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Abstract— Maglev trains are levitated by magnetic forces to
maintain a desired air gap between gudieway and magnets.
Although every two magnets are mechanically coupled via a
levitation bogie, the existing controllers are usually designed
only for each individual magnet, which may result in unstable
air gaps or levitation failures. Differently, this paper proposes
an adaptive safe backstepping scheme to collaboratively control
two magnets of the same bogie. In particular, safety constraints
are introduced to adaptive backstepping control via quadratic
programs, which ensures the air gap within a permissible
range and significantly reduces overshoots. Finally, simulation
results validate the effectiveness of the proposed collaborative
controller.

I. INTRODUCTION

Maglev trains have received great attention due to the
superiorities of less noise, less friction, minor wear and low-
cost maintenance [1]–[3]. In China, maglev train lines have
been operated for decades, yet there are still some operational
issues, including physical contact between the guideway
and magnets as well as levitation failure, which reduce
operational efficiency and pose a threat to operational safety
[4]–[7]. These issues are closely relevant to the levitation
control systems.

Levitation control is one of the crucial aspects of maglev
technology. Regarding levitation controller implementation,
proportional-integral-differential (PID) controllers are still
the preferred option in commercial maglev trains due to their
simple control structure [8], [9]. However, the individual PID
control for each levitation point makes it difficult to satisfy
the needs for coupled points’ collaboration, since every two
points on the same side are mechanically coupled [10].
Moreover, passengers getting on and off change the levitation
load, and PID control with fixed parameters also cannot
satisfy the mass variation of maglev trains. It deteriorates the
levitation capabilities and may even cause physical contact
or levitation failure. To compensate for the deficiency of
PID with fixed parameters, some researchers focused on PID
parameter tuning. For instance, Zhao et al. [11] adopted deep
reinforcement learning technology to learn the real dataset
and search for the optimal PID control gains and ensure the
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control stability of levitation systems. Zhang et al. [12] ap-
plied the stochastic approximation method to adjust the PID
gains and conducted experimental verifications. However, it
is hard to ensure the safety constraints of levitation systems
with PID control, especially when the mass varies.

Motivated by the above observation, we propose a novel
adaptive collaborative control law for the two coupled lev-
itation points of maglev trains with unknown passenger
loads. Because levitation control systems are typically safety-
critical systems, they require a controlled levitation gap
within a permissible range. However, there is limited scope
for adjustment as the maximum gap range is only 0-20mm.
This makes it susceptible to potential physical contact or
levitation failure due to excessive regulation as passengers
enter or exit the train.

Control barrier function (CBF) is a powerful tool to tackle
control constraints and ensures system safety [13], which
has been applied in a wide range of safety-critical systems,
including adaptive cruise control [14], traffic merging [15]
and bipedal robotic systems [16]. Inspired by the ideas of
adaptive CBF [17], [18] and safe backstepping [19], the au-
thors synthesize a novel adaptive law and safe backstepping
CBF to formulate a novel levitation controller, which not
only addresses coupled points collaboration of maglev trains
with varying mass, but also guarantees the controlled error in
a pleasant range. Moreover, the adaptive safe backstepping
CBF significantly decreases the complexity of the design pro-
cess rather than establishing a high-order CBF to guarantee
the safety of the mutual coupling points.

The safe adaptive collaborative control enjoys two advan-
tages: (a) it achieves the collaboration of the two levitation
points considering mass variation; (b) it mediates the tracking
performance and the controlled error constraints to guarantee
the levitation errors within the practical levitation range if
the mass changes, which avoid potential operational safety
issues.

The remainder of this paper is given as follows. In Section
II, the model of the coupled levitation system is described.
Section III proposes the adaptive safe collaboration control
based on backstepping. The effectiveness of the proposed
scheme is verified through simulations in Section IV and
conclusions are drawn in Section V.

II. THE MODEL OF COUPLED LEVITATION SYSTEM

Individual control for single levitation point degrades the
control performance due to the strongly coupled structure.
The coupled levitation system of maglev trains is shown in
Fig. 1. The coupled levitation points require to be levitated
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collaboratively. In order to address two coupled electromag-
nets, we establish a new model for the two suspension points
according to the mechanical structures, which fully reflects
the rigid connection. The dynamics of two levitation points
on the same side will be illustrated as follows.

To facilitate the system formulation and controller design,
the following assumptions are adopted.

Assumption 1: The length between two coupled electro-
magnets is much larger than the levitation distances [20],
i.e., l ≫ max{δ1(t), δ2(t)}.

Remark 1: In real-world structure, the length of the
connected structure is at the meter level, about 3m, while
the controlled levitation distances are at the millimeter level,
8-10mm. It is verified in [10] that Assumption 1 is rea-
sonable and practical. Furthermore, Assumption 1 indicates
the following approximation equations cos θ(t) ≈ 1, θ(t) ≈
sin θ(t) = (δ2 − δ1)/l, where θ(t) denote the pitch angle of
the module around its centroid.

Assumption 2: The mass of the levitation system is
piecewise constant.

Remark 2: The mass of an operational maglev train
keeps constant between stations and only changes when
passengers get on or off in the station.

Denote the vertical displacement of the centroid between
two electromagnets by ds0(t), then the positions of the
electromagnets A and B are expressed as

δ1(t) = ds0(t) +
l

2
θ(t), (1a)

δ2(t) = ds0(t) −
l

2
θ(t). (1b)

According to Newton’s second law and Euler’s equation,
the vertical and rotational dynamics are given as:

Md̈s0(t) =Mg − Fmag1(t)− Fmag2(t), (2)

Jθ̈(t) =
l

2
(Fmag2(t))− Fmag1(t)), (3)

where M and g are the suspended mass and gravity ac-
celeration, respectively; Fmag1(t) and Fmag2(t) denote the
levitation forces of point A and B, respectively; J =Ml2/12
is the rotary inertia of the levitation module around its
centroid. From (1)-(3), we have

Mδ̈1(t) =Mg − λ1Fmag1(t) + λ2Fmag2(t), (4a)

Mδ̈2(t) =Mg + λ2Fmag1(t)− λ1Fmag2(t), (4b)

where λ1 =Ml2/(4J) + 1 and λ2 =Ml2/(4J)− 1.
The magnetic forces generated by exciting currents are

Fmag1(t) =
kai

2
1(t)

δ21(t)
, Fmag2(t) =

kai
2
2(t)

δ22(t)
, (5)

where i1(t) and i2(t) denote the exciting currents of point A
and B, respectively; ka = µ0AN

2/4; µ0, A and N denote
the permeability of air, the magnet pole area, the number of
turns of the coil.

Now, the dynamics of the coupled levitation system is
rewritten as first-order differential equations as (6). The

Fig. 1. A simplified diagram of coupled levitation systems.

control input of two levitation points is mutually coupled. If
one levitation point adapts the control input, the other point
is influenced.

ż11 = z21, (6a)

ż21 = g − 4
ka
M

u1
z211

+ 2
ka
M

u2
z212

, (6b)

ż12 = z22, (6c)

ż22 = g + 2
ka
M

u1
z211

− 4
ka
M

u2
z212

. (6d)

where δ1(t) and δ̇1(t) are the system states z11(t) and z21(t)
of point A. Similarly, δ2(t) and δ̇2(t) are the system states
z12(t) and z22(t) of point B. Choose i21(t) and i22(t) as the
control inputs u1(t) and u2(t), respectively. To facilitate the
presentation, the time dependence will be omitted in the
following without causing confusion. Meanwhile, the control
inputs u1 and u2 satisfies the following constraint:

0 ≤ uj ≤ i2max, j = 1, 2, (7)

where imax is the maximum of the permissible control
current.

Additionally, the controlled levitation distance for each
point needs to satisfy the constraint condition as follows:

|z11 − zr| ≤ ϵmin,

|z12 − zr| ≤ ϵmin, (8)

where zr is the desired levitation distance and ϵmin is the
maximal permissible controlled error bound, which is a
practical need for levitation systems for operational speci-
fications.

Remark 3: The coupled levitation system is a typical
two-input-two-output system with mutually coupled dynam-
ics, which calls for the collaboration of both two inputs and
causes difficulties in controller design to maintain a safe
levitation distance in a small adjustment space.
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III. ADAPTIVE SAFE COLLABORATION DESIGN BASED
ON BACKTEPPING

The purpose of this paper is to design an adaptive safe
backstepping levitation controller to regulate the levitation
distance between the electromagnets and guideways with
unknown mass. The superiorities of the proposed controller
at least include:

(a) The unknown mass, consisting of the bogie frame,
the cabin and the passengers getting on and off, can be
addressed, which enables the train to be levitated stably when
the mass changes.

(b) The controller ensures the levitation tracking errors are
within the permissible range when the parameter uncertainty
exists in the system, avoiding physical contact between the
guideway and magnets or levitation failure.

This section first proposes an adaptive collaborative con-
troller based on backstepping to achieve the collaboration of
the mutually coupled electromagnets without mass knowl-
edge. Based on this controller, adaptive safe backstepping is
formulated to construct safe constraints for electromagnets
collaboration. To achieve the objective of this paper, the
collaborative controller and safe constraints are synthesized
by a quadratic program.

A. Adaptive Collaborative Control

In the following, we establish the collaborative controller
for the coupled electromagnets via backstepping. To address
the unknown mass, we construct a novel Lyapunov function
and give the adaptive law.

Define the errors and virtual errors of the two levitation
points as follows:

e1j = z1j − zr,

e2j = z2j − α1j , (9)

where zr is the desired levitation distance, j = 1, 2 is the
notation of levitation points. α1j is the virtual control law
for the j-th levitation point.

Step 1: The Lyapunov function is chosen as follows:

V1 =
2∑

j=1

1

2
e21j , (10)

Differentiating both sides of V1, we have

V̇1 =

2∑
j=1

e1j ė1j =

2∑
j=1

e1j(α1j + e2j), (11)

Design the virtual control law as

α1j = ᾱ1j = −k1e1j , (12)

where k1 > 0 is the control parameter. Then, one has V̇1 =
−2k1V1.

Step 2: Choose the Lyapunov function as follows:

V2 = V1 +

2∑
j=1

1

2
Mz211z

2
12e

2
2j +

1

2Γl
M̃l

2
, (13)

where M̃l = M̂l−M is the estimation error of the unknown
mass, Γl is the adaptive gain to be designed. Differentiating
both sides of V2, we have

V̇2 = V̇1 +

2∑
j=1

Mz211z
2
12e2j ė2j +

2∑
j=1

Mz11z21z
2
12e

2
2j

+

2∑
j=1

Mz211z12z22e
2
2j +

1

Γl
M̃l

˙̂
Ml

= −2k1V1 +

2∑
j=1

Mz211z
2
12e2j

(
g − 4

ka
M

uj
z21j

+ 2
ka
M

u3−j

z21(3−j)

− α̇1

)
+

2∑
j=1

M(z11z21z
2
12 + z211z12z22)e

2
2j +

1

Γl
M̃l

˙̂
Ml

= −2k1V1 +

2∑
j=1

e2j(−4kaz
2
1(3−j)uj + 2kaz

2
1ju3−j)

+M

2∑
j=1

βj +
1

Γl
M̃l

˙̂
Ml, (14)

where βj = z211z
2
12e2j(g− α̇1)+(z11z21z

2
12+z

2
11z12z22)e

2
2j .

Design the adaptive law as follows:

˙̂
Ml = Γl

2∑
j=1

βj . (15)

Design the adaptive collaborative controller respectively
for levitation point A and B as

ua1 = −Φ1 + 2Φ2

6kaz211
,

ua2 = −2Φ1 +Φ2

6kaz212
, (16)

where

Φ1 = −k2e21 − e11 + M̂lz
2
11z

2
12(α̇11 − g)

− M̂lz
2
11z21z

2
12e21 − M̂lz

2
11z12z22e21,

Φ2 = −k2e22 − e12 + M̂lz
2
11z

2
12(α̇21 − g)

− M̂lz
2
11z21z

2
12e22 − M̂lz

2
11z12z22e22,

with k2 > 0 is the control parameter.
Let u1 and u2 be ua1 and ua2, respectively. V̇2 is trans-

formed into:

V̇2 = −k2
2∑

j=1

e22j − k1

2∑
j=1

e21j

≤ −kV2, (17)

where k = min{2k1, 2k2}.
Hence, the control inputs ua1 and ua2 collaborates through

Φ1 and Φ2 and achieve asymptotic stability of both levitation
points. We refer to the inputs ua1 and ua2 as the nominal
controller in the following section.
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B. Adaptive Safe Collaboration

To maintain the levitation error of each levitation point
within a permissible range, we propose adaptive safe back-
stepping and establish safe constraints for the levitation
points based on the previous adaptive collaborative design.
The main result is presented in Theorem 1, which illustrates
the invariance of the permissible levitation range.

Denote the maximal permissible levitation error by ϵmin.
Before establishing the constraints w.r.t. input u1 and u2, we
first introduce a modification term εj into the virtual law as

α1j = ᾱ1j + εj . (18)

The function of εj is a compromise between the adaptive
tracking and safe constraints. Meanwhile, a relaxation term
ηjψj(ej) is added to the derivative of Lyapunov function
V̇1, i.e., V̇1 ≤ −2k1V1+

∑2
j=1 ηjψ(ej), where ηj is a design

parameter and the bump function ψ refers to [21]. Therefore,
the modification term εj should satisfy

2∑
j=1

e1jεj ≤
2∑

j=1

ηjψj(e1j). (19)

Rather than constructing a direct high-order CBF, we
design two CBFs respectively for each order of the system
to guarantee tracking errors of both points within ϵmin. The
CBFs are constructed as follows

h1j = ϵ2min − e21j , (20)

h2j = h1j −
1

2µ
Mz211z

2
12e

2
2j −

1

2Γb
M̃b

2
, (21)

where M̃b = M̂b −M , M̂b is the estimation of M for safe
constraints.

Theorem 1: Consider system (6). Assume Assumptions
1 and 2 hold, and h1j(0) > 0 and h2j(0) > 0. Given the
adaptive law

˙̂
Mb =

Γb

µ
βj , (22)

and εj satisfying

2e1jεj ≤ γh1j + 2k1e
2
1j , (23)

and the controller satisfying

u ∈ Sb = {u ∈ R2|2ka
µ
e2jbju ≤ Ξj}, (24)

where γ > 0 is a design parameter, u =
[
u1 u2

]T
, b1 =[

−2z212 z211
]
, b2 =

[
z212 −2z211

]
, and

Ξj = γ(h1j −
1

2µ
(M̂b +

¯̃Mb)z
2
11z

2
12e

2
2j −

1

2Γb

¯̃M2
b )

− 2e1jz2j −
1

µ
M̂bβj ,

¯̃Mb is the estimation error bound of M , both levitation points
will never violate the maximal permissible levitation errors.

Proof: Differentiating (20) gets

ḣ1j = −2e1j ė1j = −2e1jz2j . (25)

In the backstepping process, z2j is designed to track α1j .
When z2j = α1j , one has

ḣ1j = −2e1j(−k1e1j + εj), (26)

Because the modification term εj satisfies (23), it further gets

ḣ1j ≥ −γh1j , (27)

Moreover, the derivative of (21) is

ḣ2j = ḣ1j −
1

µ
e2j ė2j −

1

µ
M(z11z21z

2
12 + z211z12z22)e

2
2j

− 1

Γb
M̃b

˙̂
Mb

= ḣ1j −
1

µ
e2jMz211z

2
12(g − 4

ka
M

uj
z21j

+ 2
ka
M

u3−j

z21(3−j)

− α̇1j)−
1

µ
M(z11z21z

2
12 + z211z12z22)e

2
2j −

1

Γb
M̃b

˙̂
Mb

= ḣ1j +
4ka
µ
e2jz

2
1(3−j)uj −

2ka
µ
e2jz

2
1ju3−j

− 1

µ
e2jMβj −

1

Γb
M̃b

˙̂
Mb. (28)

Substituting (22) into (30), it comes to

ḣ2j = ḣ1j +
4ka
µ
e2jz

2
1(3−j)uj −

2ka
µ
e2jz

2
1ju3−j

− 1

µ
e2jM̂bβj . (29)

Since u ∈ Sb, we have

ḣ2j ≥ −γ
(
h1j −

1

2µ
(M̂b +

¯̃Mb)z
2
11z

2
12e

2
2j −

1

2Γb

¯̃M2
b

)
≥ −γh2j . (30)

Using Definition 3 in [13], it can be concluded that h2j is
a control barrier function, and (27) and (30) imply h1j > 0
and h2j > 0.

Remark 4: The selection of εj can be calculated by
Gaussian weighted centroid functions in [19] to get smooth
values.

Remark 5: Set membership identification provides a
method to estimate the range of unknown parameters, which
is monotonously decreasing. Projecting M̂b on the converg-
ing range gets the estimation of bound ¯̃Mb.

C. Adaptive Safe Synthesis

To achieve asymptotic stability of both levitation points in
the safe sense, it necessitates the synthesis of the adaptive
collaborative controller and safe set given in Theorem 1.
The optimization-based controller is synthesized through a
quadratic program as follows:

u∗ = argmin
u∈R2

∥u− ua∥2 (31)

s.t. 2ka

µ e2jbju ≤ Ξj , j = 1, 2,

0 ≤ uj ≤ i2max, j = 1, 2,
(32)

where ua =
[
ua1 ua2

]T
.
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After the optimization, adaptive safe control for the cou-
pled electromagnets is achieved by deviating from ua with
the minimal distance and satisfying the safe set.

IV. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed control
for collaborative contol of maglev trains considering un-
known mass variation, a series of simulations are conducted.
The parameters of maglev trains are N = 320, A =
0.0235m2, M = 1750kg, µ0 = 4π×10−7, g = 9.8m/s2 and
l = 3.1m. The desired levitation distance is set to 10mm.
The initial conditions of two levitation points are set to
z11 = 0.007m, z21 = 0m/s, z12 = 0.013m and z22 = 0m/s.

To verify the proposed adaptive safe collaboration strategy,
the adaptive collaborative control are conducted for compar-
ison. The parameters of both controllers are presented in
Table I. The permissible controlled error comforms to the
practical constraints, i.e., ϵmin = 0.004m. If the controlled
error exceeds ϵmin, it may cause physical contact or levitation
failure.

TABLE I
CONTROLLER PARAMETERS

Adaptive Safe Collaboration
Parameters γ η1 η2 µ Γb

Value 20 100 100 80000 0.005
Adaptive Collaborative Control

Parameters k1 k2 Γl – –
Value 10 50000 0.000005 – –

Fig. 2 presents the levitation distance evolution of the two
mutually coupled suspension points with the mass variation
under two control schemes. In the transient process, the
adaptive safe collaboration strategy maintains the levitation
distance of both points, while the adaptive collaborative
controller exceeds the permissible error range. When the
system mass increase by 1000kg, the former controller
approaches the error boundary but the proposed safe one
keeps away from the boundary. Unfortunately, when the
mass decrease to 1250kg, the former one fails to sustain the
stability. Clearly, the proposed adaptive safe collaboration
strategy outperforms a pure adaptive collaborative controller
in addressing mutually coupled electromagnets.

From Fig. 3, the adaptive safe collaboration control outputs
a stable current when the mass changes, while the input
signal of the adaptive collaborative controller presents drastic
changes and even cannot sustain stability.

Fig. 4 depicts the evolution of the control barrier function
for two levitation points. It shows that h1j ≥ 0 holds
under the adaptive safe controller, while the pure adaptive
collaborative control cannot satisfy this condition.

Fig. 5 shows that the estimated boundaries of the system
mass for the control barrier function via set membership
identification.

V. CONCLUSIONS

Considering that the levitation system of maglev trains
is mutually coupled and safety-critical, we have proposed
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an adaptive safe collaboration control strategy under system
mass variation. In the beginning, a model for two coupled
electromagnets has been formulated with practical con-
straints. To address adaptive collaboration, we have proposed
a novel adaptive collaborative control by constructing a novel
Lyapunov function and an adaptive law for the unknown
mass. Then, a control barrier function based on adaptive
safe backstepping is newly built to derive a safe set for
control inputs thus ensuring the controller errors are within
the permissible range. To achieve the goals of asymptotic
stability and safety of the coulpled levitation system, a QP
is formulated to synthesize the control. Comparative simula-
tion results demonstrate that the adaptive safe collaboration
outperforms the pure adaptive collaborative controller for the
mutually coupled system.
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