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Abstract—This paper contributes to designing a robust con-
troller for the blood glucose regulation problem in patients with
diabetes mellitus type–1. The proposed switching control ap-
proach is based on an interval predictor–based state–feedback,
which takes into account the state and input constraints of the
insulin–glucose system dynamics (Bergman minimal model), i.e.,
positive states and input, and minimum and maximum values of
the blood glucose level and the insulin infusion rate. The method
deals with interpatient variabilities and unannounced food
intake. Additionally, the switching structure of the control law
allows us to switch off the state–feedback controller stopping
the insulin injection for proper glucose level regulation. The
stability analysis is based on a Lyapunov function approach
and guarantees the asymptotic convergence of the blood glucose
level around the desired value. The synthesis of the controller
is constructive since it is in terms of linear matrix inequalities.
Some simulation results, over a cohort of 4 virtual type 1
diabetes mellitus adult patients, illustrate the performance of
the proposed robust controller.

Index Terms—Constrained Systems, Glucose Regulation, Ro-
bust Control.

I. INTRODUCTION

THE diabetes mellitus is a chronic disease involving
a deficiency of insulin production by the pancreas.

As a result, the patients suffer from hyperglycemia, an
increase in blood glucose levels that, if left unattended, may
lead to several health complications [1]. Diabetic patients,
particularly those suffering from type–1 diabetes mellitus
(T1DM), rely on external insulin ministration on a daily
basis. Since the ’60s, considerable research has been devoted
to proposing autonomous insulin delivery systems to regulate
blood glucose and keep it within the normoglycemic range
(i.e., 70–180 mg/dl). The goal is to avoid glucose excursions
to the hyper and hypoglycemia ranges, that is, above and
below the normoglycemic band. While hyperglycemia may
result in a long–term problem, hypoglycemia is potentially
life–threatening [2].

Autonomous insulin delivery systems rely on state–
feedback control schemes and face challenging problems
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such as inter and intrapatient variability and unannounced
food intake. Interpatient variability relates to the diverse bio-
logical characteristics of the patients; in contrast, intrapatient
variability refers to the evolving physiological condition of a
patient over time. Therefore, to address robustness and grant
reliable performance, several robust control approaches have
been considered in the literature. For instance, sliding–mode
control [3], H∞ control [4], model predictive control (MPC)
[5], and linear parameter varying (LPV)–based control [6],
among many others.

An additional defiance is that the model describing the
glucose–insulin dynamics of the patient is a positive system,
i.e., the states represent concentrations of particular sub-
stances, and the control input only admits positive values.
In other words, the control signal cannot reverse an insulin
overdose. A possible way to address this issue is by estab-
lishing states and input constraints. In this regard, MPC is
a systematic approach to face state and input constraints by
solving a control optimization problem. Nonetheless, MPC
demands a detailed and reliable mathematical model, which
in practice is not affordable. The MPC approach has been
combined with other methods to address robustness (see,
e.g., [7] and the references therein). Still, the computational
burden is the main drawback of MPC strategies.

Apart from MPC, only a few results have coped with the
positive nature of the glucose–insulin dynamics (see, e.g.,
[8], [9], and [10]). The work in [8] proposes a Lyapunov
function approach that takes into account the constraints in
the input and the insulin variable. Given the cascade structure
of the glucose–insulin dynamics model, insulin stabilization
entails glucose stabilization. Nonetheless, hypoglycemia may
occur since the glucose variable is left unconstrained. In
contrast, [9] tackles the problem designing two independent
discontinuous sliding–mode controllers for the glucose and
insulin subsystems. Still, a continuous approximation is used
and therefore the robustness is lost in practice. Instead, in
[10], the authors propose a positive state–feedback control
to regulate the blood glucose, constraining the insulin within
a desired interval while ensuring the blood glucose value is
kept above the desired value. All the previously discussed ap-
proaches assume that the full state is available and disregard
the effect of food intake.

To sum up, only few works are developed respecting the
natural system constraints, i.e., positive states and input, and
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minimum and maximum values of the blood glucose level
and the insulin infusion rate. Motivated by these issues, in
this paper, we propose a robust controller for the blood
glucose regulation problem in patients with T1DM. The
proposed switching control approach is based on an interval
predictor–based state–feedback that considers the state and
input constraints of the insulin–glucose system dynamics,
i.e., the Bergman minimal model. Moreover, the switching
structure of the control law allows us to switch off the state–
feedback controller stopping the insulin injection for proper
glucose level regulation. A Lyapunov function approach
ensures the asymptotic convergence of the blood glucose
level around the desired value. The synthesis of the controller
is constructive since it is in terms of linear matrix inequalities
(LMIs).

The rest of this manuscript is organized as follows. The
problem statement is given in Section II. The regulation
error dynamics is presented in Section III. In Section IV,
we provide an interval predictor for the regulation error
dynamics while the robust control design is introduced in
Section V. In Section VI the simulation results are discussed.
Finally, Section VII provides some concluding remarks.

Notation: For a couple of vectors x1, x2 ∈ Rn and a couple
of matrices A1, A2 ∈ Rn×n, the relations x1 ≤ x2 and A1 ≤
A2 are understood in the component–wise sense. In the same
sense, for a matrix A ∈ Rn×n, define A+ = max{0, A},
A− = A+ − A and |A| = A+ + A−, similarly for a vector.
For a symmetric matrix P ∈ Rn×n, the notation P ≺ 0
(P � 0) means that P is negative (nonnegative) definite.
A matrix A ∈ Rn×n is called Metzler when all its non–
diagonal elements are nonnegative. Define the vector 1n =
(1, . . . 1)> ∈ Rn. The term He(A) denotes A + A>, for a
matrix A ∈ Rn×n. The set E (R, x?) = {x ∈ Rn : (x −
x?)
>R(x − x?) ≤ 1} is an ellipsoid centered at x? ∈ Rn,

characterized by a matrix 0 ≺ R> = R ∈ Rn×n.

II. PROBLEM STATEMENT

The insulin–glucose system dynamics, for patients with
T1DM, can be represented as follows [11]

ẋ1 = −x1x2 + d(t), (1a)
ẋ2 = −p2x2 + p3(x3 − Ib), (1b)
ẋ3 = −n(x3 − Ib) + u(t), (1c)

where x1 is the glucose concentration in the blood plasma
[mg/dl]; x2 is the insulin’s effect on the net glucose disap-
pearance, the insulin concentration in the remote compart-
ments [1/min]; x3 is the insulin concentration in plasma at
time t [µU/ml]; u is the control input, which corresponds to
the insulin infusion rate; d describes the rate at which glucose
is absorbed to the blood from the intestine after food intake;
Ib is the basal pre–injection level of insulin [µU/ml]; p2 is the
rate for decrease in tissue glucose uptake ability [1/min]; p3
is the insulin–dependent increase in glucose uptake ability in
tissue per unit of insulin concentration above the basal level

[(µU/ml)/min2]; n is the first–order decay rate for insulin
in blood [1/min]. We consider that all of the parameters and
the food intake are unknown but a set of nominal, maximum,
and minimum values are available.

We assume that the disturbance d can be modeled by a
vanishing exponential function of the following form:

d(t) = b1e
−b2(t−tFI), (2)

with some positive constants b1, b2 > 0, t ≥ tFI , and a
certain food intake time tFI ≥ 0. Therefore, we have that
d ∈ [0, b1].

This work aims to design a control law that is able
to achieve a desired glucose concentration for an entire
adult patient cohort, despite the interpatient variability and
disturbances, and taking into account the system constraints,
i.e., x1(t) ∈ X1 = (70, 250), x2(t) ∈ X2 = [0, x2max),
x3(t) ∈ X3 = (Ibmin, Ibmax), and u(t) ∈ U = [0, umax], for
all t ≥ 0, and for some positive values x2max, Ibmin, Ibmax,
and umax.

III. REGULATION ERROR DYNAMICS

Let us define the regulation errors as follows

e1 = x1 −Gd, (3a)
e2 = x2, (3b)
e3 = x3 − Id, (3c)

where Gd is the desired level of glucose [mg/dl] and Id
is the desired level of insulin [µU/ml]. Therefore, the state
constraint sets are given now as follows:

E1 = {e1 ∈ R : e1 ∈ (90−Gd, 180−Gd)} , (4a)
E2 = {e2 ∈ R : e2 ∈ [0, x2max)} , (4b)
E3 = {e3 ∈ R : e3 ∈ (Ibmin − Id, Ibmax − Id)} . (4c)

According to (1) and (3), the regulation error dynamics
holds the following differential equations.

ė1 = −(e1 +Gd)e2 + d(t), (5a)
ė2 = −p2e2 + p3e3 + p3Idb, (5b)
ė3 = −ne3 − nIdb + u(t), (5c)

where Idb = Id − Ib, i.e., Idb is the difference between the
desired level of insulin and the basal pre–injection level of
insulin. Note that the constraints over the error dynamics do
not necessarily imply that the error must be positive, it will
depend on the values Gd, Id, Ibmin, and Ibmax, but system
(1) is positive.

Let us introduce a virtual control such that

e2 = ψ(e1) = x−11 k1e1, (6)

with some k1 > 0. Thus, the dynamics for e1 satisfies

ė1 = −k1e1 + d(t). (7)
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It is easy to show that system (7) is Input–to–State Stable
with respect to d. Define the following auxiliary variable

z2 = e2 − ψ(e1) = e2 − x−11 k1e1. (8)

Then, based on (8), the system (5) can be rewritten as
follows

ė1 = −k1e1 − x1z2 + d(t), (9a)

ż2 = −p2z2 − p2ψ(e1)− ψ̇(e1) + p3e3 + p3Idb, (9b)
ė3 = −ne3 − nIdb + u(t), (9c)

where ψ̇(e1) = −x−11 k21e1−k1z2 +x−11 k1e1z2 +x−21 k21e
2
1 +

x−21 k1Gdd(t). Therefore, the closed–loop regulation error
dynamics can be given in the following form, i.e.,

ε̇ = A(ρ)ε+Bu+ F (x1)w(t), (10)

where ε = (e1, z2, e3)>, w(t) = (d(t), p3Idb, nIdb)
>, and

A(ρ) =

 −k1 −x1 0
x−2
1 k1(k1Gd − p2x1) −p2 + x−1

1 k1Gd p3
0 0 −n

 ,

B =

 0
0
1

 , F (x1) =

 1 0 0
−x−2

1 k1Gd 1 0
0 0 −1

 ,

with the unknown scheduling vector ρ = (x1, p2, p3, n)>.
Note that the state and input constraints for the system (10)
are given now as follows:

E1 = {e1 ∈ R : e1 ∈ (90−Gd, 180−Gd)} , (11a)
Z2 = {z2 ∈ R : z2 ∈ (z2, z2)} , (11b)
E3 = {e3 ∈ R : e3 ∈ (Ibmin − Id, Ibmax − Id)} , (11c)
U = {u ∈ R : u ∈ [0, umax]} , (11d)

where z2 = −k1(180−Gd)/180 and z2 = x2max+k1(Gd−
90)/90. In addition, the state constraints can be expressed in
the following polytopic way

P =
{
ε ∈ R3|q>i ε ≤ 1, i = 1, 6

}
, (12)

where the vectors qi ∈ R3 are q1 = (90 − Gd, 0, 0)>, q2 =
(0, z2, 0)>, q3 = (0, 0, Ibmin−Id)>, q4 = (180−Gd, 0, 0)>,
q5 = (0, z2, 0)>, and q1 = (0, 0, Ibmax−Id)>. Now, we need
to design a robust control law u, for system (10), such that
u(t) ∈ U = [0, umax], for all t ≥ 0, and the trajectories of
regulation error dynamics converge to zero or to a region
around the origin, despite the parameter uncertainties and
disturbances, and taking into account the system constraints
(11). Then, the idea is to design u based on an interval
predictor state–feedback.

IV. INTERVAL PREDICTOR

Note that the matrix A(ρ) can be written as follows

A(ρ) =

 −k1 0 0
0 −p̄2 p̄3
0 0 −n̄



+

 0 −x1 0
x−2
1 k1(k1Gd − p2x1) −p̃2 + x−1

1 k1Gd p̃3
0 0 −ñ

 ,

where p̄2, p̄3, and n̄ are known nominal values for p2, p3,
and n, respectively; while p̃2 = p2 − p̄2, p̃3 = p3 − p̄3, and
ñ = n− n̄ represent the error between the real and nominal
parameter values. Therefore, there always exist a Metzler
matrix A0 ∈ R3×3, and some matrices Ai, Fj ∈ R3×3, for
i = 1, 16, and j = 1, 2, for some k, l ∈ N+ such that the
following equations

A(ρ) = A0 +

16∑
i=1

λi(ρ)Ai, F (x1) =

2∑
j=1

λj(x1)Fj , (13a)

16∑
i=1

λi(ρ) =

2∑
j=1

λj(x1) = 1, λi(ρ), λj(x1) ∈ [0, 1], (13b)

hold for the system (10). Therefore, taking into account (13),
the dynamics of the system (10) is given by

ε̇ =

[
A0 +

16∑
i=1

λi(ρ)Ai

]
ε+Bu+

2∑
j=1

λj(x1)Fjw(t). (14)

Then, according to [12], it follows that

−Aε− −Aε+ ≤
16∑
i=1

λi(ρ)Aiε ≤ Aε+ +Aε−,

−Fw− − Fw+ ≤
2∑
j=1

λj(x1)Fjw ≤ Fw+ + Fw−,

where A =
∑16
i=1A

+
i , A =

∑16
i=1A

−
i , F =

∑2
j=1 F

+
j ,

F =
∑2
j=1 F

−
j , vectors ε, ε, w,w ∈ R3 such that ε ≤ ε ≤ ε

and w ≤ w ≤ w, respectively; and

F1 =

 1 0 0

− k1Gb
(90)2

1 0

0 0 −1

 , F2 =

 1 0 0

− k1Gb
(180)2

1 0

0 0 −1

 ,

w =

 0
min(p3Idb)
min(nIdb)

 , w =

 b1
max(p3Idb)
max(nIdb)

 .

Thus, it is possible to design the following interval pre-
dictor [13] for system (14):

ε̇ = A0ε−Aε+ −Aε− +Bu− Fw+ − Fw−, (15a)

ε̇ = A0ε+Aε+ +Aε− +Bu+ Fw+ + Fw−, (15b)

with two vectors ε0, ε0 ∈ R3 such that ε0 ≤ ε(0) ≤ ε0
providing the interval inclusion property for the errors in-
dependently of the control, i.e., ε(t) ≤ ε(t) ≤ ε(t), for all
t ≥ 0. The previous dynamics may be represented in the
following compact form

ζ̇ = A0ζ +A1ζ
+ +A2ζ

− + Bu+ Fδ, (16)

where ζ = (ε>, ε>)> ∈ R6, δ = (w−>, w+>)> ∈ R6, and
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the system matrices given as follows

A0 =

(
A0 0
0 A0

)
, A1 =

(
0 −A
0 A

)
,

A2 =

(
−A 0
A 0

)
, B =

(
B
B

)
, F =

(
−F −F
F F

)
.

Then, in order to stabilize the error dynamics (10), due
to the interval properties of system (16), we can design
a state–feedback u to take the trajectories of the system
(16), and hence the trajectories of system (10), to zero or
a neighborhood of the origin (see, e.g., [14]).

V. ROBUST CONTROL DESIGN

The proposed control signal u possesses the following
structure

u(t) =

{
σ(ū(t)), if x1 > Gd +

√
λ−1
max(P )(uµ + 1),

0, else,
(17)

where 0 < P ∈ R6×6 is a diagonal matrix, uµ = (umax −
umin)3/2(umax + umin)2, the signal ū is a state–feedback
control law, and the function σ is the saturation function,
i.e.,

σ(ū) =


umax, if umax ≤ ū,
ū, if umin < ū < umax,

umin, if ū ≤ umin.

with some given positive values umin, umax > 0. The state–
feedback controller ū is designed, based on (16), as

ū = K0ζ +K1ζ
+ +K2ζ

− +K3δ, (18)

where K0,K1,K2,K3 ∈ R1×6 are the matrix gains to be
designed. The following theorem provides a constructive
way to design the state–feedback gains in order to ensure
the convergence of the trajectories of the system (16) to a
neighborhood of the origin satisfying the system constraints.

Theorem 1. Let the state–feedback control law (17)–(18)
be applied to the system (16), with x1(0) > Gd. Suppose
that, for some given umin, umax > 0, there exist two vectors
ε0, ε0 ∈ R3 such that ε0 ≤ ε(0) ≤ ε0, diagonal matrices
0 < Xi, Qj ∈ R6×6, 0 ≤ Rj ∈ R6×6, and some matrices
K3, Yl, Z ∈ R1×6, for i = 0, 3, j = 0, 5, and l = 0, 2; such
that the following LMIs(

β1X3 Z>

Z umax

)
� 0, β1 =

umax + umin

2umax
, (19a)(

β2X3 Z>

Z umin

)
� 0, β2 =

umax + umin

2umin
, (19b)

Ω � 0, (19c)
X3 ≺ X0 +X1 +X2, (19d)

where

Ω =



Ω11 Ω12 Ω13 Ω14 Ω15 Ω16 Ω17 Ω18

? Ω22 Ω23 Ω14 Ω15 Ω16 Ω17 Ω28

? ? Ω33 Ω34 Ω35 Ω36 Ω37 Ω38

? ? ? Ω44 R4 Ω46 0 0
? ? ? ? Ω55 R3 0 0
? ? ? ? ? Ω66 0 0
? ? ? ? ? ? Ω77 Ω78

? ? ? ? ? ? ? Ω88


,

Ω11 = He(A0X0 + BY0) +Q0,

Ω12 = A1X1 + BY1 +X0A>0 + Y >0 B> +R1,

Ω13 = A2X2 + BY2 −X0A>0 − Y >0 B> −R2,

Ω14 = A0X0 + BY0, Ω15 = A1X1 + BY1,

Ω16 = A2X2 + BY2, Ω17 = F + BK3,

Ω18 = B − δ(Y0 − Z)>, Ω22 = He(A1X1 + BY1)−Q1,

Ω23 = A2X2 + BY2 −X1A>1 − Y >1 B> +R0,

Ω28 = B − δY >1 , Ω33 = −He(A2X2 + BY2)−Q2,

Ω34 = −Ω14, Ω35 = −Ω15, Ω36 = −Ω16,

Ω37 = −Ω17, Ω38 = B − δY >2 , Ω44 = −Q3,

Ω46 = −R5, Ω55 = −Q4, Ω66 = −Q5,

Ω77 = −αQ, Ω78 = −δK>3 , Ω88 = −2γ,

are feasible for some fixed constants α, δ, γ > 0 and a matrix
Q = |δ|−2I6. If the state–feedback gains are designed as
Kl = YlX

−1
l , for l = 0, 2, and K3; and the inequalities

X−10 (Q0X
−1
0 + 2 min(R1X

−1
1 , R2X

−1
2 ))

−X−11 Q1X
−1
1 −X−12 Q2X

−1
2 ≥ αP, (20a)

P > X−13 , (20b)

X−10 (Q3X
−1
0 − 2 min(R4X

−1
1 , R5X

−1
2 ))

+X−11 Q4X
−1
1 +X−12 Q5X

−1
2 � αX−13 , (20c)

hold for some diagonal matrix 0 < P ∈ R6×6 and the
solution (Xi,K3, Yl, Qi, Rj), i = 0, 3, j = 0, 5, and l = 0, 2,
of (19); then, the trajectories of the system (16), starting
in E (R, ζ?) \ E ((uµ + 1)−1P, ζ?) = {ζ̄ ∈ R6 : ζ̄>Rζ̄ ≤
1, ζ̄>P ζ̄ > uµ + 1}, with ζ̄ = ζ − ζ?, ζ? = µX3Z

>, µ =
(umax−umin)/(umax+umin), and uµ = µ2(umax−umin)/2,
asymptotically converge to the ellipsoid E ((uµ+1)−1P, ζ?),
implying that x1 asymptotically converges to a region around
Gd, i.e., x1(t) → Gd +

√
λ−1max(P )(uµ + 1), as t → ∞ .

Moreover, if the inequalities

(qi − ζ̄?)>R
−1

(qi − ζ̄?) ≤ 1, (21a)

(qi − ζ?)
>R−1(qi − ζ?) ≤ 1, (21b)

ζ
?
≤ ζ? ≤ ζ?,

R = R22 −R12R
−1
11 R

>
12, i = 1, 6,

R = R11 −R12R
−1
22 R

>
12, i = 1, 6,

X−13 =

(
R11 R12

R>12 R22

)
,

are satisfied; then, x1(t) ∈ X1, x2(t) ∈ X2, x3(t) ∈ X3, and
u(t) ∈ U, for all t ≥ 0.
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Due to space limitations, the proof of this result is omitted.
Remark 1. The switching mechanism introduced in (17)
prevents the occurrence of hypoglycemia by cutting off the
insulin injection. Otherwise, the controller ū in (18), due to
umin > 0 and the parameter uncertainties, would continue
injecting insulin despite that the glucose level is at the
desired value.

A. Practical Implementation

The matrix inequality (19), proposed in Theorem 1, is
linear with respect to (Xi,K3, Yl, Qi, Rj), i = 0, 3, j = 0, 5,
and l = 0, 2, if we fix some values α, γ > 0. Additionally,
we may maximize the volume of the ellipsoid E (R, ζ?) in
order to increase the attraction region. However, we need to
verify the inequalities (20) and (21). In order to facilitate the
design of the control parameters, such that the conditions
of Theorem 1 are satisfied, we propose the following tuning
algorithm:

Algorithm 1 Tuning Algorithm
Input: Constants umin and umax, and vectors qi.
Output: Controller parameters (Xi, K3, Yl, Qi, Rj), i = 0, 3,
j = 0, 5, and l = 0, 2.
1. Select α, δ, γ > 0.
2. Look for a solution (Xi, K3, Yl, Qi, Rj) of LMIs (19) such
that log{det(X3)} is maximized:
- If the solution is feasible, go to step 3.
- Otherwise, return to step 1 and modify α, δ, and/or γ.

3. Look for a solution P of LMIs (20a) and (20b), for the
feasible solution (Xi, K3, Yl, Qi, Rj):
- If the solution is feasible, go to step 4.
- Otherwise, return to step 1 and modify α, δ, and/or γ.

4. Verify that (20c) holds.
- If it does, fix Kl = YlX

−1
l , for l = 0, 2, K3, and the

algorithm ends.
- Otherwise, return to step 1 and modify α, δ, and/or γ,

and continue with the algorithm.

VI. SIMULATION RESULTS

The simulations have been done in MATLAB with the
Euler explicit discretization method and sampling time equal
to 0.1 [s], while the solution to the given LMIs is obtained
by means of SDPT3 solver, among YALMIP in MATLAB.

The proposed controller is tested in a cohort of 4 virtual
T1DM adult patients, which parameters are taken from [15]
and can bee seen in Table I.

Table I
PATIENT PARAMETERS

Patient p2 p3 Ib n

1 4.78× 10−2 8.73× 10−6 15 0.3

2 3.13× 10−2 9.7× 10−6 3 0.22

3 6.76× 10−2 16.1× 10−6 17 0.09

4 0.69× 10−2 0.55× 10−6 81 0.13

The simulation considers a single–meal closed–loop sce-
nario (80 [g] of carbohydrates at 5 hr in 24 hr). The proposed
controller is active since the beginning of the trial. The sys-
tem constraints sets are taken as X1 = (70, 250), X2 = [0, 3),

0 2 4 6 8 10 12 14 16 18 20 22 24
0

50

100

150

200

250

300

350

400

80 [g]

Figure 1. Blood Glucose Level

x3(t) ∈ X3 = (3, 100), and U = [0, 10], and umin = 0.001,
while the initial conditions are set in x1(0) = 160, x2(0) =
0, and x3(0) = 80, for all the patients. The nominal values
are p̄2 = 3× 10−2, p̄3 = 10× 10−6, Īb = 50, and n̄ = 0.1,
and hence, taking into account the patient parameters, we can
establish that p2min = 0.30 × 10−2, p2max = 6.8 × 10−2,
p3min = 0.50 × 10−6, p3max = 19 × 10−6, Ibmin = 2.5,
Ibmax = 100, nmin = 0.08, and nmax = 0.35. Based on
all the previous minimum and maximum values, and taking
Gd = 110 [mg/dl], Id = 30 [µU/ml], and k1 = 0.01, we
are able to compute all the matrices Ai, i = 1, 16, using a
convex polytopic approach.

Then, we apply Algorithm 1 to tune the
controller parameters selecting α = 2000, δ = 0.1,
and γ = 10, and obtaining the following
controller gains K0 = (0, 0, 0.0026, 0, 0, 0.0032),
K1 = (0, 0,−0.0495, 0,−0.1322,−0.2017),
K2 = (0, 0.1241, 0.2041, 0, 0, 0.0497), K3 =
(0, 0,−1.0045, 0,−0.0001, 0.9876), and P =
diag(0.0795, 0.0324, 0.0795, 0.0795, 0.0324, 0.0795).

Thus, the switching controller (17) is implemented to the
whole cohort of patients offering the results depicted by Figs.
1, 2, and 3. The blood glucose for the 4 patients, under
the same carbohydrate intake, is shown in Fig. 1. In the 4
cases, the blood glucose level is taken to the normoglycemic
band (70–180 [mg/dl]) while no hypoglycemic events (<70
[mg/dl]) occur despite the carbohydrate intake. It is also
clear that the blood glucose level never violates the state
constraints and is always around the desired value of 110
[mg/dl]. Moreover, the proposed controller provides a mini-
mal hyperglycemic (>180 [mg/dl]) risk, for the whole cohort.
The control signals, corresponding to the infusion rate, are
shown in Fig. 2, where we also see that the input constraints
are not transgressed. The time evolution of the regulation
errors e1, z2, and e3 is presented in Fig. 3. We can see
that these regulation errors satisfy limt→∞ e1(t) = e1(tr),
limt→∞ z2(t) = k1e1(tr)/(Gd + e1(tr)) (limt→∞ e2(t) =
0), and limt→∞ e3(t) = −Idb, respectively.
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Figure 3. Regulation Errors

VII. CONCLUSIONS

In this paper, we propose a robust controller for the blood
glucose regulation problem in patients with T1DM. The
proposed switching control approach is based on an interval
predictor–based state–feedback that considers the state and
input constraints of the insulin–glucose system dynamics,
i.e., positive states and input, and minimum and maximum
values of the blood glucose level and the insulin infusion
rate. The stability analysis is based on a Lyapunov function
approach, which ensures the asymptotic convergence of the
blood glucose level around the desired value. The synthesis
of the controller is constructive since it is in terms of LMIs.
The simulation results, over a cohort of 4 virtual T1DM adult
patients, demonstrate the performance of the proposed blood
glucose regulation approach.
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