variable £, a standard
stochastic optimization algorithm deals with the problem
of minimizing E[F(0,¢)] using samples of either F(6,¢)
or VoF(0,§). Instead, we are interested in the problem of
minimizing the UBSR of F'(6,¢&), i.e., to find a

0* € argmin h(6), where h(0) = SR \(F(6,&)).
9e6

12)

In our setting, we can obtain samples of &, which can be used
to compute F(0,£) and VyF(0,£). Under the assumption
that for every 0 € ©,F(0,£) € X, we express h : © — R
as follows!:

h(0) = inf {t € R|E[I(—F(0,€) — )] < A}.

In the next section, we derive properties of UBSR and
establish conditions under which & is strongly convex.

A. Properties of UBSR

For deriving the UBSR gradient expression, we require
Assumptions 1 to 3 to hold for each random variable in
{F(6,¢) : 8 € ©}. For the remainder of the paper, whenever
any of these assumption holds, it is implied to hold for every
random variable in {F(0,£): 0 € ©}. We first define g :
R x © — R as follows:

g(t,0) £ E[(—F(6,€) — )] — A. (13)
Proposition 3.1 implies that for every 6§ € O, g(-,0) is
continuous, strictly decreasing, and has a unique root that
coincides with h(0), i.e., for every 8 € ©, g(h(0),6) = 0.

We require the result above to invoke the implicit function
theorem in the derivation of the UBSR gradient expression
in the following section.

The result below shows that A is strongly convex under
conditions similar to those in Proposition 3.2, except that
we impose a strong concavity requirement on F. These
assumptions are satisfied in the context of a mean-variance
portfolio optimization problem [12, Section VI-B].

Lemma 3: Let [ be convex and let F(-,£) be u-strongly
concave w.p. 1. Let Assumptions 1 to 3 hold, then h is p-
strongly convex.

IFor notational convenience, we suppress the dependency of I, X on h.
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B. UBSR gradient and its estimation

We require the following assumption for deriving the
UBSR gradient expression. A similar assumption has been
made earlier in [11], [6] in the context of bounded random
variables.

Assumption 7: F(-,£) is continuously differentiable al-
most surely.

We now present the main result that provides an expression
for the gradient of UBSR.

Theorem 5.1 (Gradient of UBSR): Suppose
Assumptions 1 to 3 and 7 hold. Then the function &
is continuously differentiable and the gradient of h can be
expressed as follows:

E[l/(~F(6,€) — h(0))VF(6,)]
E[V'(=F(0,€) - h(6))]

See [12, Appendix III] for the proof. Further, the function h

is Lipschitz, and we denote the associated Lipschitz constant

with Lj.

From eq. (14), it is apparent that an estimate of h(6) is
required to form an estimate for Vi(6). For estimating h(6),
we employ the scheme presented in Section IV. Suppressing
the dependency on [, A, we define the functions SRj' :
R™ — R and JJ* : R™ x R™ — R? as follows:

Vh(0) = — (14)

SRI(z) £ min{ ¢t € R ;ZA—F(&@) <Ay,
p
(15)
S [V F 0.2 - SRy @)VEG.2)

jo [(=F(0,2) — SRy (2))]

j=

Jy'(2,2) =
(16)

Given a § € ©, we use SRy'(-),Jy*(-,-) to estimate
h(0), Vh(0) respectively. If z, Z are constructed using i.i.d.
samples of ¢, then one can obtain tight bounds on the
estimation error, as derived in the following section. Note
that the double sampling from £ is necessary to avoid cross
terms and has been used previously in [6].

To derive error bounds for eq. (16), it is necessary to
bound the distance between UBSR estimate SRj* and the
true UBSR £(6). This bound can be obtained from Lemma 2
by replacing Assumption 6 with the Assumption 8 below. To
that end, we restate Lemma 2 as Lemma 4 below for the sake
of readability.

Assumption 8: There exists ¢ > 2 and T > 0 such that
for every 6 € ©, | F(6,€)]| . is finite and || F'(6,&)]|,;. <T.

Lemma 4 (UBSR estimation bounds): Suppose Assump-
tions 4, 5 and 8 hold and Z be an m-dimensional random
vector such that each Z; is an independent copy of £. Then,

BSRY (2) ~ MO < L. B [ISR(2) — o)) S(Cl”%

where C, Cs are given in Lemma 2.
We make the following assumptions on [’ and VF.

Assumption 9: Suppose p € [1,00] is such that the p*"
moments of F, VF exist and are finite, and there exists M >
0,Ly > 0,Ls > 0 such that for every § € O, we have
IVE(6,6)];» < M, and for every 61,60, € ©,

[£(61,8) — F(02,) 1o < La |1 — 62]],,,
[VF(61,8) = VF(02,8) 1 < Ls [|61 — b2]],, -
Similar assumptions have been made before in [6] for the
non-asymptotic analysis of UBSR optimization scheme. Un-
der these assumptions we establish that the objective function

h(-) is smooth in the next section.
We now derive error bounds on the gradient estimator J;",
under the following bounded variance assumption:
Assumption 10: There exist 01,00 > 0 such that the
following bounds hold for every § € © and i € {1,2,...,d}:

OF(9,¢)

00,

Var(I'(~F(6,€) - h(6))) < 3.
An assumption that bounds the variance of the gradient esti-
mate is common to the non-asymptotic analysis of stochastic
gradient algorithms, cf. [17], [18]. The assumption above is
made in a similar spirit, and the result below establishes
that the mean-squared error of the UBSR gradient estimate
eq. (16) vanishes asymptotically at a O(1/m) rate.

Lemma 5 (UBSR gradient estimator bounds): Suppose
Assumptions 1 to 5 and Assumptions 7 to 10 hold. Let
Z, 7 denote m-dimensional random vectors such that each
Z; and each Zj are i.i.d copies of &, and, Z and 7 are
independent. Then for every # € O, the gradient estimator
Ji(Z, 7)) defined in eq. (16) satisfies

Var(l'(—F(0,€) — h(9)) ) < o}

1>

E [HJ;“(Z,Z) - Vh(G)HJ < %,
and E U TMZ,7) — Vh(e)Hj < %,

201 L1 LoM+L d+M
where D; = 1Ly Lo Mt ;("“er %2) and Dy
8C, L2 L2M?+4L% (do?+M?52)

ba :

See [12, Appendix III] for the proof. The above result shows
that to get e-accurate gradient estimate in the RMSE sense,
one requires samples of the order of O(1/€?). A similar
proof leads to the MSE bound of the order O(1/y/m) for
non-Lipschitz loss functions, that involves invoking lemma 2'
instead of lemma 2.

C. SG Algorithm for UBSR optimization

In each iteration k of this algorithm, we sample my-
dimensional random vectors ZX, Z¥ that are independent of
one another and independent of the previous samples, such
that for every i € [1,2,...,my], ZF ~ &, ZF ~ €. For the SG
algorithm to optimize UBSR, one can perform the following

update with an arbitrarily chosen 6y € ©:
O = e (051 — apJ"), (18)

where Ilg(z) £ argmingeg ||z — 0|, denotes the operator
that projects onto the convex and compact set O.
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Let 7o = o0(fy) and for every £k € N, let F, =
o (90, VAN N /3 Zk). Then {F} x>0 forms the filtra-
tion that 6, is adapted to. Applying the independence lemma
from [19] with Lemma 5, we have Vk € N,

" H‘jg’nk(z) - Vh(‘gk—l)HJ]:k—l} < \/l:rlTM
- “’jp(z) - Vh@kﬂ”i‘fkl} < %

For the algorithm presented above, we derive non-asymptotic
bounds for two choices of the batch-sizes, namely constant
and increasing.

Theorem 5.2: Let Assumptions 1 to 5 and Assumptions 7
to 10 hold, and let h be p-strongly convex. Let 6* be the
minimizer of A(-) and let z, £ 0, — 0*. Let ay = 7, with ¢
satisfying 1 < pc < 3. If my = k, VEk, then

512¢2D2  450E || 20]|3 + 128¢2 Dy In(n)
+ ;
n+1 (n+1)2

2
Ellzallz <

where Dy = C1td)LiLaM ALy (01 Vdt Mas) g
= 4
Dy = 8(02+d?)LfL§sz-4Lf(dfrf-{—JV[?ag ‘

In addition, if mj; = m for all k, then we have

450E [[120]13] + 64¢ D,
(n+1)m

27)2
E [Jl] < 228
See [12, Appendix III] for the proof.
Corollary 5.1: Under conditions of Theorem 5.2, h is Lg-
smooth, and

E [A(6,) — h(0")] < Lok [0, — 0°]13] .

1+Ly(L3+Ly)
Lo M —_— +L:Ls5
where Lg = ( ) .

Remark 2: Asymptotic convergence rate of O(1/n) has
been derived earlier in [11] for the scalar UBSR optimization
case, but their result required a batchsize m > n for each
iteration. Our result not only establishes a non-asymptotic
bound of the same order, but also allows for an increasing
batchsize that does not depend on n. Table I summarizes the
convergence rates for different choices of batch-sizes.

Remark 3: For the case of a non-Lipschitz loss function,
we can obtain a non-asymptotic bound of O(1/4/n) by
replacing assumption 4 with assumption 4’. Owing to space
constraints, we omit the details.

Remark 4: The bound in Theorem 5.2 can be inferred for
the special case where the loss function is I(z) = exp (8z),
A = 1, and the underlying distribution is Gaussian. In this
case, UBSR reduces to the entropic risk measure, and the loss
function [ is neither strongly convex nor smooth. However,
using a closed-form expression of UBSR (see the portfolio
optimization example in Section VI-B of [12]), the strong
convexity and smoothness of i can be established directly.
Such strong convexity and smoothness results can be used to
arrive at a bound similar to that in Theorem 5.2 by employing
completely parallel arguments in the proof.

TABLE I
COMPLEXITY BOUNDS FOR UBSR-SG TO ENSURE
E[h(0n) — h(0%)] < e

[ Batchsize [ me=k | mp=nP ]
Iteration complexity O(1/e) O (l/e%>
Sample complexity || O (1/€2) | O (1/el+%>

VI. CONCLUSIONS

We lay the foundations for UBSR estimation and opti-
mization for the case of unbounded random variables. Our
contributions are appealing in financial applications such as
portfolio optimization as well as risk-sensitive reinforcement
learning. As future work, it would be interesting to (i) explore
UBSR optimization in the non-convex case; and ii) develop
Newton-based methods for UBSR optimization.
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