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Abstract— To optimally select a generalized Nash equilib-
rium, in this paper, we consider a semi-decentralized algorithm
based on a double-layer Tikhonov regularization algorithm.
Technically, we extend the Tikhonov method for equilibrium
selection to generalized games. Next, we couple such an al-
gorithm with the preconditioned forward-backward splitting,
which guarantees linear convergence to a solution of the inner
layer problem and allows for a semi-decentralized implemen-
tation. We then establish a conceptual connection and draw a
comparison between the considered algorithm and the hybrid
steepest descent method, the other known distributed approach
for solving the equilibrium selection problem.

I. INTRODUCTION

Several multi-agent decision processes can be modelled
as a game, that is, a set of inter-dependent optimization
problems. In particular, if the agents are coupled not only
through their respective objective functions, but also through
a shared constraint set, then we label the setting as a gen-
eralized game. Application examples for generalized games
include traffic routing [1], peer-to-peer energy markets [2]
and cognitive radio networks [3]. A typical solution paradigm
is the generalized Nash equilibrium (GNE), that is, an
optimal situation for each agent given the decisions of the
remaining agents, and especially the sub-class of variational
GNEs (v-GNES), which has recently received widespread
attention due to its stability properties [4].

Plenty efficient v-GNE seeking algorithms, e.g. [5]–[9],
have been developed for games that satisfy a monotonicity
condition. Crucially, monotone games admit in general an
infinite number of v-GNEs (unless a much more restrictive
strong monotonicity condition is imposed). An appealing
method to deal with the non-uniqueness of the solution is
to select a GNE that optimizes some desirable system-level
objective, as proposed in [10]–[13]. The selection algorithms
in [10], [11] use Tikhonov’s regularization method and build
on the literature of Variational Inequalities (VIs) to cast the
selection problem as a VI-constrained VI, which is solved by
finding a sequence of approximate solutions to regularized
games. The algorithms in our previous works [12], [13],
instead, rely on fixed point selection theory and use the
hybrid steepest descent method (HSDM) [14], which pairs an
appropriate nonexpansive operator with a gradient descent.
While the latter is recently proposed as distributed algorithms
for GNE selection, the former works for non-generalized
games only.
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Our main contribution consists in devising a Tikhonov-
based algorithm for equilibrium selection in general-
ized, monotone games. The proposed algorithm is semi-
decentralized, in the sense that communication with a central
coordinator is required, but its only duty is to broadcast sig-
nals aimed at optimizing the system-level objective function.
Technically, we cast the GNE selection problem as a VI-
constrained VI, which can be solved via a sequence of regu-
larized sub-problems. Compared to [11], we propose to solve
the resulting regularized sub-problems via the preconditioned
forward-backward or pFB [7], which has linear convergence
rate and allows one to distribute the computation burden
among the agents. Compared with the Tikhonov-based GNE
seeking algorithms in [5], [6] that compute the minimum-
norm v-GNE, our proposed algorithm works for general
convex selection functions. Secondly, we find a theoretical
connection between the proposed Tikhonov method and the
HSDM. Although neither method generalizes the other, the
HSDM can be cast as a forward-backward step towards the
solution of the Tikhonov regularized problem. Finally, in
Section V, we compare the two methods numerically.

Notation: The Euclidean inner product and norm are
denoted respectively by ⟨x, y⟩ and ∥ · ∥. For a symmetric
matrix Ψ ≻ 0, we denote the Ψ-induced norm by ∥ · ∥Ψ
and define ⟨x, y⟩Ψ = ⟨x,Ψy⟩. Nonlinear set-valued operators
are denoted in calligraphic letters, e.g. T : Rn ⇒ Rn. For
a matrix A, ∥A∥ denotes its spectral norm. We denote the
vector of all 1 (0) with dimension n by 1n (0n). The column
stack operation is denoted by col(·).

Operator theory: We denote by Id the identity operator.
For a closed convex set C, NC(·) : Rn ⇒ Rn is its normal
cone [15, Def. 6.38] and projC(x) = argminz∈C ∥x − z∥.
For an operator T : Rn ⇒ Rn, we denote its zero set by
zer(T ) := {x ∈ dom(T ) | 0 ∈ T (x)}, its fixed point set by
fix(T ) := {x ∈ dom(T ) | x ∈ T (x)} and its resolvent by
JT := (Id+T )−1 [15, Def. 23.1]. An operator T : C ⇒ Rn

is:
(µ-strongly) monotone: if, for any two pairs
(x, y), (x′, y′) ∈ gph(T ) := {(x, y)|x ∈ C, y ∈ T (x)}, it
holds ⟨y − y′, x− x′⟩ ≥ µ∥x− x′∥2, with µ ≥ 0 (> 0);
Monotone-plus: if it is monotone and, for any two pairs
(x, y), (x′, y′) ∈ gph(T ) such that ⟨y − y′, x − x′⟩ = 0, it
holds (x, y′) ∈ gph(T ) and (x′, y) ∈ gph(T );
Lipschitz continuous: if there exists L > 0, such that, for all
x, x′ ∈ C, ∥T (x)− T (x′)∥ ≤ L∥x− x′∥;
Nonexpansive: if Lipschitz continuous with L = 1;
Contractive: if Lipschitz continuous with L < 1.
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Variational inequality (VI): For a closed convex set K
and T : K → K, we denote by VI(K, T ) the problem

find x∗ ∈ K s.t. inf
x∈K
⟨T (x∗),x− x∗⟩ ≥ 0,

and its solution set by

SOL(K, T ) := {x∗ ∈ K|x∗ solves VI(K, T )}.
A point x̂ is an ε-approximate solution of VI(K, T ) if

ε ≥ infx∈SOL(K,T ) ∥x− x̂∥,
where ε ≥ 0 denotes the approximation error.

II. EQUILIBRIUM SELECTION AS A VARIATIONAL
INEQUALITY

We consider the multi-agent decision process in which
each of N agents aims at solving an optimization problem
over the decision variables xi ∈ Xi ⊂ Rni , where i ∈
{1, ..., N} =: I. Let us denote n :=

∑
i∈I ni, I−i := I\{i},

x−i := col((xj)j∈I−i) and x := col((xj)j∈I). Crucially, the
decision problem associated with agent i is coupled to the
decision variables of the remaining agents both through the
objective function Ji : Rn → R, and some constraints. We
consider m ∈ N constraints of the form∑

i∈I Aixi ≤ b, (1)

where Ai ∈ Rm×ni , for each i ∈ I, and b ∈ Rm. This
problem is commonly referred to as a generalized game and
we formalize it as follows:

∀i ∈ I :

 min
xi∈Xi

Ji(xi,x−i)

s. t. Aixi ≤ b−∑
j∈I−i

Ajxj .

(2a)

(2b)

By defining X := Πi∈IXi, the collective feasible set of (2)
is

Γ := X ∩ {x | (1) holds true}.
We address the problem in (2) by examining generalized
Nash equilibria, which are points from which no agent has
an incentive to deviate unilaterally:

Definition 1. A set of decision variables x∗ ∈ X is a GNE
for the game in (2) if, for each i ∈ I,

Ji(x
∗
i ,x

∗
−i) ≤ Ji(xi,x

∗
−i),

for any xi ∈ Xi ∩ {y ∈ Rni | Aiy ≤ −
∑

j∈I−i
Ajx

∗
j}.

Existance of a GNE is guaranteed [16, Prop. 12.11] under
the following, standard assumptions [8], [9]:

Assumption 1. For each i, Ji(·,x−i) is convex and contin-
uously differentiable for any x−i.

Assumption 2. For all i ∈ I, Xi is compact and convex;
Γ ̸= ∅ and it satisfies Slater’s constraint qualification.

Assumption 3. The pseudogradient of the game in (2)

F (x) := col((∇xi
Ji(xi,x−i))i∈I)

is monotone and LF -Lipschitz continuous.

For solving the problem in (2), we assume that the agents
can exchange information over an undirected, connected
communication network. We denote the set of neighbours

of agent i in this network by Ni. For simplicity, we consider
the case where, for all i ∈ I, Ji depends on xi and the
decision variables of (a subset of) Ni, so that each agent
is able to evaluate its cost function by communicating with
their neighbours. Additionally, each agent maintains a local
estimate of the dual variable λi for the shared constraints
in (1) and an auxiliary variable νi to achieve consensus
on dual variable estimates. We then define the following
extended Karush-Kuhn-Tucker (KKT) operator [7], which
includes both the optimality conditions for the problem in
(2) and the consensus condition:

T KKT(ω) :=A(ω) + B(ω) + C(ω),

A(ω) :=NX (x)×NR|I|m
≥0

(λ)× {0|I|m},

B :=

F (x)
−L̄λ
0

 , C(ω) :=

 A⊤λ
b−Ax− L̄ν

L̄λ

 ,

(3)

where ω = col(x,λ,ν), L̄ = L⊗Im and L is the Laplacian
matrix of the communication graph. A subset of the GNEs
of the game in (2) is characterized by the zero set of T KKT

[7, Thm. 2]. These are called variational GNEs (v-GNEs)
[4, Def. 3.10] and have been extensively studied with mul-
tiple efficient computation algorithms available. However,
Assumptions 1–3 alone do not guarantee that zer(T KKT) is
a singleton. Most of the algorithms in the literature compute
an unspecified v-GNE among the possibly infinitely many.
In contrast, our approach focuses on finding an optimally
selected v-GNE according to the selection function ϕ, in the
sense that we aim at solving

min
ω

ϕ(ω) s. t. ω ∈ zer(T KKT). (4)

Assumption 4. The selection function ϕ is convex, continu-
ously differentiable, and coercive. Furthermore, its gradient
is L∇ϕ-Lipschitz continuous.

By [15, Prop. 23.39], (4) is a convex optimization problem
under Assumptions 1, 3 and 4. However, zer(T KKT) can
seldom be written in a closed form and, thus, (4) cannot
be solved by standard optimization algorithms. To derive
an algorithmic solution, we note that, by defining Ω :=
X × RNm

≥0 × RNm and by [17, Eq. (1.1.3)],

ω∗ ∈ zer(T KKT)⇔ ω∗ ∈ SOL(Ω,B + C). (5)

Following the equivalence between convex optimization
problems and VIs [17, Sec. 1.3.1], we then recast (4) as:

VI(SOL(Ω,B + C),∇ϕ). (6)

As discussed in [11], we can solve (6) by finding the εk-
approximate solutions to a sequence of regularized sub-
problems, indexed by k ∈ N:

VI(Ω,B + C + γk∇ϕ+ α(Id− ω)), ω ∈ Ω. (7)

The regularization weights α, (γk)k∈N and tolerances
(εk)k∈N are chosen according to the following criteria:

Assumption 5. The parameter α is positive; (γk)k∈N
and (εk)k∈N are positive and non-negative sequences of
real numbers, respectively, such that

∑
k∈N γk = ∞,

limk−→∞ γk = 0 and εk = 0 for all k > K, where K ∈ N.
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By denoting γ̄ := supk∈N γk, we observe the following
properties of the operators that define (7):

Lemma 1. Let Assumptions 3–5 hold true. For any k ∈ N,
α > 0, and ω ∈ Ω:

1) B + C + γk∇ϕ+ α(Id− ω) is α-strongly monotone,
2) B + γk∇ϕ + α(Id − ω) is LG- Lipschitz continuous,

where LG := max(LF , 2|Ni|i∈I) + γ̄L∇ϕ + α.

By applying [17, Cor. 2.2.5] and [17, Thm. 2.3.3a], we
conclude that the regularized problem in (7) admits a unique
solution. Proposition 1, which follows directly from [11,
Thm. 2], formalizes a prototypical algorithmic solution to
the problem in (6):

Proposition 1. Let Assumptions 1–5 hold. Let (ω(k))k∈N ∈
Ω and, for every k, ω(k+1) be the εk-approximate solution of
the VI in (7) with ω = ω(k). Then, the sequence (ω(k))k∈N
is bounded and each of its limit points is a solution of (6).

III. SEMI-DECENTRALIZED EQUILIBRIUM SELECTION

In view of Proposition 1, next we derive an algorithm for
generating a sequence (ω(k))k∈N such that, for all k, ω(k+1)

is a εk-approximate solution to (7) with ω = ω(k). The exact
solution, denoted by ω∗

k, satisfies the monotone inclusion

0 ∈ (A+ B + C + γk∇ϕ+ α(Id− ω(k)))(ω∗
k). (8)

We then apply the preconditioned forward-backward (pFB)
method, proposed in [7] in the context of decentralized GNE
seeking, for solving (8). Let us define the following matrix:

Ψ = diag(ρ−1, τ−1,σ−1), (9)

where ρ := diag(ρiIni
)i∈I , τ := diag(τiIni

)i∈I , σ :=
diag(σiIni

)i∈I collect the step sizes associated with the
primal, dual and auxiliary variables, respectively, chosen
according to the following design criterion:

Assumption 6. Let

rxi := maxj=1,...,ni

∑m
k=1 |[Ai]jk|,

rλi := maxj=1,...,ni

∑m
k=1 |[Ai]jk|+ 2|Ni|,

rνi := 2|Ni|.
Furthermore, let r = maxi∈I(rxi , r

λ
i , r

ν
i ) and δ >

max(
L2

G

α , 2r), with LG defined as in Lemma 1. For all i ∈ I:
1) (2δ − rxi )

−1 ≤ ρi ≤ (δ + rxi )
−1;

2) (2δ − rλi )
−1 ≤ τi ≤ (δ + rλi )

−1;
3) (2δ − rνi )

−1 ≤ σi ≤ (δ + rνi )
−1.

Let us also define the preconditioning matrix

Φ = Ψ+

 0 −A⊤ 0
−A 0 −L̄
0 −L̄ 0

 . (10)

Lemma 2. Under Assumption 6, Φ ≽ δI and δ
∥Φ∥ ≥ 1

2 .

The pFB operator for the inclusion in (8) reads as

T pFB
k =(Id + Φ−1(A+ C))−1

(Id− Φ−1(B + γk∇ϕ+ α(Id− ω(k)))).
(11)

The following result formalizes the convergence of the fixed-
point iteration generated by T pFB

k to the solution of (7).

Algorithm 1 Tikhonov-pFB for optimal GNE selection
Initialization. Let α, (εk)k∈N and (γk)k∈N satisfy Assump-
tion 5. Let ω(0) ∈ Πi∈I(Xi)×R≥0

|I|m×R|I|m. Let ρ,σ, τ
satisfy Assumption 6.
Outer iteration: for k ∈ N0

1) Each agent i ∈ I sets:

(x
(k,0)
i , λ

(k,0)
i , ν

(k,0)
i )←y

(k,0)
i ←ω

(k)
i . (14)

2) Inner iteration: for t ∈ N0

-For each agent i ∈ I:
a) Receive x

(k,t)
j , λ(k,t)

j , ν
(k,t)
j from agent j ∈ Ni and

∇ϕωi(y
(k,t)) from the coordinator.

b) Update:

x
(k,t+1)
i =projXi

[
x
(k,t)
i −ρi

(
∇xi

Ji(x
(k,t))+

A⊤
i λ

(k,t)
i + γk∇xi

ϕ(y(k,t)) + α(x
(k,t)
i − x

(k,0)
i )

]
,

(15)

ν
(k,t+1)
i = ν

(k,t)
i − σi

(∑
j∈Ni

(λ
(k,t)
i − λ

(k,t)
j )

+α(ν
(k,t)
i − ν

(k,0)
i ) + γk∇νi

ϕ(y(k,t))
)
.

(16)

c) Receive ν
(k,t+1)
j from agent j ∈ Ni.

d) Update:

λ
(k,t+1)
i = projRm

≥0

[
λ
(k,t)
i + τi

(
α(λ

(k,t)
i − λ

(k,0)
i )− bi

+Ai(2x
(k,t+1)
i − x

(k,t)
i ) +

∑
j∈Ni

(
2ν

(k,t+1)
i − 2ν

(k,t+1)
j

−ν
(k,t)
i + ν

(k,t)
j − λ

(k,t)
i + λ

(k,t)
j −∇λiϕ(y

(k,t))
))]

.

(17)

-Coordinator:
a) Set y(k,t+1) ← (x(k,t+1),λ(k,t+1),ν(k,t+1)).
b) Communicate ∇ωi

ϕ(y(k,t+1)) to each agent i ∈ I.
c) If the following is satisfied,

∥y(k,t+1) − y(k,t)∥Φ ≤ (1− β)εk, (18)

terminate inner iteration. Each agent then sets

ω
(k+1)
i = y

(k,t+1)
i . (19)

Lemma 3. Let Assumptions 1–6 hold and y0 ∈ Ω. Then,
for all k ∈ N, the sequence (y(t))t∈N generated by the fixed-
point iteration

y(t+1) = T pFB
k (y(t)) ∀ t ∈ N, (12)

where T pFB
k is defined in (11), converges linearly in the Φ-

induced norm to ω∗
k in (8) and

∥y(t) − ω∗
k∥Φ ≤ ∥y(t+1) − y(t)∥Φ/(1− β), (13)

with β := (1 +
L2

G

δ2 − 2α
∥Φ∥ )< 1.

Remark 1. Differently from the pFB operator in [7], the one
in (11) has additional regularization terms and thus achieves
the desired linear rate.

The linear convergence of T pFB
k guarantees that, for εk >

0, the iterate ω(k+1) in Proposition 1 is found within a
finite number of inner iterations, whose termination can be
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based on a simple stopping criterion derived from (13). The
proposed method, which results from the expansion of the
pFB operator, is illustrated in Algorithm 1, where we use t
as the inner iteration index.

Proposition 2. Let (ω(k))k∈N be generated by Algorithm
1. Under Assumptions 1–6, for each k, ω(k+1) is an εk-
approximate solution of (7) with ω = ω(k) and, if εk > 0,
the condition in (18) is verified in a finite number of steps.

Remark 2. For Assumption 5 in Proposition 1 to be satisfied,
the termination condition for the inner iterations needs to
eventually ensure εk = 0. This is a stringent requirement, as
the pFB algorithm only achieves an exact solution asymp-
totically. The authors of [11], alternatively, consider the less
restrictive condition limk−→∞

εk
γk

= 0 in the case where the
definition set of the VI-constrained VI is compact. Although
Ω does not satisfy this condition as the dual variables belong
to an unbounded set, in practice the dual variables are
bounded in view of [18, Prop. 3.3].

IV. THEORETICAL CONNECTION AND COMPARISON WITH
THE HYBRID STEEPEST DESCENT METHOD

In our previous works [12], [13], we take a different
algorithm design path, where we reformulate Problem (4)
as a fixed point selection problem. This allows one to use
the hybrid steepest descent method (HSDM) [14] to solve
(4). Specifically, one has to find a quasi-shrinking mapping
T [13, Def. 1] such that fix(T ) = zer(T KKT). Then, the
limit point of the sequence (z(k))k∈N, defined by

z(k+1) = T (z(k))− γk∇ϕ(T z(k)), (20)

converges to the solution of (4) if (γk)k∈N is square-
summable but non-summable [14, Thm. 5]. The vanishing
weight on ∇ϕ is reminiscent of the Tikhonov regularization
introduced in Section II. Indeed, the two methods are related,
as shown next. Let us consider the exact solution to the VI
in (7) with ω = ω(k). Then, from [17, Prop. 12.3.6],

ω(k+1) = J 1
α (A+B+C+γk∇ϕ)(ω

(k)) =: T Tik
k (ω(k)). (21)

The properties of the HSDM update in (20) depend on
the choice of T . Let us consider the particular case T =
JA+B+C , which can be shown to be quasi-shrinking via [13,
Lem. 1]. We rewrite (20) with this particular choice of T as:

v(k+1) = JA+B+C(z
(k)),

z(k+1) = v(k+1) − γk∇ϕ(v(k+1)),
(22)

where we introduced the auxiliary sequence (v(k))k∈N. By
rearranging (22), we note that this sequence evolves as

v(k+1) = JA+B+C ◦ (Id− γk∇ϕ)(v(k)) =: T HSDM
k (v(k)).

(23)
The operator T HSDM

k in (23) corresponds to the forward-
backward (FB) splitting for the inclusion

0 ∈ A+ B + C + γk∇ϕ.
From [15, Prop. 26.1iv] and [15, Prop. 23.38],

fix(J 1
α (A+B+C+γk∇ϕ)) = fix(JA+B+C ◦ (Id− γk∇ϕ)),

which implies

fix(T Tik
k ) = fix(T HSDM

k ). (24)

Tikhonov Tikhonov HSDM(bounded set)
param.

∑
γk =∞,

∑
γk =∞,

∑
γk =∞,

evt. εk = 0 limk→∞
εk
γk

=0
∑

γ2
k <∞

t (#inner evt. ∞
t→∞ 1iterations)

ϕ coercive yes no no

TABLE I: Theoretical property differences of the Tikhonov method
and HSDM for GNE selection.

Thus, we conclude that both the Tikhonov update in (21) and
the HSDM step in (20) apply at each step k a single update
of a fixed point iteration, and the two operators in (24) have
the same fixed point set. This analogy is only theoretical,
as in practice the operator JA+B+C cannot be implemented
in a distributed fashion. Nevertheless, it outlines that both
the Tikhonov method and the HSDM function by the same
underlying principle of tracking the solutions to a sequence
of regularized problems. Moreover, we note that (24) does
not hold for a generic choice of T , thus the HSDM includes
algorithms that are not covered by the Tikhonov method. On
the other hand, the operator T Tik

k cannot be rewritten in terms
of an FB operator. Therefore, we should conclude that neither
method is a generalization of the other. The key differences
between the two frameworks are summarized in Table I. In
addition, we remark that the Tikhonov framework can be
paired with any (splitting) methods for strongly monotone
games to obtain a decentralized algorithm. Meanwhile, the
HSDM requires methods for monotone games that are quasi-
shrinking, such as the forward-backward-forward (FBF)
splitting [15, Sec. 26.6]. Thus, Tikhonov-based methods can
benefit from a larger pool of available algorithms.

V. NUMERICAL SIMULATIONS

We test the proposed algorithm on 100 game instances
with 10 agents, where the pseudogradient is in the form

F (x) = QFx+ cF .

The parameters QF ⪰ 0 and cF are randomly generated. We
define the selection function

ϕ(ω) = ∥x∥2Qϕ
+ c⊤ϕx+ θ(∥λ∥2 + ∥ν∥2),

where Qϕ ≽ 0 and cϕ are as well randomly generated
and θ = 10−3. For all i, we define the local constraint set
Xi ={R5 : ∥xi∥∞ ≤ 1}. Furthermore, we let Ai = I , for all
i ∈ I, and b = 2 · 15.We then set (γk)k∈N and (εk)k∈N in
Algorithm 1 to

γk = 10−3k−ξ; εk =

{
10−3k−ξζ if 10−3k−ξζ ≥ ε

0 if 10−3k−ξζ < ε

where ε is set to the computer numerical precision. The
parameter ξ controls the decay of the regularization weight
γk, while ζ controls the decay rate of εk with respect to γk.
We evaluate Algorithm 1 in terms of the residual computed
for each outer iteration k and inner iteration t as

R(t) = ∥y(k,t) − (Id +A)−1 ◦ (Id− B − C)(y(k,t))∥,
and in terms of the reduction of selection function ϕ with
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Fig. 1: Average performance of Algorithm 1 for ζ = 2 and α = 1.
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Fig. 2: Average performance of Algorithm 1 for ξ = 0.6 and ζ = 2.

respect to the value obtained by the standard FBF algorithm
(without optimal selection) [8, Alg. 2] in Figures 1–3.
We observe that, for decreasing values of ξ, the algorithm
achieves a lower selection function value and a larger residual
(cf. Figure 1). This trade-off between convergence to a
GNE (measured by the residual) and convergence to a ϕ-
optimal point is expected, because a too slow decay of the
regularization weight γk leads the algorithm to disregard the
GNE seeking in order to compute the unconstrained optimal
value of ϕ. Moreover, an increasing value of α improves the
algorithm performance (cf. Figure 2). Finally, we observe
that for increasing values of ζ, the algorithm reaches a higher
residual and a lower selection function value (cf. Figure 3). In
our experience, setting ζ too high might cause convergence
failure as εk might become 0 before γk reaches a negligible
value. In Figure 4 we compare Algorithm 1 with the HSDM
paired with the FBF algorithm [13, Alg. 1]. The parameters
for Algorithm 1 are chosen among the ones that performed
reasonably well in both the performance metrics considered
in Figures 1–3. We find the two algorithms to have similar
convergence speed. One might find this surprising, as the
Tikhonov method is double-layered; thus, one could expect
slower convergence compared to the single-layer HSDM.
This can be explained by noting that the slowdown caused
by the double-layer iterations is compensated by the linear
convergence of the pFB. In contrast, the HSDM uses the FBF,
which only achieves sublinear convergence. Nevertheless, as
observed in the first set of simulations, the Tikhonov method
requires more careful parameter tuning than the HSDM.

10−4

10−2

100

102

R
es

id
u

a
l

ζ
2.0

4.0

6.0 10−4

10−3

10−2

10−1

100 102 104 106

−2500

0

φ
−
φ

F
B

F
(%

)

105 106

−300

−200

−100

Iteration

Fig. 3: Average performance of Algorithm 1 for α = 1 and ξ = 0.6.
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Fig. 4: Comparison between Algorithm 1 with ξ = 0.6, ζ = 2, α =
1 and the HSDM-FBF method [13, Alg. 1]. The x-axis indicates
the cumulative number of inner iterations for Algorithm 1.

VI. CONCLUSION

The generalized Nash equilibrium selection problem can
be solved with a semi-decentralized algorithm based on the
Tikhonov regularization method combined with the precon-
ditioned forward backward algorithm, which achieves linear
convergence for the regularized sub-problems. Interestingly,
both the Tikhonov regularization method and a particular
instance of the hybrid steepest descent method seek at each
iteration an approximate solution to the same regularized
problem, indicating a conceptual connection. Although theo-
retically less practical (as shown in Table I), the Tikhonov al-
gorithm demonstrates comparable convergence performance
to the state-of-the-art in our simulations.

APPENDIX

A. Proof of Lemma 1

Lemma 1.1 is immediate from the monotonicity of B [7,
Lem. 5], C [15, Ex. 20.35] and ∇ϕ (Assumption 4). From
Gerschgorin’s theorem, ∥L̄∥ ≤ 2max(|Ni|i∈I). Thus, B is
max(LF , 2|Ni|i∈I)-Lipschitz continuous from Assumption
3. Lemma 1.2 then follows immediately. ■

B. Proof of Proposition 1

Let us denote the solution set of (6) by S. The proposition
follows from [11, Thm. 2] if Ω is closed and convex; B+C is
continuous and monotone; ∇ϕ is continuous and monotone
plus; S is bounded and not empty; and the set

L1 := {ω2 ∈ Ω| ∃ ω1 ∈ S s. t. ∇ϕ(ω2)
⊤(ω1 − ω2) > 0}
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is bounded. The conditions on Ω and the continuity of
B, C,∇ϕ follow from the assumptions. The monotonicity of
B + C is proven in Lemma 1. ∇ϕ is monotone-plus from
the convexity of ϕ and [15, Ex. 22.4i]. From [7, Thm. 2],
zer(T KKT) ̸= ∅. Let ω1 ∈ zer(T KKT) and consider

L2 := {ω2 ∈ Ω|∇ϕ(ω2)
⊤(ω1 − ω2) ≥ 0}.

We apply the convexity inequality on ϕ to find

ϕ(ω1)− ϕ(ω2) ≥ ∇ϕ(ω2)
⊤(ω1 − ω2), ∀ω2 ∈ Ω. (25)

From the coercivity of ϕ, ϕ(ω1)−ϕ(ω2) < 0 for sufficiently
large ∥ω2∥. Thus, L2 is bounded. Therefore, from [17, Prop.
2.2.3], S is non-empty and compact. Consequently, as (25)
holds for any ω1 ∈ S, we find for all ω2 ∈ Ω,

max
ω1∈S

∇ϕ(ω2)
⊤(ω1 − ω2) ≤ ϕ∗ − ϕ(ω2),

ϕ∗ := maxω1∈S ϕ(ω1). By the coercivity of ϕ, ϕ∗−ϕ(ω2)<
0 for sufficiently large ∥ω2∥. Therefore, L1 is bounded. ■

C. Proof of Lemma 2 (sketch)

It follows from [7, Lemma 6] and Gerschgorin’s
theorem. ■

D. Proof of Lemma 3

The operator (Id + Φ−1(A + C))−1 is non-expansive in
the Φ-induced norm, following [7, Lem. 7ii]. Denote G =
B + γk∇ϕ+ α(Id− ω(k)). First, we observe

∥Φ∥I ≽ Φ ≽ δI ⇒ ∥Φ∥∥z∥2 ≥ ∥z∥2Φ ≥ δ∥z∥2, (26a)

Φ ≽ δI ⇒ Φ−1 ⪯ δ−1I ⇒ ∥z∥2Φ−1 ≤ δ−1∥z∥2, (26b)

for any z ∈ Ω. Furthermore, for any pair z, z′ ∈ Ω,

⟨z − z′,Φ−1(Gz −Gz′)⟩Φ
≥ ⟨z − z′,Φ−1γk(∇ϕ(z)−∇ϕ(z′)) + αΦ−1(z − z′)⟩Φ
≥ α∥z − z′∥2 ≥ α

∥Φ∥∥z − z′∥2Φ. (27)

We use the fact that Φ−1B is cocoercive in the Φ-induced
norm [7, Lem. 7i] (and, thus, monotone) in the first inequal-
ity, the monotonicity of ∇ϕ in Euclidean norm in the second
inequality, and (26a) in the third inequality. We then have that

∥Φ−1G(z)− Φ−1G(z′)∥2Φ = ∥G(z)−G(z′)∥2Φ−1

(26b)
≤

1
δ ∥G(z)−G(z′)∥2≤L2

G

δ ∥z − z′∥2
(26a)
≤ L2

G

δ2 ∥z − z′∥2Φ,
(28)

where we use the Lipschitz continuity of G (Lemma 1). By
expanding the square and from (27) and (28), we have that

∥(Id− Φ−1G)(z)− (Id− Φ−1G)(z′)∥2Φ
≤ (1 +

L2
G

δ2 − 2α
∥Φ∥ )∥z − z′∥2Φ= β∥z − z′∥2Φ.

From Assm. 6 and Lemma 2, L2
G

δ2 <
L2

Gα

L2
Gδ
≤ 2α

∥Φ∥ , thus β < 1

and (Id−Φ−1G) is contractive. From [15, Prop. 26.1.iv] and
[17, Eq. 1.1.3], fix(T pFB

k ) = zer(A+C+G) = SOL(Ω, C+
G) and the thesis follows from [15, Thm. 1.50]. ■

E. Proof of Proposition 2

By expanding the operators that define T pFB
k , (15)–(17)

are equivalent to y(k,t+1) = T pFB
k (y(k,t)), for all k ∈ N.

From (18), (19), and Lemma 3,

∥ω(k+1) − ω∗
k∥Φ ≤ ∥y(k,t+1) − y(k,t)∥Φ/(1− β) ≤ εk.

Next, by triangle inequality, we have that

∥y(k,t+1) − y(k,t)∥Φ ≤ ∥y(k,t+1) − ω∗
k∥Φ + ∥ω∗

k − y(k,t)∥Φ
{1}
≤ (1 + β)∥ω∗

k − y(k,t)∥Φ
{2}
≤ βt(β + 1)∥ω∗

k − y(k,0)∥Φ,
where {1} follows from the contractivity of T pFB

k (see the
proof of Lemma 3) and {2} from [15, Thm. 1.50iii]. Thus,
if εk > 0, (18) holds for t ≥ logβ

(
εk

(β+1)∥ω∗
k−y(k,0)∥Φ

)
. ■
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