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Abstract— Various strategies with different objectives have
been proposed to control grid-connected photovoltaic (PV)
battery systems where electric vehicle (EV) batteries can be
used as stationary energy storage. As the first attempt to enable
aging-aware decision-making under various uncertainties, an
economically motivated stage cost function is proposed to
account for both the grid and the battery degradation cost.
Historical operational data and ”fixed” forecasted electricity
price data are utilized to improve the economic performance
of an implicit (or time-varying) optimal policy. Simulation
results show that an implicit optimal policy achieved better
economic performance (i.e., lowest grid and battery degradation
cost) with smaller fluctuation amplitudes than an explicit
one. Thus, to improve the aging-aware decision-making under
uncertainties for EV batteries further, the implicit optimal
policy will be further developed with consideration of other
forecasts.

I. INTRODUCTION

To further improve the energy efficiency of transportation
systems, reduce reliance on fossil fuels, and decrease carbon
emissions, the commercialization of xEVs (i.e., all types
of pure electric vehicles (BEVs), hybrid electric vehicles
(HEVs), and plug-in hybrid electric vehicles (PHEVs)) con-
tinues accelerating in the global market despite supply chain
disruptions, geopolitical uncertainty, and high energy prices
[1]. An increasing number of xEV batteries can be expected
to retire within an 8-10 year span after they reach the end
of their first lives in vehicles (typically 70–80% of initial
nominal capacity) [2]. At the same time, the necessary
and increasing penetration of renewable energy sources into
power systems requires urgent solutions to the variable
electricity generation that results from the intermittent nature
of renewable energy sources [3]. To address this, stationary
battery energy storage systems (BESS) have gained a lot of
interest due to their advantages of rapid response, and good
scalability [3]. However, safe and optimal usage of stationary
BESSs based on new and used xEV batteries still faces
challenges, particularly concerning decision-making under
different types of uncertainty [4] [5]. In residential grid-
connected photovoltaic (PV) battery systems, the uncertainty
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mainly arises from forecasts of load demand, PV power
production, electricity prices, and battery degradation.

In the literature, different strategies for controlling residen-
tial PV battery systems have been proposed with different
objectives. Two widely used rule-based strategies are the
maximizing self-consumption (MSC) strategy and the time-
of-use (ToU) strategy in which decisions are based on the
PV-load difference and the electricity price [6]. The rule-
based strategies are easy to implement but not capable of
addressing uncertainties arising from the various aforemen-
tioned sources. In contrast, model predictive control (MPC)
finds a feedback policy at each time instant by solving an
optimal control problem in a receding-horizon fashion, which
effectively reduces the impact of uncertainties [7]. For com-
putational reasons, simple models are often preferred in the
MPC scheme. As a result, the MPC-based solution is optimal
for the given model, but it is often suboptimal for the real
system having stochastic dynamics [8]. To address this issue,
recent studies attempt to combine reinforcement learning
(RL) and MPC in order to achieve economic optimality for
the real system while retaining stability guarantees [9] [10]
[11]. In practice, the MPC is used as a new type of function
approximator within RL to support the approximations of
the value function, action-value function, or policy [9]. RL
techniques can then be used to tune the parameters of MPC to
improve closed-loop performance [12]. However, the battery
degradation cost, which is expected to have a significant
impact on the economic feasibility of stationary BESSs based
on new or used batteries, has not been considered in the
aforementioned control strategies.

In this work, a residential grid-connected PV battery
system is investigated with an economically motivated stage
cost and stochastic dynamics. Specifically, our key results
and contributions are summarized as follows:

• An economically motivated stage cost function is pro-
posed to account for both the grid and the battery
degradation cost. Notably, the battery degradation that
accounts for both the calendar aging and cycling aging
of a battery is incorporated into aging-aware control
strategies for the first time.

• We demonstrate how information from the historical
operational data and ”fixed” forecasted electricity price
data can be utilized to improve the economic perfor-
mance of learned policies.

II. SYSTEM MODELING

The residential grid-connected photovoltaic (PV) battery
system typically consists of a PV generation unit and a bat-
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tery energy storage system (BESS). A general scheme of this
residential grid-connected PV battery system is illustrated in
Fig. 1. When PV production power is larger than the electric
load, residual energy is used to charge the battery or sold to
the grid. When PV production power is less than the electric
load, the battery discharges, or the electricity is bought from
the grid to satisfy the load demand.
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Fig. 1. A general scheme of the residential grid-connected PV battery
system.

A. Battery Dynamics

Typically, battery open circuit voltage (OCV) is a nonlin-
ear function of state-of-charge (SoC) and temperature. How-
ever, most BESSs are based on lithium iron ferrous phosphate
(LFP)/graphit batteries, which have a nearly constant OCV
for a wide range of SoC. Therefore, we assume that OCV
is constant for the chosen SoC window, then there is a
1:1 relationship between SoC and state-of-energy (SoE). A
simple BESS model is given by [4] [5]

dSoC

dt
=

1

Eb
(Pgrid + PPV − Pload)

·
{
η, if Pgrid + PPV − Pload > 0
1
η , otherwise

, (1)

where SoC ∈ [0, 1] denotes the battery state of charge,
Eb denotes the battery rated capacity in kWh, Pgrid ∈
[−P lim

grid, P
lim
grid] is the power traded with the grid in kW, PPV

is the power generated by the PV unit, Pload is the power
consumed by the household, and η is the battery round-trip
efficiency, which is assumed to be constant.

Discretizing system dynamics using a first-order method
with a sampling interval h = 1 hour gives the form

x(k + 1) = x(k) + (u(k) + w(k))

·
{
η, if u(k) + w(k) > 0
1
η , otherwise

(2)

with

x ≜ SoC, u ≜
h

Eb
Pgrid, ulim ≜

h

Eb
P lim
grid,

w ≜
h

Eb
(PPV − Pload),

(3)

where x ∈ [0, 1] is the SoC of the battery, u ∈ [−ulim, ulim]
is the control input that is the energy bought from (u >

0) or sold to (u < 0) the power grid normalized w.r.t. the
battery Eb, and w ∼ N (µ, σ2) is assumed to be Gaussian
disturbance that is the residual energy normalized w.r.t. the
battery Eb.

B. Battery Degradation

Battery degradation is a key cost driver during the op-
eration of PV battery systems, and therefore cannot be
neglected. Battery degradation consists of two parts, i.e.,
calendar aging and cycling aging. Calendar aging depends
on stress factors, such as storage time, SoC, and temperature,
while cycling aging depends on stress factors, such as tem-
perature, current rate (C-rate), depth-of-discharge (DoD), and
upper SoC operating limit [13]. The total battery degradation
is therefore often expressed by a semi-empirical model that
accounts for both calendar and cycling aging using the results
of accelerated aging tests.

In this work, we assume a solely time-dependent calendar
aging process as well as a charge throughput-dependent
cycling aging model [14]. Specifically, the calendar aging
at time step k is estimated as,

βcal(k) =
h

Lcal
. (4)

where Lcal is the number of years until the battery degrades
to its EoL at a constant storage temperature without cycling
aging. The cycling aging, which is assumed to depend on
charge throughput, at time step k is given by,

βcyc(k) = 0.5 · |Pb(k)| · h
Lcyc · Eb

, (5)

where Lcyc is the number of equivalent full cycles (EFCs)
until the battery reaches its end-of-life (EoL) without calen-
dar aging, and Pb is the battery charge or discharge power.
The factor 0.5 is to convert charge throughput to full cycle
counting. Then the total battery degradation at time step k,
using superposition is given by,

βtotal(k) = βcal(k) + βcyc(k) (6)

Accumulating the battery degradation up to a given time
step K, the total aging becomes

Ψtotal(K) =

K∑
k=1

βtotal(k). (7)

In practice, BESS manufacturers often specify a BESS’s
lifetime in both calendar lifetime in years (Lcal) and cycling
lifetime in EFCs (Lcyc) until the BESS reaches its end-of-
life (EoL). The calendar lifetime (Lcal) provides a reference
value for storage degradation to EoL at a constant storage
temperature, while the cycling lifetime (Lcyc) provides a
reference value for maximum charge throughput until EoL
is reached at a controlled DoD. Consequently, Ψtotal(K) =
0 corresponds to a fresh battery never cycled, whereas
Ψtotal(K) = 1 corresponds to a battery at its EoL. Battery
usage beyond the EoL threshold (i.e., Ψtotal(K) > 1) might
be allowed if the replacement threshold is below the EoL
threshold, as further discussed in the next section.
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Assuming that the EoL threshold is defined as 80%
of the battery’s rated capacity, which is commonly used
for automotive applications [14], the battery state-of-health
(SoH) at time step K can be expressed as

SoH(K) = 1− 0.2 ·Ψtotal(K). (8)

Hence, when the total battery degradation reaches 1 (i.e.,
Ψtotal(K) = 1), the SoH is equal to 0.8. The battery SoH
change at time step k can therefore be expressed as

∆SoH(k) = 0.2 · βtotal(k). (9)

III. PROBLEM FORMULATION

The objective for controlling residential grid-connected PV
battery systems can be summarized as finding an optimal
policy that minimizes the economic cost (i.e., grid cost and
battery degradation cost) of operating the system without
violating any constraints.

A. Cost Functions

This subsection presents economic stage cost functions,
i.e., the grid cost, the battery degradation cost, and the SoC
cost.

1) Grid Cost Function: The cost function that accounts
for selling electricity to or buying electricity from the grid
at time step k is given by

Lg(x(k), u(k)) =

{
σbuyu(k), if u(k) > 0
σsellu(k), otherwise

, (10)

where σbuy is the electricity buying price, σsell is the
electricity selling price, and it is assumed that σbuy ≥ σsell.
Note that the electricity prices are assumed to be fixed
in learning explicit optimal policies, but are forecasted in
learning implicit optimal policies.

2) Battery Degradation Cost Function: The cost function
that accounts for the battery degradation at time step k is
given by

Lb(x(k), u(k)) =
0.2 · βtotal(k)

1− α
· (cib + crb) · Eb, (11)

where α is the replacement threshold defined as 60% of
the battery rated capacity (i..e, α = 0.6), which is often
used for less-demanding stationary storage applications. cib
and crb denote the battery initial and replacement unit costs,
respectively. The maintenance cost within the battery lifetime
is negligible and therefore is not considered here [14] [15].

3) Battery SoC Cost Function: In order to prolong the
battery lifetime as much as possible, the cost function
penalizes the battery SoC if it is outside a specified SoC
window [SoCmin,SoCmax] with a factor c, i.e.,

Ls(x(k), u(k)) = c ·max(x(k)− SoCmax, 0) + c·
max(SoCmin − x(k), 0) (12)

4) Economic Stage Cost Function: Given the cost func-
tions with the different objectives stated above, the final
economic stage cost can be expressed

L(x(k), u(k)) = Lg(x(k), u(k)) + Lb(x(k), u(k))+

Ls(x(k), u(k)). (13)

Compared with other cost functions in the literature, our
proposed one not only accounts for grid cost and battery
degradation cost by penalizing buying electricity, charging
and discharging the battery, and violating a specific SoC win-
dow, but also is capable of incorporating future predictions,
such as ”fixed” forecasted electricity price data in the case
of learning implicit optimal policies.

B. Markov Decision Processes

In this subsection, we formulate an infinite-horizon
Markov Decision Process (MDP) which seeks a deterministic
explicit (or time-invariant) optimal policy, and a finite-
horizon MDP which seeks an implicit (or time-varying)
optimal policy.

1) Infinite-Horizon MDPs: Assuming that the electricity
prices are fixed in Eqn (10) and the disturbance (or nor-
malized residual energy) w in Eqn (2) is assumed to have a
Gaussian distribution (P(w)) with parameters estimated from
historical data. Then the deterministic explicit optimal policy
can be defined as

π∗ = argmin
π

E

[ ∞∑
k=0

γkL(x(k), u(k))|u(k) = π(x(k))

]
,

(14)
where γ ∈ (0, 1) is the discount factor, and the expected
value is taken over the Markov Chain distribution of state
trajectories under the policy π.

2) Finite-Horizon MDPs with electricity price forecasts:
Now, assuming that the electricity prices are forecasted for
the next 36 hours (N = 35) at 13:00 every day, and
the disturbance in Eqn (2) is assumed to be a conditional
probability distribution (P(w|H)) estimated using historical
data. Note that H ∈ {0, 1, . . . 23} is the hour in a day. Then
the deterministic implicit optimal policy can be defined as,

π∗ = argmin
π={π0,...πN}

E

[
T (x(N + 1)) +

N∑
k=0

γkL(x(k), u(k), σe(k))|u(k) = π(x(k), H(k))

]
, (15)

where T (x(N + 1)) = γN+1VN+1(x(N + 1)) accounts for
long-term electricity wholesale market prediction, and σe(k)
is the forecasted electricity buying or selling price at the
time step k. Note that the optimal infinite-horizon state-value
function is assigned for VN+1(x(N + 1)), and the implicit
optimal policy is computed at 13:00 every day when the
electricity spot prices are released for the next 36 hours.

The explicit optimal policy in Eqn (14) is solved by using
value iteration (also called dynamic programming) algorithm,
and the implicit optimal policy in Eqn (15) is solved by
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using policy iteration. With the discount factor γ < 1 (γ =
0.99 in this work), convergence to optimal explicit policy
is guaranteed for any finite starting V as stage costs are
bounded, but there is no ”convergence” for implicit (or time-
varying) policy as the state-value function V and implicit
policy π remain time-varying. The convergence proof of
value iteration and policy iteration can be found in Chapter
4.8 – Appendix: Mathematical Analysis of Reinforcement
Learning and Optimal Control by Dimitri Bertsekas [16]. A
stability theory for generalized MDPs has been proposed for
the undiscounted case in Ref. [17], and for the discounted
case in Ref. [18]. To guarantee rigorous stability in practice,
an alternative approach that enforces stability constraints in
discounted MDPs using MPC was proposed in Ref. [19]. We
will enforce specific stability constraints using MPC to our
discounted MDPs in the future.

IV. SIMULATION RESULTS

To validate the proposed strategy, approximately two-
year measurement data from a residential grid-connected PV
battery system for a housing association of 132 households
in Gothenburg, Sweden, is used for learning and then the
optimal policies are evaluated on another half-year data.
This residential PV battery system consists of a stationary
BESS that contains 14 lithium-ion battery packs retired from
electric buses and a PV generation unit. The specifications
of the stationary BESS are given in Table I, and other
system parameters are summarized in Table II. Moreover,
the economic parameters used in the simulation are given in
Table III.

TABLE I
SPECIFICATIONS OF THE LFP/GRAPHITE BATTERY USED IN THE

SIMULATION

Parameter Value Unit
Battery rated capacity (Eb) 200 kWh
Maximum charge/discharge power (P lim

b ) 70 kW
Battery round-trip efficiency (η) 96 %
SoC window (SoCmin − SoCmax) 20-85 %
Calendar life (Lcal) 13.5* years
Cycle life (Lcyc) 6000* EFC

* The values correspond to 80% of the battery rated capacity,
which is a typical EoL criterion for automotive applications.

TABLE II
OTHER SYSTEM PARAMETERS USED IN THE SIMULATION

Parameter Value Unit
PV peak power (Pmax

PV ) 170.8 kWp
Grid power limit (P lim

grid) 100 kW
Gaussian disturbance mean (µ) -0.2074* -
Gaussian disturbance standard deviation (σ) 0.10* -

* The values are estimated using the first two-year disturbance data.

The first two-year data (2021-06-07 16:00:00 - 2023-06-
08 15:00) is used for estimating the probability distribution
of the disturbance in Eqn (2), P(w) or P(w|H), and the

TABLE III
ECONOMIC PARAMETERS USED IN THE SIMULATION

Parameter Value Unit
Electricity selling price (σsell) 0.122 * EUR/kWh
Electricity buying price (σbuy) 0.178* EUR/kWh
Battery replacement threshold (α) 60 %
Battery initial unit cost (cib) 463** EUR/kWh
Battery replacement unit cost (crb ) 413** EUR/kWh
SoC penalty weight (c) 1 EUR

* The electricity prices include spot prices, taxes, and trans-
mission fees.
** The values are taken from Ref. [15].

remaining half-year data (2023-06-08 16:00:00 - 2023-12-31
23:00:00) is used for evaluating the performance of learned
explicit and implicit optimal policies.

A. Explicit Optimal Policy

In order to learn the explicit optimal policy, the disturbance
in Eqn (2) is assumed to be IDD Gaussian distribution (P(w))
and first estimated using the first two-year data. The resulting
parameters are given in Table II.

With the disturbance assumption (i.e., IDD Gaussian dis-
tribution) and the electricity price assumption (i.e., fixed),
the explicit optimal policy together with its corresponding
state-value function are illustrated in Fig. 2. Note that it
only takes 8 iterations until the policy converges (termination
criterion ||π∗−π||∞ ≤ 10−3). However, additional iterations
are needed for the state-value function to converge as well. It
can be observed from Fig. 2 that the optimal policy is to sell
electricity to the grid when the battery SoC is more than 90%,
buy electricity from the grid when the battery SoC is less than
75%, and stop trading with the grid when the battery SoC is
75-90 %. Correspondingly, the optimal state-value function
decreases monotonically with increasing battery SoC from
0% to about 85%, and then increases with the battery SoC
from 85% to 100%. In particular, the maximum value of the
optimal state-value function is achieved at x = 0, which can
be rationalized, since it is required to buy electricity from
the grid to charge the battery as its SoC is far below 20%,
and also satisfy possible residual load demand. The minimum
value of the optimal state-value function is achieved at about
x = 0.85, which can also be rationalized, i.e., no trading
with the grid translates to no grid cost, the battery SoC is
within the desired 20-85% window, and the battery can be
discharged to satisfy possible residual load demand.

Fig. 2. The explicit optimal policy and state-value function.
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The explicit optimal policy is then evaluated on the
remaining half-year data, and its resulting battery SoC as
a function of time is illustrated in Fig. 3. The initial battery
SoC is set to 50%, and it can be observed that the battery
SoC first increases to about 70% and then decreases to a
stochastic steady-state at about 20%. The explicit optimal
policy gradually pushes the battery SoC towards the lower
bound of the specified SoC window over the remaining
half year to guarantee availability for PV charge. Note that
the PV production power gets less and less when the time
approaches the end of the remaining half year (2023-12-
31 23:00:00) as the sunlight significantly decreases in the
winter. However, this long-term increase in demand has to
be satisfied by the grid.

Fig. 3. The battery SoC as a function of time under the explicit optimal
policy over the remaining half year.

B. Implicit Optimal Policy

In order to learn the implicit optimal policy, the distur-
bance in Eqn (2) is assumed to be a conditional probability
distribution (P(w|H)) estimated using the first two years of
data. The resulting distribution of P(w|H) is illustrated in
Fig. 4. It can be observed that the highest probability of
disturbance is between 00:00 - 06:00 during a day over the
first two years. It can be rationalized that there is almost
zero PV production and low but stable load demand at the
same time between 00:00-06:00 during the day. Therefore,
the residual energy (or disturbance after normalization) is
negative between 00:00 - 06:00. Moreover, it can also be
observed that there are positive disturbance values between
07:00 - 19:00 with its maximum value achieved at around
13:00 during the day over the first two years. It can also be
rationalized that the PV production peaks while load demand
is relatively low (residential case) at around 13:00. Therefore,
the residual energy achieves a maximum at around 13:00
during the day.

With the disturbance assumption (i.e., an empirical proba-
bility distribution) and the electricity price assumption (i.e.,
36 hours forecasted), the implicit optimal policy together
with its corresponding state-value function for the first 24
hours are illustrated in Fig. 5 and Fig. 6, respectively. Note
that the implicit policy is computed at 13:00 every day
for the next 36 hours. However, only the first 24 policies

Fig. 4. The probability distribution of disturbance (P(w|H)) estimated
using first two-year data in a 3D plot (left) and a top-down 2D plot (right).

are used before it is updated again as the new electricity
spot prices are released. It can be observed from Fig. 5
that given an hour in the day, the optimal policy is to buy
electricity from the grid when the battery SoC is lower
than around 40% and sell electricity to the grid when the
battery SoC is higher than around 80% throughout the day.
Interestingly, the battery SoC level that separates selling or
buying electricity decisions significantly shifts downwards
approximately between 09:00 - 17:00 during the day. The
significant downward shift is mainly contributed by the
peaking of PV production between 09:00 - 17:00 during the
day (see Fig. 4). Corresponding, the state-value function in
Fig. 6 indicates that given an hour in the day, higher values
are achieved when the battery SoC is higher than about 85%
or lower than about 20%, while given a battery SoC, lower
values are achieved at later hours.

Fig. 5. The implicit optimal policy for the first 24 hours in a 3D plot (left)
and a top-down 2D plot (right).

The implicit optimal policy is also evaluated on the
remaining half-year data, and its resulting battery SoC as
a function of time is illustrated in Fig. 7. The initial battery
SoC is set to 50% as well, and it can be observed that the
battery SoC first increases to about 70% and then decreases
to about 25%. The SoC dynamics under the implicit optimal
policy exhibit a similar long-term trend to that under the
explicit optimal policy but with smaller fluctuation ampli-
tudes (see Fig. 3) and less operation outside the desired SoC
window. In this regard, the implicit optimal policy performs
slightly better than the explicit one.

3505



Fig. 6. The state-value function of the implicit optimal policy for the first
24 hours in a 3D plot (left) and a top-down 2D plot (right).

Fig. 7. The battery SoC as a function of time under the implicit optimal
policy over the remaining half year.

C. Policy Economic Performance Evaluation

Lastly, we evaluate the economic performance of the
learned explicit and implicit optimal policies and then com-
pare them with that of the most commonly used strategy, i.e.,
the rule-based (MSC) strategy. Its basic principle is when PV
production is larger than the load demand, the residual energy
charges the battery first, and is then sold to the grid if there
is any left; when PV production is less than the load demand,
the battery discharges first to satisfy the load demand, and
then electricity will be bought from the grid if there is still
unsatisfied load demand [4]. The resulting economic cost
over the remaining half year is summarized in Table IV. The
total cost over the remaining half year is divided into the grid
cost calculated using Eqn (10) and the battery degradation
cost calculated using Eqn (11). The implicit optimal policy
achieves the lowest total cost (34779.9 EUR), while the rule-
based (MSC) strategy implemented in the residential PV
battery system achieves the highest total cost (44772.0 EUR)
over the half-year. Moreover, the rule-based (MSC) strategy
surprisingly achieves the lowest battery degradation cost,
accounting for only 0.86% degradation over the half year,
among all the control strategies. To investigate the reason
for this, the battery SoC as a function of time under the
rule-based (MSC) strategy over the half year is illustrated
in Fig. 8. It can be observed that the battery was not used
much compared to the explicit and implicit policies over the
half-year simulation. Under the rule-based (MSC) strategy,

the battery was quickly discharged first to satisfy the residual
demand and then its SoC was kept at the lower bound of the
desired SoC window (20-85%) most of the time during the
day, until the PV production peaks next time.

To summarize, with the disturbance assumption (i.e., an
empirical probability distribution) and the electricity price
assumption (i.e., forecasted), the implicit optimal policy
achieves the best economic performance (i.e., lowest grid and
battery degradation cost) with smaller fluctuation amplitudes
than the explicit optimal policy over the half-year simula-
tion. Although the rule-based (MSC) strategy accidentally
achieves the lowest battery degradation cost in the residential
PV battery system under this study, it was found out that
the battery was much less actively used under the rule-
based (MSC) strategy, which cannot be generalized as normal
operation of other PV battery systems. Moreover, the MSC
strategy is solely based on the residual energy without
the capability of addressing various uncertainties in grid-
connected PV battery systems.

Fig. 8. The battery SoC as a function of time under the rule-based (MSC)
strategy over the remaining half year.

V. CONCLUSION

As the first attempt to develop aging-aware control strate-
gies with consideration of various uncertainties in grid-
connected photovoltaic battery systems, an economically
motivated stage cost function was proposed to account for
both the grid and the battery degradation cost. The proba-
bility distribution of the disturbance (or normalized residual
energy) was first estimated using the first two years of data
with different assumptions, i.e., Gaussian distribution and
empirical distribution. The implicit optimal policy achieved
the best economic performance (i.e., the lowest grid and
battery degradation cost) with smaller fluctuations than the
explicit one in the remaining half-year simulation, as it con-
sidered both historical disturbance information w.r.t. hour of
the day and ”fixed” forecasted electricity price information.

Although the battery degradation model used in this work
includes both calendar and cycling aging, it is still relatively
simple and does not consider battery capacity knee occur-
rence, for example, which is expected to have a significant
impact on the economic performance of control strategies.
Moreover, only the ”fixed” electricity price forecasts are
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TABLE IV
ECONOMIC PERFORMANCE EVALUATION OVER THE REMAINING HALF YEAR

Control strategy
Disturbance
assumption

Electricity price
assumption

Grid cost
(EUR)

Battery degradation
(%)

Battery degradation cost
(EUR)

Total cost
(EUR)

Rule-based (MSC)* - - 32822.0 2.50 10950.0 44772.0
Rule-based (MSC) - - 31516.5 0.86 3748.8 35265.3
Explicit Gaussian Fixed 30548.5 1.25 5467.0 36015.4
Implicit Empirical Forecasted 29300.4 1.25 5479.4 34779.9

* The realistic maximizing self-consumption (MSC) strategy implemented in the residential PV battery system under study.

incorporated into the Markov Decision Processes (MDPs)
formulation. The forecasts for other variables, such as load
demand and renewable energy production are expected to
improve the economic performance of learned optimal poli-
cies. Lastly, we will also enforce constraints in discounted
MDPs so that the resulting policy is stabilizing.
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