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Abstract— The paper studies discrete-time statistical filtering
problems with the goal to minimize expected total costs. Such
problems are usually defined by pairs of stochastic equations
and by one-step cost functions. Stochastic equations describe the
state and observation processes, and these equations are defined
by transition and observation functions. This paper provides
sufficient conditions on observation, transition, and one-step
cost functions for convergence of value-iteration algorithms for
problems with finite and infinite horizons. It is well-known that
nonlinear and linear filtering problems can be presented as
Partially Observable Markov Decision Processes (POMDPs).
The paper applies contemporary results on convergence of
value iterations for Markov Decision Processes (MDPs) and
for POMDPs to filtering problems. It formulates conditions
on observation and transition functions which imply weak
continuity of the filter. Weak continuity of the filter means
weak continuity of transition probabilities between belief states.
The sufficient condition on one-step functions is their K-inf-
compactness. The described conditions hold for broad classes
of nonlinear filters and for Kalman filters.

I. INTRODUCTION

This paper provides conditions for weak continuity of
filters for discrete-time nonlinear control systems defined by
stochastic equations. It is known that discrete-time problems
with incomplete information can be reduced to belief-MDPs,
whose states are posterior probabilities of the original states.
These probabilities are defined by filtering equations, which
are equivalent to transition probabilities between belief states
in belief-MDPs [14, pp. 86,87]. Karman’s filter is an algo-
rithm implementing filtering equations for linear Gaussinan
problems. Thus the transition probability for a belief-MDP
is a filter, and weak continuity of a filter means weak conti-
nuity of the transition probability for the belief-MDP. Weak
continuity of a filter and the appropriate conditions on one-
step costs imply the existence of optimal policies, validity
of optimality equations, and convergence of value iterations
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for problems with expected total costs. The analysis in this
paper is based on recently developed sufficient conditions for
weak continuity of filters in stochastic control problems with
incomplete information defined by transition and observation
kernels; [11], [12], [13] and [15].

Controlled models with incomplete information can be
defined either by stochastic equations or by transition and
observation kernels. These two approaches are equivalent;
see Aumann’s lemma (Theorem 2 below). The natural way
to find optimal policies for POMDPs is to reduce the ini-
tial problem to a belief-MDP, with states being posterior
probability distributions of the original states. If an optimal
policy for the belied-MDP is found, then it can be used
to construct an optimal policy for the initial problem that
minimizes the expected total discounted costs [4], [6], [14].
References [1], [2], [6], and [23] introduced this approach
for problems with finite state, observation, and action spaces.
Reference [20] extended it to problems with countable state
spaces, and references [18] and [25] developed the theory
for Borel state spaces. In an important well-studied and
relatively simple case of linear systems with Gaussian noise,
the corresponding stochastic processes are Gaussian, and
they are defined by mean vectors and covariance matrices,
and the Kalman filter completely characterizes transition
probabilities.

In general, the existence of optimal policies for statistical
filtering problems is a nontrivial question even in the case
of expected total costs. For MDPs with expected total costs
the existence of optimal policies and the validity of other
important properties, including the existence of solutions to
optimality equations and convergence of value iterations,
follow from continuity properties of the transition kernel
and one-step costs. For MDPs with compact action sets, the
corresponding properties are weak continuity of transition
kernels and lower semicontinuity of one-step costs; see [21],
[22]. For MDPs with possibly noncompact action sets, the
corresponding properties are weak continuity of transition
kernels and K-inf-compactness of one-step costs; see [10],
[11] for details. There is also a parallel theory for MDPs with
setwise continuous transition probabilities, including [21],
[22] and [9], but so far it has not found applications to
problems with incomplete observations.

While lower semicontinuity and K-inf-compactness of
one-step cost functions are preserved by the reduction of a
POMDP to the belief-MDP, weak continuity of the transition
kernel may not be preserved [11, Theorem 3.3, Lemma
2.1, and Examples 4.2 and 4.3]. For a long time, sufficient
conditions for weak continuity of filters were unavailable.

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy 

979-8-3503-1632-2/24/$31.00 ©2024 IEEE 4052



Monographs [14, pp. 90-93] and [19, Section 2] introduced
some particular conditions assuming, among other condi-
tions, weak continuity of transition kernels and continuity
in total variation of the observation kernels. Reference [11]
proved that these two conditions imply weak continuity
of filters. Reference [15] provides another proof of this
fact and proved that continuity of the transition kernel is
sufficient if the observation kernel does not depend on ob-
servations. References [12], [13] introduced the notion of
semi-uniform Feller transition probabilities and showed that
this property is preserved when a problem with incomplete
observations is reduced to a belief-MDP, and this is also
true for more general problems with incomplete information
than POMDPs. This property implies weak continuity of the
filter. In particular, these facts provide another proof that
weak continuity of the transition kernel and continuity of
the observation kernels imply weak continuity of the filter.
They also imply that, if the transition kernel is continuous
in total variation and the observation kernel is continuous
in total variation in the control parameter, then the filter is
weakly continuous.

This paper describes sufficient conditions on the transition
and observation stochastic equations defining the dynamics
of the system for weak continuity of the filter. Such con-
ditions were considered in [11, Section 8.1] for problems
with real-valued states, observations, and noises. This paper
presents stronger results for problems with more general
state, observation, and noise spaces. Relevant equations have
been studied in [14], [16], [5] and in publications dealing
with particular problems and applications.

This paper is organized as follows. Section II introduces
mathematical notation and definitions. Section III formu-
lates the main problem, introduces assumptions, and states
Theorem 1, which is the main result of this paper. Sec-
tion IV explains the equivalence between processes defined
by stochastic equations and by stochastic kernels (Theorem 2
which was originally introduced by Aumann [3, Lemma
F]) and provides criteria and sufficient conditions for weak
continuity and for continuity in total variation of stochastic
kernels defined by equations (Theorems 3 and 4). Section V
discusses some applications.

The assumptions of this paper are satisfied for broad
classes of models including models with additive and mul-
tiplicative noises. In particular, as described in [8], they
are satisfied for linear state space models and for inventory
control models.

II. NOTATION AND BACKGROUND DEFINITIONS

For a metric space S, we denote by ρS its metric and
denote by B(S) its Borel σ-algebra; i.e., the σ-algebra gener-
ated by the open subsets of S. For S ∈ B(S) we usually con-
sider the metric space (S, ρS), where ρS(s1, s2) = ρS(s1, s2)
for s1, s2 ∈ S. For the Borel σ-algebra B(S) on S, the
equality B(S) = {B ∈ B(S) : B ⊂ S} holds.

The set of probability measures on the measurable space
(S,B(S)) is denoted by P(S). The set P(S) is endowed with
the topology of weak convergence of probability measures,

i.e., p(k) → p in P(S) if
∫
S f(s) p(k)(ds) →

∫
S f(s) p(ds)

for all bounded continuous functions f : S→ R. Let S1 and
S2 be Borel spaces; i.e., Borel subsets of Polish (separable,
complete metric) spaces. We recall that a stochastic kernel
on S1 given S2 is a function κ : B(S1)×S2 → [0, 1], written
κ(B|s2), such that

1) for each B ∈ B(S1), the map s2 7→ κ(B|s2) is a Borel
measurable function,

2) for each s2 ∈ S2, the map B 7→ κ(B|s2) is a Borel
probability measure on S1.

A stochastic kernel κ on S1 given S2 is weakly continuous if
the probability measures κ( · |s′2) converge weakly to κ( · |s2)
in P(S1) as s′2 → s2, and continuous in total variation if
supB∈B(S1) |κ(B|s′2)−κ(B|s2)| → 0 as s′2 → s2. Continuity
in total variation implies weak continuity.

In this paper, the variables d, m, and n always refer to
positive integers. Given two measures p1, p2 on the same
measurable space we write p2 � p1 if p2 is absolutely
continuous with respect to p1. Lebesgue measure on Rn
is denoted λ[n]. Let Dxg = ∂g

∂x denote the Jacobian of a
differentiable function g : Rn → Rn. When we consider the
sufficiently smooth function g(s2, x) on S2 ×Rn we denote
its Jacobian in x either by Dxφ(s2, x) or by Dxφs2(x).

A function f : S → [−∞,+∞] is lower semicontinuous
at s ∈ S if lim infs′→s f(s′) ≥ f(s). If f is lower semi-
continuous at each s ∈ S, then f is lower semicontinuous
on S. The function f is inf-compact if for all γ ∈ R, the
sublevel set {s ∈ S : f(s) ≤ γ} is compact. A function
f : S1 × S2 → [−∞,+∞] is K-inf-compact on S1 × S2 if
for all nonempty compact sets C ⊂ S1 and for all γ ∈ R,
the sublevel sets {(s1, s2) ∈ C × S2 : f(s1, s2) ≤ γ} are
compact.

For example, for spaces X = Rd, A = R`, the following
two functions c : X× A→ R are K-inf-compact:

(i) c(x, a) := xTXx+aTAa, where X ∈ Rd×d is positive
semidefinite and A ∈ R`×` is positive definite;

(ii) c(x, a) := ρRk(Xx,Aa), where X ∈ Rk×d and A ∈
Rk×` is nonsingular.

We denote by X, Y, and A the state, observation, and
action spaces, respectively. We denote by X and H the
spaces of state and observation noises. In general, X, Y,
A, X , and H are assumed to be Borel spaces, that is, they
are Borel subsets of complete separable metric spaces. In
some results there are additional assumptions that some of
these spaces are Euclidian. The discrete time parameter is
t = 0, 1, . . . , and xt, yt, at, ξt, and ηt denote the state,
observation, control, state noise, and observation noise at
time t respectively, where xt ∈ X, yt ∈ Y, at ∈ A, ξt ∈ X ,
and ηt ∈ H. These variables are defined in (4).

For a Borel space Ω, for a Borel measurable function φ :
S2 × Ω → S1, and for a probability measure p ∈ P(Ω), let
us define the stochastic kernel κ on S1 given s2 ∈ S2,

κ(B|s2) :=

∫
Ω

1{φ(s2, ω) ∈ B} p(dω), B ∈ B(S1). (1)

The following properties of φ will be used throughout the
paper.
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Definition 2.1: (Continuity in distribution, total variation,
and probability). Let S1, S2, and Ω be Borel spaces, and let
p ∈ P(Ω) be a probability measure on (Ω,B(Ω)). A Borel
function φ : S2 × Ω→ S1 is continuous

(i) in distribution p (weakly continuous) if the function
s2 7→

∫
Ω
f(φ(s2, ω)) p(dω) is continuous on S2 for

every bounded continuous function f : S1 → R;
(ii) in total variation with respect to (wrt) p if for each

s2 ∈ S2,

lim
s′2→s2

sup
B∈B(S1)

|
∫

Ω

1{φ(s′2, ω) ∈ B}

− 1{φ(s2, ω) ∈ B} p(dω)| = 0;

(2)

(iii) in probability p if φ(s′2, · )
p−→ φ(s2, · ) as s′2 → s2

for each s2 ∈ S2, that is, for each s2 ∈ S2 and each
ε > 0,

lim
s′2→s2

p({ω ∈ Ω : ρS1(φ(s′2, ω), φ(s2, ω)) ≥ ε}) = 0.

(3)
We note that continuity in probability is called stochastic
continuity [24, p. 30].

If φ is continuous in total variation wrt p, then it is
stochastically continuous. It is well-known that continuity
in probability implies continuity in distribution, while the
opposite statement is false [24, p. 30].

For a function φ : S2×Ω→ S1, we will frequently assume
that S1 = Rn, Ω is an open subset of Rn, and that the
function φ satisfies the following condition.

Diffeomorphic Condition. For the metric space S2, open
set Ω ⊂ Rn, and a function φ : S2×Rn → Rn the following
statements hold:

(i) φ is continuous on S2 × Ω;
(ii) Dωφ exists for all s2 ∈ S2 and ω ∈ Ω;

(iii) the matrix Dωφ(s2, ω) is nonsingular for all s2 ∈ S2

and ω ∈ Ω;
(iv) the function (s2, ω) 7→ Dωφ(s2, ω) is continuous on

S2 × Ω;
(v) for each s2 ∈ S2 the function ω 7→ φ(s2, ω) is a one-

to-one mapping of Ω onto φ(s2,Ω).
Remark 1: Let us consider the notation φs2(ω) :=

φ(s2, ω). The Diffeomorphic Condition implies that for
each s2 ∈ S2 the inverse function φ−1

s2 (s1) exists for
all s1 ∈ φs2(Rn), and this function is continuously
differentiable on φs2(Rn). Diffeomorphic Condition and
the inverse function rule imply detDs1φ

−1
s2 (s1) 6= 0

for all all s2 ∈ S2 and for all s1 ∈ φs2(Ω), and
for each compact set K ⊂ Ω be the mappings
φ−1
s2 (s1) : (φ(S2 × K), ρS2×Rn) → (K, ρRn) and

detDs1φ
−1
s2 (s1) : (φ(S2 × K), ρS2×Rn) → (R, ρR) are

continuous. We also note that, in the one-dimensional case
Diffeomorphic Condition (v) follows from Diffeomorphic
Conditions (i-iv) since each function φs2(ω) is continuous
and strictly monotonic. If n > 1, finding broad sufficient
conditions for injectivity of the mapping ω 7→ φs2(ω)
over the entire set Rn is a challenging mathematical
problem. However, as shown in Section V below, in the

case of additive or multiplicative noises, Diffeomorphic
Condition (v) is satisfied if Diffeomorphic Conditions (i-iv)
are satisfied.

III. DISCRETE-TIME PARTIALLY OBSERVABLE
CONTROLLED MARKOV MODELS

Let X, Y, and A be Borel spaces (Borel subsets of
complete separable metric spaces) of states, observations,
and actions, respectively, and X ,H be Borel spaces of state
and observation noises. We consider a discrete-time control
system with dynamics and observations defined for time
t = 0, 1, . . . by stochastic equations

xt+1 = F (xt, at, ξt), xt ∈ X, at ∈ A, ξt ∈ X , (4a)
yt+1 = G(at, xt+1, ηt+1), yt+1 ∈ Y, ηt+1 ∈ H, (4b)

where F : X×A×X → X is the Borel-measurable functions
representing the transition dynamics of the system, and G :
A×X×H → Y is the Borel-measurable function representing
the observations. In addition, there is the probability distribu-
tion p0 ∈ P(X) of the initial state x0, and y0 = G0(x0, η0),
where G0 : X × H → Y a Borel-measurable function
defining the initial observation, and {ξt}∞t=0 and {ηt}∞t=0

are sequences of independent and identically distributed (iid)
random variables with distributions µ ∈ P(X ) and ν ∈
P(H), respectively. It is also assumed that the sequence
{x0, ξ0, η0, ξ1, η1, . . . } is mutually independent. The process
evolves as follows. The initial hidden state is taken x0 ∼ p0,
and the initial observation y0 = G(x0, η0) is made. For each
t = 0, 1, . . . , the decision maker observes yt and selects
the action at ∈ A. The next state xt+1 and observation
yt+1 are determined by the equations (4). At each epoch
t = 0, 1, . . . , in addition to the observation yt, the decision
maker knows the initial state distribution p0, the previous
observations y0, y1, . . . , yt−1, and previously chosen actions
a0, a1, . . . , at−1. Equations (4) are slightly more general that
equations for filtering problems because the function G in
(4b) can depend on controls at.

The evolution of a system defined by stochastic equations
such as (4) can also be represented in terms of stochastic
kernels, and the corresponding model is a POMDP. For
POMDPs, transitions of states are defined by a stochastic
kernel T on X given X × A called the transition kernel or
transition probabilities, and observations are defined by a
stochastic kernel Q on Y given A×X called the observation
kernel or observation probabilities. For POMDPs, the state
xt+1 is defined by the distribution T ( · |xt, at) instead of
by equality (4a), and the observation yt+1 is defined by the
distribution Q( · |at, xt+1) instead of by equality (4b). In
addition, the initial distribution of observation y0 is defined
by a stochastic kernel Q0 on Y given X, that is, y0 is defined
by the distribution Q( · |x0); see [14, Chapter 4] or [11] for
details.

The model definitions based on stochastic equations and
on POMDPs are equivalent. Indeed, for the functions F and
G from (4), the transition kernel T and observation kernel
Q are defined in (1), where the transition kernel T = κ for
φ := F, S1 := X, S2 := X×A, Ω := X and the observation
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kernel Q = κ for φ := G, S1 := Y, S2 := A×X, and Ω :=
H, Of course, the function G0 also defines the stochastic
kernel Q0(C|a, x) =

∫
H 1{G0(x, η) ∈ C}ν(dη), where C ∈

B(Y), a ∈ A, and x ∈ X. The reduction of a POMDP to
the stochastic system defined by equations (4), with X =
[0, 1], H = [0, 1], and µ and η are uniform distributions,
follows from [3, Lemma F]; see Theorem 2 below. However,
we do not assume here that X = [0, 1], H = [0, 1], and µ
and η are distributed uniformly, because sometimes it can
be more convenient to consider other distributions; see, e.g.,
Corollary 1.

If decision a is chosen at state x then the one-step cost
is c(x, a), where c : X × Y is a bounded below Borel-
measurable function. Then expected total discounted costs
for a policy π are defined as

V πT,α(p0) := Eπp0

T−1∑
t=0

αtc(xt, at), p0 ∈ P(X), (5)

where T = 0, 1, . . . or T = ∞ is the fixed finite or infinite
planning horizon, and β ∈ [0, 1) is the discount factor. If
T < ∞, than β can be an arbitrary nonnegative number.
The goal is to find an optimal policy minimizing expected
total discounted costs for a given planning horizon.

A natural approach to solving a POMDP is based on its
reduction to a completely observable MDP, whose states are
probability distributions of the states of the system, some-
times called belief distributions, and this MDP is sometimes
called a filter. Weak continuity of the transition probabilities
of the filter, also called weak continuity of the filter, is an
important property. If one-step costs c are K-inf-compact and
bounded below, then weak continuity of the filter implies the
existence of optimal policies for problems with expected total
costs, the validity of optimality equations, and convergence
of value iterations [11].

In view of space limitations, we do not provide here the
classic definitions of the belief-MDP ; see, e.g., [7], [14].
The state space of the belief-MDP is the space P(X) of
probability measures on X endowed with the topology of
weak of convergence of probability measures, and the tran-
sition kernel q for the filter is the transition probability from
P(X)×A to P(X). Weak and setwise continuity assumptions
on kernels T and Q are not sufficient for weak continuity of
q; see examples in [11]. The following sufficient conditions
are known for weak continuity of filters:

(i) T is weakly continuous, and Q is continuous in total
variation [11];

(ii) T is continuous in total variation, and Q is continuous
in a in total variation [12];

In particular, if Q does not depend on the control parameter,
then continuity of T in total variation implies weak conti-
nuity of the filter [15].

As explained in the next section, the following two as-
sumptions on functions F and G imply respectively condi-
tions (i) and (ii) above.

Assumption 1: The following statements hold:

(i) the function ((x, a), ξ) 7→ F (x, a, ξ) is continuous in
distribution µ;

(ii) Y = Rn, H is an open subset of Rm, ν � λ[m],
and the function ((a, x), η) 7→ G(a, x, η) satisfies the
Diffeomorphic Condition.

Assumption 2: The following statements hold:
(i) X is an open subset of Rd, X = Rd, µ � λ[d],

and the function ((x, a), ξ) 7→ F (x, a, ξ) satisfies the
Diffeomorphic Condition;

(ii) either G does not depend on a, or the following
conditions (a) and (b) hold: (a) Y = Rm, H is an
open subset of Rm, and ν � λ[m], and (b) for each
x ∈ X the function (a, η) 7→ G(a, x, η) satisfies the
Diffeomorphic Condition.

Theorem 1 describes sufficient conditions on the kernels
T and Q for weak continuity of the filter. The main goal
of this paper is to describe sufficient conditions on the
functions F and G for weak continuity of the filter. Such
results were provided in [11, Section 8.1] for problems with
real-valued states, observations, and noises. The following
theorem provides stronger results for more general state,
observation, action, and noise spaces.

Theorem 1: If either Assumption 1 or Assumption 2
holds, then the filter is weakly continuous, that is, the tran-
sition probability q from P(X) × A to P(X) for the belief
MDP is weakly continuous. Thus, if the one-step cost is K-
inf-compact, then the value function for the filter is lower
semicontinuous and satisfies the optimality equations for
the filter, value iterations converge to optimal values, and
optimality equations define optimal policies.

IV. CONTINUITY OF STOCHASTIC KERNELS DEFINED BY
STOCHASTIC EQUATIONS

Let S1, S2, and Ω again denote Borel spaces, and let
us consider the stochastic kernel κ on S1 given S2. This
section deals with two distinct but related issues concerning
κ. We shall first consider the existence of a Borel measurable
function φ : S2×Ω→ S1 and probability measure p ∈ P(Ω)
such that representation (1) holds. Theorem 2 is Aumann’s
lemma [3, Lemma F], which shows that such a representation
exists with Ω = [0, 1] and p = λ[1]. Corollary 1 states that
for every natural number n such a representation exists with
Ω = [0, 1]n and p = λ[n].

We will then consider conditions on φ and p that imply
different continuity properties of the stochastic kernel κ.
Theorem 3 shows that a necessary and sufficient condition
for κ to be weakly continuous is for φ to be continuous
in distribution p. It also shows that stochastic continuity
is a sufficient condition for φ to imply that κ is weakly
continuous. Theorem 4 gives a necessary and sufficient con-
dition for κ to be continuous in total variation; namely,
that φ is continuous in total variation wrt p. In addition,
it shows that, if p is a continuous distribution on Rn and φ
satisfies the Diffeomorphic Condition, then κ is continuous
in total variation. Finally, we provide an example showing
the significance of the assumption that p has a density for
continuity of κ in total variation.
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The following theorem is due to [3, Lemma F]. It shows
that κ always admits representation (1) when Ω = [0, 1] and
p is the uniform distribution.

Theorem 2 ([3, Lemma F]): Let S1 and S2 be Borel
spaces, and let κ be a stochastic kernel on S1 given S2. Then
there exists a Borel measurable function φ : S2×[0, 1]→ S1,
where the Borel σ-algebra is considered on the unit interval
[0, 1], such that

κ(B|s2) =

∫ 1

0

1{φ(s2, ω) ∈ B} dω, B ∈ B(S1). (6)

As a remark, we would like to mention a relevant fact,
which is not used in this paper. [17, Theorem 1.1] and
the isomorphism theorem for Borel spaces imply that it is
possible to define a probability measure m on the space
B(S2,S1) of Borel measurable functions f : S2 → S1 such
that κ(B|s2) =

∫
B(S2,S1)

1{f(s2) ∈ B} m(df).
The following corollary is a generalization of Theorem 2.

It shows that the space [0, 1] can be replaced by [0, 1]n,
n = 1, 2, . . . , without loss of generality.

Corollary 1: Let S1 and S2 be Borel spaces, and let κ be
a stochastic kernel on S1 given S2. Then for each natural
number n there exists a Borel measurable function φ : S2 ×
[0, 1]n → S1, where the Borel σ-algebra is considered on
the unit box [0, 1]n, such that

κ(B|s2) =

∫
[0,1]n

1{φ(s2, ω) ∈ B} dω, B ∈ B(S1). (7)

The remainder of this section concerns continuity of the
stochastic kernel κ defined in (1). There are well-known
sufficient conditions on the function φ that imply that κ is
weakly continuous. For example, continuity of φ is sufficient;
[14, p. 92]. As discussed in [11, Section 8.1], it is sufficient
for s2 7→ φ(s2, ω) to be continuous for p-a.s. ω. The fol-
lowing theorem describes necessary and sufficient conditions
on the Borel measurable function φ for the kernel κ to be
weakly continuous. It also shows that stochastic continuity is
another sufficient condition for weak continuity of κ, which
is weaker than p-a.s. continuity of φ at each s2 ∈ S2, which
in turn is weaker than continuity of φ.

Theorem 3 (Weak continuity): Let p ∈ P(Ω) and φ : S2×
Ω → S1 be Borel measurable, and consider the stochastic
kernel κ on S1 given S2 defined in (1). The following
statements hold:

(a) the function φ is continuous in distribution p if and
only if the stochastic kernel κ is weakly continuous;

(b) if the function φ is continuous in probability p, then κ
is weakly continuous.

The next theorem states necessary and sufficient conditions
for the stochastic kernel κ to be continuous in total variation.
It also shows that for the spaces S1 = Ω = Rn, if p is
a continuous distribution and φ satisfies the Diffeomorphic
Condition, the stochastic kernel κ is continuous in total
variation. Theorem 4 is applicable to linear and nonlinear
filtering problems including to linear filtering problems with
additive and multiplicative noises and to inventory control
problems [8].

Theorem 4 (Continuity in total variation): Let p ∈ P(Ω)

and φ : S2 × Ω → S1 be Borel measurable, and consider
the stochastic kernel κ on S1 given S2 defined in (1). The
following statements hold:

(a) the function φ is continuous in total variation wrt p
if and only if the stochastic kernel κ is continuous in
total variation;

(b) if S1 = Rn, Ω is an open subset of Rn, p � λ[n],
where λ[n] is restricted to Ω, and the function φ satis-
fies the Diffeomorphic Condition, then the stochastic
kernel κ is continuous in total variation.

Let us consider the special case S2 = Rn, Ω = Rn,
and assume that the distribution p has a continuous density
f. Let us define random variables Ys2 = φ(s2, ξ), where
s2 ∈ S2 and ξ ∼ p. Then Ys2 ∼ κ(·|s2). Following [16,
example 1.3.2(v)], the formula for the density of a function
of a random vector implies that the density fYs2

of Ys2 is

fYs2
(s1) = f(φ−1

s2 (s1))|Ds1φ(s2.s1)|−11{s1 ∈ φ(s2,Ω)}.

If φ(s2,Ω) = Rn for all s2 ∈ S2, then continuity of
f and the Diffeomorphic Condition condition on φ imply
that φ(s′2,Ω) → φ(s2,Ω) when s′2 → s2 and s2, s

′
2 ∈

S2. Therefore, Scheffé’s theorem implies that the kernel
κ(·|ss) is continuous in total variation. However, in general
convergence φ(s′2,Ω) → φ(s2,Ω) may not take place for
all s2 ∈ S2 since indicators are not continuous functions.
Lemma 1 was used in [8] to prove Theorem 4(b), which
does not assume that φ(s2,Ω) = Rn for all s2 ∈ S2.

Lemma 1: ([8, Lemma 9.1]) Let S2 be a metric space, and
let Ω ⊂ Rn be open. If a function φ : S2×Rn → Rn satisfies
the Diffeomorphic Condition. Then, for every compact set
K ⊂ Ω and s′2 → s2,

lim
s′2→s2

λ[n](φ(s′2,K)4φ(s2,K)) = 0. (8)

The following example shows that the assumption p �
λ[n] is essential in statement (b) of Theorem 4.

Example 1: Suppose S1 = S2 = Ω = R, suppose the
distribution p is concentrated at the point 0, that is, p(B) =
1{0 ∈ B} for B ∈ B(R), and suppose φ(s2, ω) = s2 + ω.
Then κ(B|s2) = 1{s2 ∈ B} for B ∈ B(R) since p(0) = 1.

Consider the sequence s(k)
2 = k−1 for k = 1, 2, . . . , and let

B = {0}. Then s
(k)
2 → 0, κ(B|0) = 1, and κ(B|s(k)

2 ) = 0
for all k = 1, 2, . . . ; hence, κ is not continuous in total
variation.

V. NONLINEAR FILTERING

This section deals with the version of equations (4) in
which the function G does not depend on the action:

xt+1 = F (xt, at, ξt), xt ∈ X, at ∈ A, ξt ∈ X , (9a)

yt+1 = G̃(xt+1, ηt+1), yt+1 ∈ Y, ηt+1 ∈ H, (9b)

where G̃ : X×H → Y is a Borel measurable function. Such
equations commonly appear in statistical filtering theory, as
discussed below. Model (9) is a simpler model than (4) be-
cause it does not include actions in the observation equation.
The following theorem is the main result of this section. It
follows directly from Theorem 1 applied to the model (9).
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Theorem 5 (Nonlinear filtering): Consider the model (9)
for Borel measurable functions F : X × A × X → X and
G̃ : X×H → Y, and for transition disturbances {ξt}∞t=0

iid∼ µ

and observation disturbances {ηt}∞t=0
iid∼ ν. Let us consider

the following two two assumptions:
(i) The following statements hold:

a) the function ((x, a), ξ) 7→ F (x, a, ξ) is continu-
ous in distribution µ;

b) Y = Rm, H is an open subset of Rm, ν � λ[m],
and the function (x, η) 7→ G̃(x, η) satisfies the
Diffeomorphic Condition;

(ii) X = Rd, X is an open subset of Rd, µ � λ[d],
and the function ((x, a), ξ) 7→ F (x, a, ξ) satisfies the
Diffeomorphic Condition.

Each of assumptions (i) or (ii) implies that the transition
probability for the belief-MDP is weakly continuous. In
addition, if the one-step cost function c is K-inf-compact,
then for expected total discounted costs, value functions
are lower semicontinuous, finite-horizon values converge to
the infinite-horizon value, optimality equations hold, and
optimality equations define for the filter Markov optimal
policies for finite-horizon problems and stationary optimal
policies for infinite-horizon problems.

VI. CONCLUSIONS

Following the progress in understanding sufficient con-
ditions for the existence of optimal policies and applica-
bility of dynamic programming algorithms for MDPs with
infinite state spaces and for POMDPs, this paper provides
such conditions for discrete-time stochastic problems with
incomplete state observations, when the problem is defined
by stochastic equations, and the goal is to optimize ex-
pected total discounted costs. For POMDPs the important
question is whether its belief-MDP has a weakly continuous
transition probability, which defines a filter. The answer to
this question depends on continuity properties of transition
and observation kernels. These properties of transition and
observation kernels are their weak continuity and continuity
in total variation. This paper links continuity properties of
transition and observation functions to continuity properties
of the corresponding stochastic kernels.

Continuity in total variation is the more challenging prop-
erty than weak continuity, and the paper describes a sufficient
condition of continuity of a stochastic kernel in total varia-
tion. This condition is called the Diffeomorphic Condition.
In general, verification of this condition can be challenging,
but it can be easily done for problems with additive and
multiplicative noises, and such problems are widely used in
practice. The paper does not assume that noises are Gaussian.

As was recently understood in [12], all currently known
conditions for weak continuity of filters also imply a stronger
property than weak continuity of a filter. If the state space of
the problem is augmented by an observation, then the cur-
rently known sufficient conditions imply semi-uniform Feller
continuity of the filter, which is the stronger property than
weak continuity. This observation indicates that there could

be more general sufficient conditions for weak continuity of
filters than the currently known conditions.
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