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Abstract— This paper presents a novel approach for solving
the pole placement and eigenstructure assignment problems
through data-driven methods. By using open-loop data alone,
the paper shows that it is possible to characterize the allowable
eigenvector subspaces, as well as the set of feedback gains
that solve the pole placement problem. Additionally, the paper
proposes a closed-form expression for the feedback gain that
solves the eigenstructure assignment problem. Finally, the paper
discusses a series of optimization problems aimed at finding
sparse feedback gains for the pole placement problem.

I. INTRODUCTION

Data-driven control methods have gained popularity in
recent years thanks to their ability to synthesize feedback
controllers directly from historical data [1]–[3]. One major
advantage of these methods is that they eliminate the need
for constructing or identifying a model for the underlying
system to be controlled. This is especially useful in situations
where deriving first-principle models is challenging or where
the identification process may lead to unreliable model
parameters. Despite the popularity of data-driven control, the
problems of data-driven pole placement and eigenstructure
assignment have not been explored until recently [4], [5].

The traditional (i.e., model-based, non-sparse) pole place-
ment and eigenstructure assignment problems have a rich
history, including in practical applications [6], [7]. The pole
placement (eigenstructure assignment) problem consists in
finding a static feedback gain that produces a closed-loop
system where the state matrix has a pre-specified set of
eigenvalues (eigenvalues and eigenvectors) [8]. We refer to
the seminal works [9]–[13] and to the recent papers [14],
[15], which highlight the ongoing interest in these topics.

In general, the feedback gain which solves the pole
placement problem is not unique, adding a certain degree of
freedom on its choice. This can be leveraged to enforce fur-
ther control objectives, for example, by imposing a sparsity
pattern on the feedback gain itself. By using a feedback with
predefined sparsity patterns, or by maximizing the overall
number of zero entries of the feedback gain, the number of
feedback signals can be reduced while still achieving the
desired closed-loop behavior. This can be advantageous in
applications where the number of sensors or feedback signals
is limited as, for example, in complex network systems [16].

In this paper, we address these problems and show that it is
possible to place the closed-loop eigenvalues exactly at any
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desired location by designing a static feedback gain through
open-loop data alone, i.e., without explicit knowledge of the
system matrices. Further, we show that the static gain for
eigenstructure assignment can be found through a closed-
form data-driven expression. Finally, we apply these results
to the design of sparse feedback gains.

Related work. Despite the recent advancements in data-
driven control theory [17]–[19], to the best of our knowledge,
the only works discussing data-driven strategies for pole
placement and eigenstructure assignment are [4] and [5] (the
latter was developed concurrently and independently to the
present paper). Both [4], [5] are based on the behavioral
approach [20] and rely on the Fundamental Lemma [21] to
characterize the behavior of a linear system from a single,
long, experimental trajectory. In contrast, our approach col-
lects data from multiple trajectories, which has proven ad-
vantageous, e.g., when dealing with unstable systems, since
shorter trajectories can be leveraged. A detailed analysis of
the benefits of using multiple (shorter) trajectories over a
single trajectory in control and reinforcement learning can
be found in [22]. It is worth noting that [4] uses Linear
Matrix Inequalities to solve the problem of pole placement
and it does not offer any closed-form solution, while [5] does
not discuss a characterization of the set of static feedbacks
for pole placement. Additionally, neither [4] nor [5] provide
any insights on designing sparse feedback gains, which
is a relatively unexplored topic even in the model-based
framework [16], [23]. This knowledge gap further motivates
our interest in this problem. In [24], the authors propose a
data-driven approach to designing sparse stabilizing feedback
gains, however this method does not assign specific eigenval-
ues/eigenvectors as we do in this paper. Recently, the System
Level Approach to Controller Synthesis has proposed a set
of tools for designing constrained robust, sparse, and optimal
controllers, see [25]. However, the System Level Approach
is based on designing a dynamic compensator, while the
problems of pole placement and eigenstructure assignment
are based on static feedback gains [8].

Paper contribution. This paper presents novel results on
pole placement and eigenstructure assignment with sparse
feedback achieved by using (possibly direct) data-driven for-
mulas. Specifically, we characterize (i) the allowable eigen-
vector subspace and (ii) the set of feedback gains which solve
the pole placement problem, both as a function of data. From
these, we derive (iii) a closed-form expression of the gain that
solves the eigenstructure assignment problem. Additionally,
we (iv) discuss strategies for computing sparse feedback
controllers for the pole placement problem, by incorporat-
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ing our data-driven expressions into non-linear optimization
problems. Finally, numerical simulations demonstrate the
effectiveness of the proposed approach.

Paper organization. The paper is organized as follows.
Section II introduces the problem setting, together with
some classical results on pole placement and eigenstructure
assignment. Section III presents our main expressions for
data-driven pole placement and eigenstructure assignment.
Section IV discusses strategies for the design of sparse
controllers and validates them through numerical examples.
The concluding remarks are left to Section V.

Notation. Let R (N, C) and R+ (N+) denote the set of
real (integer, complex) and strictly positive real (integer)
numbers, respectively. Given a matrix A ∈ Rn×m, Rank(A),
Ker(A), and A> denote the rank, the kernel, and the
transpose of A. In and 0n,m stand for the n × n identity
matrix and n×m zero matrix, respectively (subscripts will be
omitted when clear from the context). The 2-norm of matrix
A is ‖A‖, the Kronecker product between matrices A and
B is denoted by A ⊗ B, and the Hadamard (elementwise)
product by A ◦B. We let vec(·) : Rn×m → Rnm denote the
vectorization operator of a matrix. We let ρ(A) denote the
spectrum of matrix A, i.e., the set of eigenvalues of A. We
let λ∗ denote the complex conjugate of λ ∈ C. Finally, for
an n-dimensional subspace V , we let Basis(V) be a matrix
whose columns form a basis of V .

II. PROBLEM SETUP AND PRELIMINARY NOTIONS

Consider a controllable discrete-time linear system

x(t+ 1) = Ax(t) +Bu(t), (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and input
vectors, respectively, at time t ∈ N, with A ∈ Rn×n and
B ∈ Rn×m, and where we assume that Rank(B) = m. In
this paper we study the problem of computing a controller
K ∈ Rm×n which shapes the closed loop trajectory

x(t+ 1) = (A−BK)x(t) (2)

according to some design objectives. We assume that the
model of the dynamical system (1), i.e., matrices A and
B, is not available and, instead, we leverage a series of
offline open-loop trajectories of (1). In particular, we perform
and collect data from N ∈ N+ experiments of length
T ∈ N+, where xi(0), xiT = vec (xi(1), . . . , xi(T )) and
uiT = vec(ui(0), . . . , ui(T − 1)) are the initial state, the
state trajectory and the input trajectory, respectively, recorded
for (1) during experiment i ∈ {1, . . . , N}. The dataset is
available through matrices

X0 =
[
x1(0) x2(0) . . . xN (0)

]
, (3a)

X =
[
x1
T x2

T . . . xNT
]
, and (3b)

U =
[
u1
T u2

T . . . uNT
]
. (3c)

The following Assumption and Lemma enable us to write
any trajectory of (1) in terms of data collected as in (3).

Assumption 2.1: (Persistency of excitation) Data matrices
X0 and U in (3) satisfy

Rank

([
X0

U

])
= mT + n.

�
Lemma 2.2: (Data-driven trajectories of (1) [26]) Let (3)

be the dataset generated by (1), and let x̄T be any state
trajectory of (1) generated with some initial condition x̄0
and control ūT . Then, there always exist vectors α and β,
of appropriate dimension, such that

x̄T =
[
XKU XK0

] [α
β

]
,

where KU = Basis(Ker(U)) and K0 = Basis(Ker(X0)).
Moreover, x̄0 = X0KUα and ūT = UK0β. �

Assumption 2.1 is typical in data-driven studies and lever-
ages the linearity of (1) to ensure that the collected dataset
(3) is sufficiently informative, i.e., that any state trajectory
x̄T of (1) can be expressed as a linear combination of
the recorded state trajectories X . Lemma 2.2 goes a step
further by decomposing x̄T into its free response (XKUα)
and forced response (XK0β), and by expressing them as a
function of data, for given initial condition x̄0 and input ūT .

In the following we let L = {λ1, . . . , λn} be the set of
desired closed-loop eigenvalues and V = {υ1, . . . , υn} be
the set of desired closed-loop eigenvectors, with λi ∈ C and
υi ∈ Cn, for all i ∈ {1, . . . , n}.1

Assumption 2.3: (Properties of closed-loop eigenvalues
and eigenvectors) We assume that the set of desired eigenval-
ues L of A−BK is closed under complex conjugation, and
that, for each eigenvalue, the geometric multiplicity matches
the algebraic multiplicity. Eigenvectors corresponding to
complex conjugate eigenvalues are complex conjugate. �

We leave the problem of generalizing the results of this
paper to eigenvalues with different geometric and algebraic
multiplicity as the focus for future research, and note that
the condition on the multiplicity of the eigenvalues in As-
sumption 2.3 is met when the elements of L are distinct.

A well-known limitation of the eigenstructure assignment
problem is that it does not allow for arbitrary selection
of eigenvalue/eigenvector pairs through feedback gain K.
Instead, the choice of each eigenvector is constrained to
a specific subspace within the system’s state space. This
restriction is formally expressed in the following theorem.

Theorem 2.4: (Feasibility of eigenstructure assignment
[8]) Using the control law u(t) = −Kx(t) in (1) n
eigenvalues of A − BK may be assigned and m entries of
each corresponding eigenvector can be chosen freely. �

Theorem 2.4 ensures that the eigenvalues in L =
{λ1, . . . , λn} can be freely assigned, but restricts the choice
of each eigenvector υi ∈ Rn in V = {υ1, . . . , υn} to a sub-
space Pi ⊆ Rn, termed the allowable eigenvector subspace
[8]. We recall a second fundamental result which ensures the
existence and uniqueness of K under certain conditions.

1Although both left and right eigenvectors can be considered, in this paper
we shall refer to the right eigenvectors.
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Theorem 2.5: (Uniqueness of feedback for eigenstruc-
ture assignment [11]) Let L = {λ1, . . . , λn} and V =
{υ1, . . . , υn}, with υi ∈ Pi, be the set of desired closed-loop
eigenvalues and eigenvectors, with Rank(

[
υ1 · · · υn

]
) =

n. Let Assumption 2.3 hold, and let Rank(B) = m. Then,
the matrix K such that A − BK has eigenvalues in L and
eigenvectors in V exists and is unique. �

In the pole placement problem, the set of desired closed-
loop eigenvectors is not specified. This leaves some degrees
of freedom in the selection of the columns of V , as long
as υi ∈ Pi (cf. Theorem 3.1). In general, the matrix K
in the pole placement problem is, therefore, not unique. In
the next section we give a data-driven expression for Pi, as
well as a data-driven characterization of the set of matrices
K such that ρ(A − BK) = L. Further, we show that the
unique K can be found as a closed-form function of the data
for the eigenstructure assignment problem. In Section IV we
leverage the flexibility on K for the pole placement problem,
by introducing additional design goals, i.e., by enforcing
sparsity constraints on K.

III. DATA-DRIVEN POLE PLACEMENT AND
EIGENSTRUCTURE ASSIGNMENT

We begin with a data-driven expression to compute Pi, the
allowable eigenvector subspace associated with eigenvalue λi
for system (1). That is, we wish to find the subspace Pi such
that (A−BK)υi = λiυi, for all υi ∈ Pi, and some K. We
remark that Pi is independent of K [8], and in this paper
we compute Pi without any explicit knowledge of system
matrices A and B, but by leveraging only offline data (3).
Throughout the paper, given λi ∈ L, we define

Λi =
[
I λiI λ2i I · · · λT−1i I λTi I

]> ∈ Rn(T+1)×n,
(4)

and matrices Z =
[
InT 0nT×n

]
(i.e., the matrix that

extracts the first nT rows from Λi) and W =
[
0nT×n InT

]
(i.e., the matrix that extracts the last nT rows from Λi).

Theorem 3.1: (Data-driven allowable eigenvector sub-
space) Let λi be a desired closed-loop eigenvalue. The eigen-
vector associated with λi belongs to the following subspace:

Pi = X0KU

[
I 0

]
Ker

([
XKU −WΛiX0KU XK0

])
.

(5)
Proof: First, we notice that if λi and υi are an

eigenvalue and the corresponding eigenvector of A − BK,
then the following must hold

(A−BK)υi = λiυi. (6)

Further, only a trajectory xT starting in υi will always remain
in υi when evolving according to (2). That is, if and only
if x(0) = υi ∈ Pi, then x(t) ∈ Im(υi) for all times t, and
x(t+ 1) = λix(t). For a trajectory of length T , this can be
written as

xT =


λiI
λ2i I

...
λTi I

x(0) =
[
XKU XK0

] [α
β

]
(7)

if and only if x(0) ∈ Pi. From the rightmost equality in (7)
and by noticing that x(0) = X0KUα (cf. Lemma 2.2) one
can conclude that x(0) ∈ Pi if and only if α and β verify[

α
β

]
∈ Ker

([
XKU −WΛiX0KU XK0

])
. (8)

Extracting α from (8) and recalling that

x(0) = υi = X0KUα, (9)

concludes the proof.
Through Theorem 3.1 one can write the allowable eigen-

vector subspace associated to eigenvalue λi for a closed-
loop dynamics (2) as a function of the open-loop data (3).
However, Theorem 3.1 cannot be used to compute a static
feedback controller K. In fact, simply imposing uT =
UK0β with β as in (8) might result in an input generated by
a non-static feedback. Next, we give a condition that restricts
the choice of β so that uT is the result of a static feedback of
the state, i.e., u(t) = −Kx(t). Specifically, in Theorem 3.2
we characterize the set of all static feedback K that precisely
place the eigenvalues of A−BK to the desired set L.

Theorem 3.2: (Data-driven pole placement) Let L =
{λ1, . . . , λn} be the set of desired closed-loop eigenvalues.
Then, ρ(A−BK) = L if and only if K ∈ K, where

K =

{
K :

n⋂
i=1

Ker
([

(I ⊗K)ZΛiX0KU UK0

])
6= 0

}
.

(10)
Proof: Let λi be a desired closed loop eigenvalue and

let x(0) ∈ Pi. Then x(t + 1) = λix(t) = λt+1
i x(0). From

u(t) = −Kx(t) = −Kλtix(0) we write

uT = −


K

K
K

. . .
K




I
λiI
λ2i I

...
λT−1i I

x(0). (11)

We recall that uT = UK0β and x(0) = X0KUα in (11) (cf.
Lemma 2.2) and therefore we can write

UK0β = (IT ⊗−K)ZΛiX0KUα, (12)

for all i ∈ {1, . . . , n}. Equation (12) needs to be verified for
every Λi and therefore the vectors α and β need to satisfy[

α
β

]
∈

n⋂
i=1

Ker
([

(I ⊗K)ZΛiX0KU UK0

])
. (13)

That is, K is a static feedback (cf. (11)) such that ρ(A −
BK) = L if and only if there exist a non-zero vector
[α> β>]> satisfying (13). From this conclusion, the con-
dition (10) on K is directly derived.

Through Theorem 3.2 we can characterize the set of
feedback gains such that ρ(A − BK) = L, that is, all the
feedback gains which solve the pole placement problem for
a given set L. This condition will be used in Section IV with
the aim of extracting matrices K from K which satisfy some
desired sparsity pattern.
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We conclude this section by leveraging Theorem 3.1 and
3.2 to find a closed-form expression for the eigenstructure
assignment problem, i.e., when both L and V are given.
For simplicity, and without affecting the generality of the
approach, we limit the data collection phase in (3) to T = 1.

Theorem 3.3: (Closed-form expression of the feedback
gain for eigenstructure assignment) Let L = {λ1, . . . , λn}
and V = {υ1, . . . , υn}, with υi ∈ Pi, be the set of desired
closed loop eigenvalues and eigenvectors. Let[

αi
βi

]
= Basis

(
Ker

([
XKU − λiX0KU XK0

]))
γi,

(14)
where X , X0, and U are as in (3) with T = 1, and γi satisfies
Basis(Pi)γi = υi. The closed-loop matrix A−BK, with

K = −UK0

[
β1 · · · βn

] (
X0KU

[
α1 · · · αn

])−1
,

(15)
has eigenvalues L and eigenvectors V . �

Proof: From condition (13), we seek the K such that[
αi
βi

]
∈ Ker

([
KX0U UK0

])
, ∀i = {1, . . . , n}, (16)

with αi, βi defined in (14), and where (IT ⊗K)ZΛi = K
from T = 1. We can write condition (16) on K as

[
KX0KU UK0

] [α1 α2 · · · αn
β1 β2 · · · βn

]
= 0, (17)

from which we find that

KX0KU

[
α1 · · · αn

]
= −UK0

[
β1 · · · βn

]
.

We notice that X0KU

[
α1 · · · αn

]
is invertible since both

X0KU and
[
α1 · · · αn

]
are square matrices with full

rank.2 This ensures the existence and uniqueness of K and
concludes the proof.

Thanks to Theorem 3.3 a closed-form solution for the
eigenstructure assignment problem is found. When needed,
Theorem 3.3 can be also used to find a solution for the
pole placement problem by simply selecting any arbitrary
V such that υi ∈ Pi, by leveraging Theorem 3.1. As we
have discussed, fixing L while leaving more freedom on the
choice of eigenvectors V renders K not unique. This allows
for more interesting problems to be solved, for example, by
imposing some sparsity constraints on matrix K. In the next
section we explore strategies to leverage Theorem 3.1 and
Theorem 3.2 to find a sparse K ∈ K. These solutions are
not closed-form but rather based on the solution of bilinear
optimization programs.

2The fact that X0KU is full rank is a direct consequence of Assumption
2.1, see also [26]. The fact that Γ =

[
α1 · · · αn

]
is full rank

can be proved by contradiction. Assume, without loss of generality, that
{δ1, · · · , δn−1}, δi ∈ R, exist such that αn =

∑n−1
k=1 δkαk , i.e., αn

is a linear combination of the remaining columns of Γ, and therefore Γ
is singular. Then, from (9), υn = X0KUαn = X0KU

∑n−1
k=1 δkαk =∑n−1

k=1 δkυk . This would imply that the elements in V are not linearly
independent, contradicting Assumption 2.3.

IV. DATA-DRIVEN POLE PLACEMENT WITH SPARSE
FEEDBACK MATRICES

Consider the pole placement problem with desired closed-
loop eigenvalues L. As previously discussed, each eigen-
vector υi corresponding to eigenvalue λi must belong to a
subspace Pi. Let K in (10) be the set containing all matrices
K such that ρ(A−BK) = L. Then, we can look for a pair
of K and V = {υ1, . . . , υn} that satisfy

arg min
K,V

f1(K)

subject to K ∈ K,
υi ∈ Pi, ∀i ∈ {1, . . . , n},
f2(K) = 0,

(18)

where f1(K) : Rm×n → R and f2(K) : Rm×n → Rq
are some functions of K. We notice that (18) is a bilinear
optimization problem in the variables K and V , which
follows from the definition of K in (10). Different choices of
f1(K) and f2(K) lead to the solution of different problems,
as will be detailed next.

A. Data-driven Minimum-gain Pole Placement with Sparse
Static Feedback

Problem (18) can be cast as a data-driven optimization
problem thanks to the results of Section III. In particular, the
condition on υi ∈ Pi can be imposed through Theorem 3.1,
while K is characterized in Theorem 3.2. We now propose
an optimization-based strategy to compute a static feedback
K with sparsity constraints, directly from data.

Let S ∈ {0, 1}m×n be the binary matrix that specifies the
sparsity structure of feedback K. That is, we wish to find K
such that

Kij =

{
0 if Sij = 1,

? if Sij = 0.
(19)

Now, consider the following optimization problem to find a
K ∈ K which has sparsity constraints as specified by S

arg min
K

{γ1,...,γn}

1

2
‖K‖2F

subject to
∥∥[(IT ⊗K)ZΛiX0KU UK0

]
wi
∥∥ = 0,

wi = Ker
([

(X −WΛiX0)KU XK0

])
γi,

∀i ∈ {1, . . . , n},
S ◦K = 0m×n.

(20)
The above is a data-driven implementation of (18), with
f1(K) = ‖K‖2F and f2(K) = S ◦ K. Minimizing the
norm of the gain in f1(K) reduces the overall control
effort, while f2(K) imposes the desired sparsity pattern on
K. We notice that υi depends on the choice of γi, since
υi = X0KU

[
I 0

]
wi, as a direct consequence of (5).

Remark 1: (Feasibility of (20)) There is no known proce-
dure to determine the feasibility of (20), i.e., if K ∈ K exists
such that S ◦K = 0. In general, assessing the existence of a
sparse static feedback K is an NP-hard problem even when
(A,B) are known [23]. Therefore, in the following, we shall
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assume the feasibility of (20). We refer the interested reader
to [23] for a detailed analytical characterization of the locally
optimal solution of (18) in terms of the eigenvector matrices
of the closed-loop system. �

Remark 2: (Fixed modes of (A − BK) [27]) We recall
that the fixed modes of (A,B) with respect to the sparsity
constraints S are the eigenvalues of A that cannot be changed
using a sparse state feedback. When the fixed modes of
(A,B) do not belong to L, problem (20) becomes unfeasible
and a different sparsity constraint S must be selected. �

We now discuss a numerical implementation of (20).
Example 1: (Data-driven sparse feedback) We consider

the discretized version of a batch reactor system [28] (with
sampling time of 0.1s), with

A =

[
1.178 0.001 0.511 −0.403
−0.051 0.661 −0.011 0.061
0.076 0.335 0.560 0.382

0 0.335 0.089 0.849

]
, B =

[
0.004 −0.087
0.467 0.001
0.213 −0.235
0.213 −0.016

]
,

which is open-loop unstable with σ(A) =
{1.2200, 1.0049, 0.4206, 0.6025}. We set T = 10 and
collect a series of N = n + mT = 24 experiments (3)
satisfying Assumption 2.1. We select the desired closed-
loop eigenvalues L = {−0.3, 0.2, 0.5, 0.7} and the sparsity
pattern

S =

[
1 0 0 0
0 0 1 0

]
.

Problem (20) is implemented in MATLAB and solved using
the fmincon routine. A stabilizing K, satisfying the con-
ditions required by L and S is found, with

K =

[
0.0000 2.7633 2.7324 0.4122
−2.3621 1.2654 −0.0000 1.1906

]
, (21)

and

V =


0.0475 −0.1938 −0.2007 −0.5204
0.9606 −0.8211 −0.6873 0.3220
−0.2581 0.5266 0.5699 −0.2354
0.0914 0.1046 0.4032 −0.7550

 , (22)

where V =
[
υ1 · · · υn

]
. We remark that K and V are

not unique, in general. �

B. Data-driven Maximally Sparse Feedback

As a second example of the application of the results of
Section III to the data-driven design of sparse controllers,
we consider the problem of finding the maximally sparse
feedback K. In this scenario we are not seeking for a
feedback with a defined sparsity pattern, as specified in S,
but rather the one which has the most number of entries
at zero. This is done by removing the specification on the
sparsity pattern and by minimizing

∑
ij |Kij | which is often

used as a proxy for the L0-norm of a matrix. In this case,

problem (18) can be written as

arg min
K

{γ1,...,γn}

∑
ij

|Kij |

subject to
[
(IT ⊗K)ZΛiX0KU UK0

]
wi = 0,

wi = Ker
([

(X −WΛiX0)KU XK0

])
γi,

∀i ∈ {1, . . . , n}.
(23)

This is, again, a bilinear optimization problem. We now
show a numerical implementation of this approach.

Example 2: (Data-driven maximally sparse feedback)
Consider the same problem setting as in Example 1. We let
L = {−0.3, 0.2, 0.5, 0.7} be sets of the desired closed-loop
eigenvalues. By running (23) we find

K =

[
0.0000 1.6901 0.0000 4.4741
−1.9515 0.0000 −1.0042 0.0000

]
and

V =


0.7460 0.5153 0.0752 −0.0053
0.1892 0.4018 0.9439 0.9901
−0.6318 −0.7451 −0.2829 0.1127
−0.0922 −0.1332 −0.1532 0.0834

 .
Despite the non-convexity of (23) we obtain a sparse con-
troller with a total of 4 entries at zero. �

V. CONCLUSIONS

In this paper we consider a data-driven strategy for the
design of, possibly sparse, feedback gains for pole place-
ment and eigenstructure assignment. Given a set of desired
closed-loop eigenvalues L, we characterize the allowable
eigenvector subspaces of the dynamical system described by
unknown (A,B), as well as the set K of feedback gains
such that ρ(A − BK) = L for all K ∈ K. For the
eigenstructure assignment problem, we give a closed-form
data-driven expression for the gain K which assigns the de-
sired closed-loop eigenvalues L together with the associated
desired eigenvectors V . Further, we discuss optimization-
based strategies to find a sparse gain K ∈ K when a desired
sparsity structure needs to be imposed on K, or when the
overall sparsity of K (i.e., the number of zero elements of K)
needs to be maximized. Numerical simulations complement
our analysis. Future work includes a characterization of the
performance of these tools when data is collected with noise,
together with a comparison with model-based methods based
on system identification from data.
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