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Abstract— Complicated first principles modelling and con-
troller synthesis can be prohibitively slow and expensive for
high-mix, low-volume products such as hydraulic excavators.
Instead, in a data-driven approach, recorded trajectories from
the real system can be used to train local model networks
(LMNs), for which feedforward controllers are derived via feed-
back linearization. However, previous works required LMNs
without zero dynamics for feedback linearization, which re-
stricts the model structure and thus modelling capacity of
LMNs. In this paper, we overcome this restriction by providing
a criterion for when feedback linearization of LMNs with
zero dynamics yields a valid controller. As a criterion we
propose the bounded-input bounded-output stability of the
resulting controller. In two additional contributions, we extend
this approach to consider measured disturbance signals and
multiple inputs and outputs. We illustrate the effectiveness of
our contributions in a hydraulic excavator control application
with hardware experiments. To this end, we train LMNs from
recorded, noisy data and derive feedforward controllers used
as part of a leveling assistance system on the excavator. In our
experiments, incorporating disturbance signals and multiple
inputs and outputs enhances tracking performance of the
learned controller. A video of our experiments is available at
https://youtu.be/lrrWBx2ASaE.

I. INTRODUCTION

Learning-based and data-driven methods for analyzing and
designing control systems using collected system data are
of growing interest [1], [2], as they reduce or eliminate
the need for time-consuming and sometimes inaccurate first-
principles-based system modeling. This is particularly advan-
tageous in applications where systems are subject to high-
mix, low-volume manufacturing, such as mobile working
machines for mining and construction, and custom industrial
automation solutions. The classic indirect, data-driven con-
trol approach involves performing system identification [3],
[4] followed by controller synthesis based on the identified
system [5], [6]. For nonlinear systems, there are various
model architectures to choose from, such as neural networks
or Gaussian processes. While these models often have high
modeling capacity, they can be difficult to interpret or derive
controllers from due to the many (hyper)parameters involved.
Additionally, large models may exhibit unfavorable extrap-
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Fig. 1. Controller design for and block diagram of the trajectory tracking
control on a hydraulic excavator [13], the overall system structure is similar
to [7], [14]. This paper focuses on the controller design by learning local
model networks (red) from data (green) and using feedback linearization to
automatically derive feedforward velocity controllers (blue).

olation behavior and can be challenging to evaluate in real-
time on embedded hardware [7]. For some of these short-
comings, local model networks (LMNs) offer a promising
alternative [3] . LMNs can model nonlinear system behavior,
show favorable extrapolation behavior [8], and can even be
adapted online [9], while their simple structure allows for
interpretability [10]. For single-input single-output (SISO)
systems, feedforward controllers can be automatically de-
rived from LMNs through feedback linearization [11], [12].
However, this method was previously restricted to LMNs
without zero dynamics (ZD), which substantially limited
the model structure and, consequently, its applications. In
this paper, we use feedback linearization to automatically
generate feedforward controllers from LMNs. The LMNs are
trained on real world data from a hydraulic excavator, and
the resulting policies are used to control the velocity of its
cylinders in a trajectory tracking application (see Fig. 1).

Recent research [7], [14], [15] has focused on developing
assistance functions for hydraulic excavators (e.g., for level-
ing tasks) that are not yet available in commercial products,
with the goal of reducing workload and increasing produc-
tivity. Modeling the dynamics of excavator hydraulics using
first principles is challenging. The highly nonlinear system
behavior further complicates precise control—leveling with
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centimeter accuracy, for instance, requires years of experi-
ence for human expert operators to master. Moreover, hy-
draulic excavators are designed to be robust and long-lasting,
with limited sensors and computing resources [16]. This con-
strains the range of applicable methods and makes controller
design a challenging task. Pure linear feedback controllers
show poor tracking in practice. Therefore, this work fo-
cuses on the design of nonlinear feedforward controllers for
the hydraulics. The high-mix, low-volume manufacturing of
hydraulic excavators makes them ideal candidates for data-
driven control approaches. Yet the interpretability of learned
models is paramount to ensure safe operation. Controllers
derived from learned LMNs are well suited to the challenges
of excavator control, which will be addressed throughout
this paper. We further extend the existing controller design
method by addressing some of its limitations. In summary,
we make the following contributions:

1) We derive a criterion for when the controller design
from [12] can be applied to LMNs with ZD for the
case where the relative degree is one (Sec. III).

2) We extend the controller design from LMNs via
feedback linearization to multiple-input multiple-output
(MIMO) systems (Sec. V).

3) We extend the controller design to compensate mea-
sured disturbances (Sec. IV).

4) We apply this approach in a trajectory tracking appli-
cation on a real hydraulic excavator (Sec. VI). In our
experiments, controllers with 2) and 3) outperform the
baseline from [12].

A. Related Work

In this section, we discuss related work on feedforward
controller design from LMNs via feedback linearization.
We will also present some existing approaches to data-
driven control for hydraulic excavators, which is the main
application in our experiments.

1) Feedback Linearization of Local Model Networks:
Automatic derivation of feedforward controllers from LMNs
is first introduced in [11]. For controller synthesis via
feedback linearization in general, the ZD (cf. [17]) of the
model need to be stable if they exist. Since the feedforward
controller has internal feedback, unstable ZD may lead to an
unbounded growth of the controller output and it becomes
unusable [18]. In [12] a criterion for the existence of the
ZD is derived in the context of LMNs, however, a criterion
for the stability is not yet available. Therefore, the controller
design in [12] can only be applied to LMNs without ZD. In
our work, we overcome this limitation and avoid potentially
unbounded outputs of the feedforward controller. We propose
to use the bounded-input, bounded-output (BIBO) stability
of the feedforward controller directly as a criterion for when
feedback linearization can be applied to LMNs with ZD.

2) Data-driven Control for Hydraulic Excavators: Sev-
eral recent works address the trajectory tracking problem for
hydraulic excavators using data-driven control [7], [14], [15].
In [15], collected machine data is used to train a multilayer
perceptron (MLP) representing the hydraulics of the system.

Using this model in a simulation environment, a policy (also
a MLP) is trained using reinforcement learning. This yields
a well performing controller. However, the training process
requires long computation times and the resulting black box
model and controller lack interpretability, making the safety
of the system difficult to certify.

Instead of the black-box MLP approach, a differential
inverse kinematics model can be employed to focus the
controller design task on the hydraulics [7], [14], which
we also do in our application. The lower half of Fig. 1
shows the overall control structure that we use for the
trajectory tracking, which is similar to the structure used
in [7], [14]. The desired Tool Center Point (TCP) position
χdes, provided by the trajectory generator, is compared to
the current TCP position χmeas, estimated from the measured
cylinder positions smeas, to generate a desired TCP velocity
χ̇des. Using the differential inverse kinematics model, this is
mapped to the desired cylinder velocities ṡdes. The velocity
controller generates the control signals ujoy from the desired
cylinder velocities and measured pressure dpress. These sig-
nals are the same that would be controlled by an operator
using two joysticks and are thus referred to as joystick
signals in the following. Each signal controls the valves
corresponding to one of the hydraulic cylinders. Notably, the
control performance of the cylinders is not independent as
they are coupled through the kinematics and hydraulics.

Existing methods to learn cylinder velocity controllers rely
on MLPs [14] or Gaussian process regression (GP-R) [7].
Both works require a first principles model for improving ex-
trapolation behavior. Instead, we solely rely on system identi-
fication using LMNs to synthesize velocity controllers using
feedback linearization. The good extrapolation behavior of
LMNs allows us to avoid time-consuming first principles
modelling. While in [7] the GP-R has to be adapted in order
to be used in real-time, the simple structure of the LMN and
the resulting controller allow for fast inference. Compared
to [15], our model structure improves interpretability.

II. PRELIMINARIES

In this section, we introduce the structure of LMNs
and how they can be used to describe nonlinear dynamic
systems. We will further introduce the transformation of
LMNs to state-space representation as well as the resulting
feedforward control law derived in [12], which we base our
subsequent contributions on.

A. Problem Setting

We consider a stable, continuous, real world system

ẋsys(t) = αsys(xsys(t),usys(t), dsys(t)),

ysys(t) = βsys(xsys(t),usys(t), dsys(t))
(1)

with unknown dynamics, inputs usys(t), outputs ysys(t), and
disturbance dsys(t).

Assumption 1: The inputs usys(t), outputs ysys(t), and dis-
turbance dsys(t) can be measured and dsys(t) is independent
of usys(t).
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In our application, this system corresponds to the hy-
draulics of the excavator cylinders, with the joystick signals
as the inputs and the cylinder velocities as the outputs.

B. Local Model Networks

LMNs are a special type of neural network that ap-
proximate nonlinear functions using a combination of local
linear models (LLMs) [3]. The LMN output Ψ(ulin,unl) ∈ R
is calculated as the weighted sum of the LLM outputs
Ψi(ulin) ∈ R as

Ψ(ulin,unl) =
∑K

i=1 Ψi(ulin)Φi(unl), (2)
Ψi(ulin) = θi0 + θi1ulin,1 + . . .+ θiPulin,P , (3)

where the weights Φi(unl) ∈ [0, 1] ⊂ R are the so-called
validity and θij are the parameters of the LLMs. The number
of local models is given as K ∈ N+. An important aspect of
LMNs is that its two input vectors, ulin ∈ RP to calculate the
LLM outputs and unl ∈ RP̃ to calculate the validities, can
be treated individually. This is especially important when
dealing with dynamic processes, where delayed versions of
physical inputs are strongly correlated and should only be
incorporated in ulin, but are omitted in unl. The validity
functions determine in which input region a LLM is valid.
They are normalized, such that

Φi(unl) =
ϕi(unl)∑K
i=1 ϕi(unl)

with
∑K

i=1 Φi(unl) = 1, (4)

where ϕi(unl) is usually chosen as an axis-orthogonal Gaus-
sian, leaving the center and standard deviation for each
dimension in unl as parameters. The described structure is
similar to Takagi-Sugeno fuzzy models (TSFM) [19] and
under certain assumptions they are equivalent [3].

In this work, we utilize the local linear model tree
(LOLIMOT) algorithm with local estimation to fit the pa-
rameters for the LLMs and the validity functions [3]. This
is done by gradually partitioning the input space with axis-
orthogonal splits.

In order to use a LMN as a discrete-time dynamic model
to represent (1), it can be used in a nonlinear autoregressive
with exogenous input (NARX) setup [3]. For a SISO system
with disturbance, the two input vectors for each time step
are

ŷ(k + 1) = Ψ(ulin(k),unl(k)), (5)

ulin(k) =

[u(k −m1 + 1) . . . u(k −m|M| + 1)]⊤

[ d(k − q1 + 1) . . . d(k − q|Q| + 1) ]⊤

[ ŷ(k − n1 + 1) . . . ŷ(k − n|N | + 1) ]⊤

, (6)

unl(k) =

[u(k − m̃1 + 1) . . . u(k − m̃|M̃| + 1)]⊤

[ d(k − q̃1 + 1) . . . d(k − q̃|Q̃| + 1) ]⊤

[ ŷ(k − ñ1 + 1) . . . ŷ(k − ñ|Ñ | + 1) ]⊤

. (7)

The delays for the input, disturbance, and feedback are
given as mj ∈ M, qj ∈ Q, and nj ∈ N for the LLM in-
puts, respectively. For the inputs to the validity, the de-
lays are given as m̃j ∈ M̃, q̃j ∈ Q̃, and ñj ∈ Ñ . The
delay sets M,Q,N ,M̃, Q̃, Ñ ⊂ N+ are hyperparameters

with M̃ ⊆ M, Q̃ ⊆ Q, and Ñ ⊆ N . The maximum de-
lays are defined as M = max(M), Q = max(Q), and
N = max(N ). Similar to (5), a MIMO model can be repre-
sented in a NARX setup by using one LMN per output [3].

Using a series of discrete observations
(usys(tk),ysys(tk), dsys(tk)) from (1) at a constant sampling
rate, the parameters of (5) can be trained using the
LOLIMOT algorithm to obtain a system model (cf. [3]).

C. Feedback Linearization of Local Model Networks

To apply feedback linearization to a LMN as shown in (5),
it must first be transformed into a state-space representa-
tion [20]. In this section, we present the transformation and
the control law derived in [11] for the case without measured
disturbances.

The chosen state-space representation of (5) with
Q = Q̃ = ∅ has the form of the linear parameter-varying
(LPV) system

x(k + 1) = A(Φk)x(k) +B(Φk)u(k) + f(Φk),

ŷ(k) = c⊤x(k)
(8)

with S = M +N −1 states. We define the vector containing
the LLM validities Φi(k) as Φk = Φ(unl(k)). The state
vector x(k) ∈ RS is chosen as

x(k) =

[
[u(k −M + 1) . . . u(k − 1)]⊤

[ ŷ(k −N + 1) . . . ŷ(k) ]⊤

]
. (9)

Since the output depends on past input and output val-
ues, these are incorporated into the state. The system
matrix A(Φk), the input matrix B(Φk), and the offset
term f(Φk)

A(Φk) =
∑K

i=1 Φi(k)Ai, A(Φk) ∈ RS×S , (10)

B(Φk) =
∑K

i=1 Φi(k)Bi, B(Φk) ∈ RS×1, (11)

f(Φk) =
∑K

i=1 Φi(k)fi, f(Φk) ∈ RS (12)

are defined as the weighted sum of the constant LLM param-
eter matrices with the corresponding model validity Φi(k).
The matrices Ai, Bi, and fi are defined according to [12,
Eq. 5, 10, 11]. The last row of the system matrix Ai contains
the linear parameters

b(i)⊤ =
[
b
(i)
M . . . b

(i)
2

]
, (13)

a(i)⊤ =
[
a
(i)
N . . . a

(i)
1

]
(14)

with b
(i)
m as the factor of LLM i for the input delayed by

m time steps, a(i)n as the factor for the feedback delayed by
n time steps, and c(i) as an offset term. Further, b(i)m = 0 if
m ̸∈ M and a

(i)
n = 0 if n ̸∈ N . The constant output matrix

is given as

c⊤ =
[
01×(S−1) 1

]
, c⊤ ∈ R1×S . (15)

In the following, we will use bm(Φk) =
∑K

i=1 Φi(k)b
(i)
m ,

an(Φk) =
∑K

i=1 Φi(k)a
(i)
n , and c(Φk) =

∑K
i=1 Φi(k)c

(i)

as notation for the linear parameters weighted with their
respective validity.
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For feedback linearization, the relative degree δ of a
system needs to be known. We refer to the definition of a
well defined relative degree in [20, Ch. 4]. The control law
can be derived from the feedback linearization of (8), given
as

w(k + δ) = c⊤[
↶∏δ−1

τ=0A(Φk+τ )xw(k)

+
↶∏δ−1

τ=1A(Φk+τ )B(Φk)u(k)

+
∑δ−1

j=0

↶∏δ−1
τ=j+1A(Φk+τ )f(Φk+j)].

(16)

We use notation
↶∏

n
j=1Mj = MnMn−1 · · ·M1 to avoid

ambiguity. The vector xw(k) is chosen as x(k) with
ŷ(k) = w(k) to

xw(k) =

[
[u(k −M + 1) . . . u(k − 1)]⊤

[w(k −N + 1) . . . w(k) ]⊤

]
. (17)

By replacing the desired output with w(k) = v(k − δ − 1)
as the new time-shifted desired output, the feedforward
controller no longer achieves exact tracking, but results in
a causal system [11]. For M̃ = ∅ the LMN is input-
affine and (16) can be solved explicitly for u(k). Otherwise,
the validity vector Φk may depend on u(k), requiring a
numerical solution.

III. PERMISSIBILITY OF FEEDBACK
LINEARIZATION

Feedback linearization requires the ZD of a system – in
our case, a learned LMN – to be stable, if they exist [20].
Otherwise, the output of the resulting feedforward controller
might grow unbounded. In [12], a criterion based on the
delays used was provided to ensure the absence of ZD and
that feedback linearization can be applied. In the first part of
this section, we present a counterexample demonstrating that
the criterion in [12] is not always sufficient and may result
in unbounded controller output. Subsequently, we provide
a novel criterion for the BIBO stability of the resulting
feedforward controller (16) specifically for the case where
the relative degree is one. This new criterion, formulated as
a linear matrix inequality, considers the LMN parameters,
specifically the linear ones. It can be used directly to deter-
mine if the controller design presented in Section II-C can
be applied to a LMN as (8) or if unstable ZD may lead to an
unbounded controller output due to the controller’s internal
feedback.

A. Criterion for Existence of Zero Dynamics

The ZD of a system only exist, if its relative degree is
smaller than the system order [20]. Previous work derived
the relative degree for a LMN to be

δ = min(M∪M̃) (18)

in general [12, Eq. 39]. However, there are multiple cases,
where the relative degree is larger or not well defined
locally. For example, (18) additionally requires bδ(Φk) ̸= 0

if δ /∈ M̃ and therefore b
(i)
δ to have the same sign and be

nonzero for all i ∈ [K] with the notation [K] = {1, . . . ,K}.

Otherwise, bδ(Φk) can become zero locally and would result
in a not well defined relative degree.

According to [12], there are no ZD for |M| = 1 and
M̃ ⊆ M and therefore the feedback linearization can be
performed. The following example shows that this not always
true.

Counterexample: Choosing M = {2}, N = {1, 2},
and M̃ = ∅ fulfills the given condition. We assume pa-
rameters are chosen, such that the relative degree δ = 2 is
well defined. With a single local model K = 1, the validity
Φ1(k) = 1 is constant. Choosing c = 0 results in a linear
time-invariant system. The control law (16) can be written
as the transfer function

U(z)

V (z)
=

z3 − (a21 + a2)z − a1a2
b2z2 + a1b2z

(19)

with a critical pole of z2 = −a1, which is only stable for
−1 < a1 < 1. Therefore, the controller might have an
unbounded output signal for some inputs.

This counterexample shows that a criterion for the ex-
istence of ZD based solely on the delays used must be
even more restrictive than the one proposed in [12]. For the
feedback linearization of a LMN, it is therefore reasonable
to also consider its parameters to avoid overly restricting its
structure.

B. A Novel, Parameter Based Criterion

In this section, we derive a novel criterion for the permis-
sibility of feedback linearization to LMNs.

Definition 1: Following [21], we define the feedforward
controller (16) as BIBO stable if ∀v(k), u(k) ∈ R there exist
κv, κu ∈ R such that ||v(k)|| < κv ⇒ ||u(k)|| ≤ κu.

In the following, we will focus on the case where the
relative degree is one.

Assumption 2: The dynamic LMN (8) has a well defined
relative degree δ = 1 in (x0, u0) ∀x0 ∈ RS , u0 ∈ R.

Using Assumption 2, the control law can be written as

v(k − 1) = b1(Φk)u(k)

+ [b⊤(Φk),a
⊤(Φk)]xv(k) + c(Φk),

(20)

where the vectors b⊤(Φk) = [bM (Φk), . . . , b2(Φk)] and
a⊤(Φk) = [aN (Φk), . . . , a1(Φk)] contain linear parameters
weighted with their validities. The vector xv(k) is x(k) with
ŷ(k) = v(k−2), similarly to (17). We split (20) into a stable
input scheduler and a LPV system following [22]. The LPV
state-space representation

x̂(k + 1) = Â(Φk)x̂(k) + B̂(Φk)v̂(k) + f̂(Φk), (21)

u(k) = ĉ⊤x̂(k) (22)

has S = M − 1 states with the vectors

x̂(k) =
[
u(k −M + 2) . . . u(k)

]⊤
, (23)

v̂(k) =
[
v(k −N) . . . v(k)

]⊤
. (24)
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The system matrix Â(Φk) ∈ RS×S , input matrix
B̂(Φk) ∈ RS×N+1 and the offset term f̂(Φk) ∈ RS×1 are

Â(Φk) = Γ(Φk)
∑K

i=1 Φi(k)Âi, (25)

B̂(Φk) = Γ(Φk)
∑K

i=1 Φi(k)B̂i, (26)

f̂(Φk) = Γ(Φk)
∑K

i=1 Φi(k)f̂i, (27)

which again can be represented as weighted sums of the
constant matrices

Âi =

[[
0M−2×1 IM−2

]
b(i)⊤

]
, (28)

B̂i =

[
0M−2×N+1[
a(i)⊤ 1

]] , (29) f̂i =

[
0M−2×1

c(i)

]
. (30)

Additionally, there is a validity dependent factor

Γ(Φk) =

[
IM−2×M−2 0M−2×1

01×M−2 γ(Φk)

]
, (31)

γ(Φk) = − 1

b1(Φk)
(32)

for the last rows of Â(Φk), B̂(Φk), and f̂(Φk).
Assumption 3: All b(i)1 have the same sign and are non-

zero for i ∈ [K].
Lemma 1: Let Assumptions 2 and 3 hold. Consider the

open-loop dynamics of the feedforward controller (21)

x̂(k + 1) = Â(Φk)x̂(k). (33)

Its equilibrium x̂0 = 0 is globally asymptotically stable
(GAS) if there exists a positive definite matrix P such that

(ΓiÂi)
⊤P (ΓiÂi)− P ≺ 0 ∀i ∈ [K], (34)

Γi =

[
IM−2 0M−2×1

01×M−2 γi

]
, γi = − 1

b
(i)
1

. (35)

The proof of the lemma is given in Appendix II.
Theorem 1: Let Assumptions 2 and 3 hold. The feedfor-

ward controller (20) is BIBO stable if there exists a positive
definite matrix P such that (34) holds.
The proof of the theorem is given in Appendix III

Theorem 1 allows us to apply feedback linearization to
LMNs with ZD while guaranteeing some degree of controller
stability. Note that the type of validity function is not speci-
fied. Depending on the type of function, stronger notions of
stability may apply.

IV. DISTURBANCE COMPENSATION

Real-world systems, such as hydraulic excavators, are
often subject to disturbances. In the following, we derive the
feedforward control law for a LMN (5) that also compensates
disturbances. We consider disturbance signals as inputs to
our model that can be measured online. In the hydraulic
excavator, an example for such a disturbance could be
hydraulic pressure fluctuations, which can be measured with
sensors.

The state-space representation of a LMN (5) including
disturbance is

xd(k + 1) = Ad(Φk)xd(k) +Bd(Φk)u(k)

+Dd(Φk)d(k) + fd(Φk),

ŷ(k) = c⊤xd(k),

(36)

where the disturbance d(k) enters as a second input. There
are S = M +Q+N − 2 states and the extended state-space
vector xd(k) ∈ RS has the form

xd(k) =

[u(k −M + 1) . . . u(k − 1)]⊤

[ d(k −Q+ 1) . . . d(k − 1)]⊤

[ ŷ(k −N + 1) . . . ŷ(k) ]⊤

. (37)

The system matrix Ad(Φk), the input matrices Bd(Φk)
and Dd(Φk), and the offset term fd(Φk) are defined like
(10)-(12) as the linear combination of the constant matrices

Ad,i =


IM−1 0M−1×Q−1 0M−1×N

0Q−1×M−1 IQ−1 0Q−1×N

0N−1×M−1 0N−1×Q−1 ĪN
b(i)⊤ d(i)⊤ a(i)⊤

 , (38)

Bd,i =


0M−2×2

1
0Q−1×2

0N−1×2

b
(i)
1

 , (39) Dd,i =


0M−1×2

0Q−2×2

1
0N−1×2

d
(i)
1

 , (40)

fd,i =

[
0S−1×1

c(i)

]
(41)

with the abbreviations Īr ∈ Rr−1×r and Ir ∈ Rr×r as

Īr =
[
0r−1×1 Ir−1

]
, (42) Ir =

[
Īr

01×r

]
. (43)

The linear parameters for the disturbance are given as
d(i)⊤ = [d

(i)
Q . . . d

(i)
2 ] with d

(i)
q as the factor of LLM i

for the disturbance delayed by q time steps. The new state-
space representation (36) leads to the control law

w(k + δ) =c⊤[
↶∏δ−1

τ=0Ad(Φk+τ )xdw(k)

+
↶∏δ−1

τ=1Ad(Φk+τ )Bd(Φk)u(k)

+
∑δ−δd

j=0

↶∏δ−1
τ=j+1Ad(Φk+τ )Dd(Φk+j)d(k + j)

+
∑δ−1

j=0

↶∏δ−1
τ=j+1Ad(Φk+τ )fd(Φk+j)]

(44)
with δd as the relative degree of the disturbance. Note that
for δd > δ only the disturbances already included in the state
vector xdw(k) are used. For δd ≤ δ future values for d(k)
are required. From this follows another requirement in order
to apply the control law (20).

Assumption 4: The disturbances d(k + j) for all
j ∈ {0, . . . , δ − δd} are known at time step k − 1 or can
be predicted.

For a slowly changing d(k) relative to the sampling rate,
we can estimate d(k + j) ≈ d(k − 1) ∀j ∈ {0, . . . , δ − δd}
as a constant value.

4109



Remark 1: If the disturbance is not independent of the
controller output, stable ZD are not sufficient for the sta-
bility of the feedforward control anymore, as feedback is
introduced.

V. SYSTEMS WITH MULTIPLE INPUTS/OUTPUTS

In the previous sections, we considered systems with a sin-
gle input and a single output. Many real-world systems, such
as hydraulic excavators, have multiple inputs and outputs, for
example three hydraulic cylinders and associated joystick
inputs, which are coupled internally via the kinematics
and hydraulics. In this section, we extend the approach of
feedback linearization to derive feedforward controllers to
LMNs with multiple inputs and outputs.

The state-space representation for a LMN in a NARX
setup with multiple inputs and outputs can be written as

xm(k + 1) =Am(Φm,k)xm(k) +Bm(Φm,k)u(k)

+ fm(Φm,k)

ŷ(k) =Cmxm(k).

(45)

For a system of G inputs and H outputs, this results in a
state vector of dimension S =

∑G
g=1(Mg − 1) +

∑H
h=1 Nh.

The maximum delay of input ug(k) used across all models
is denoted as Mg and the maximum delay of feedback ŷh(k)
as Nh. Similarly to before, the state vector contains delayed
values for the inputs ug(k) and the outputs ŷh(k) and can
be written as

xm(k) =


[ u1(k −M1 + 1) . . . u1(k − 1) ]⊤

. . .
[uG(k −MG + 1) . . . uG(k − 1)]⊤

[ ŷ1(k −N1 + 1) . . . ŷ1(k) ]⊤

. . .
[ŷH(k −NH + 1) . . . ŷH(k) ]⊤

. (46)

The validity vector Φm,k is a concatenation of the valid-
ity vectors of the single LMNs. The design of matrices
Am(Φm,k), Bm(Φm,k), fm(Φm,k), and Cm is similar to (36).
Note that every input-output pair has a relative degree.

Assumption 5: The relative degree δ is well defined and
the same for every input-output pair.
Using Assumption 5, the feedforward control law for the
MIMO system is

w(k + δ) =Cm[
↶∏δ−1

τ=0Am(Φm,k+τ )xw(k)

+
↶∏δ−1

τ=1Am(Φm,k+τ )Bm(Φm,k)u(k) (47)

+
∑δ−1

j=0

↶∏δ−1
τ=j+1Am(Φm,k+τ )fm(Φm,k+j)].

If M̃ = ∅ for all inputs, the control law yields a system of
H linear equations with G unknowns. This can be solved
for H ≤ G or the quadratic error minimized for H > G.

VI. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of training LMNs and
deriving feedforward controllers using feedback linearization
in hardware experiments with a hydraulic excavator. Based

TABLE I
VELOCITY PREDICTION ERROR OF LMNS

RMSE [cm/s]
Model Type Pressure Arm Boom Bucket

(i) SISO M = {1} no 1.619 0.940 1.357
yes 1.518 0.873 0.887

(ii) SISO M = [4]
no 1.606 0.893 1.297
yes 1.487 0.800 1.163

(iii) MIMO M = {1} no 1.557 0.896 1.120
yes 1.487 0.871 1.074

on recorded trajectory data, we train LMNs in NARX struc-
ture to predict the hydraulic cylinder velocities. We then
derive cylinder velocity controllers based on the methods
presented in Sections II-C, IV, and V. We compare the
prediction errors of the LMNs and the tracking performance
of the controllers in hardware experiments.

The hydraulic excavator used is a JCB Hydradig 110W
with three hydraulic cylinders: arm, boom, and bucket (see
Fig. 3). The cylinder velocity tracking controller therefore
has three desired velocities as input and three joystick signals
as output. We evaluate controllers from three types of LMNs:
(i) parallel SISO models with M = {1} following [11], [12]
and serving as a baseline; (ii) parallel SISO models with ZD
and M = [4] fulfilling (34); and (iii) parallel MIMO models
with M = {1} following Section V. For all models we use
N = [8], Ñ = {1}, and M̃ = ∅, such that the controllers
(16), (44), and (47) admit an explicit form. We train each
model type with and without pressure information, treated
as a disturbance following Section IV. The pressures used
are the load sensing and the pump pressure. All models are
trained on 35min and evaluated on 8min of trajectory data
collected from the excavator using pseudo random joystick
signals. While the data is sampled with 100Hz, the models
use a sampling rate of 6.25Hz. The pressure sensor readings
are filtered using a first order lowpass, while the cylinder
velocity is estimated from the position using a Kalman
filter. All models are trained using the LOLIMOT algorithm
with local estimation up to a maximum of 32 LLMs per
LMN. To ensure model (ii) fulfills Assumption 3 and (34),
its parameters are fine-tuned using gradient descent. The
accuracies of the trained LMNs are tested by a forward
prediction and comparison with true, measured data. Joystick
signals and pressure information from the evaluation data are
used as input and previous predictions as feedback. Table I
shows the error of the estimated velocity by the LMN.
The best-performing LMN and controller are highlighted
for each cylinder. Adding pressure information improves the
accuracy for all cylinders and every model type. This is most
prominent for the bucket cylinder with model (i). Models (ii)
and (iii) show better accuracy than model (i) except for the
bucket when pressure is used.

The trajectory tracking controllers run on the real exca-
vator using a dSpace MicroAutoBox II. For evaluation, the
desired trajectory was set to an eight-like figure between four
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TABLE II
VELOCITY TRACKING ERROR USING FEEDFORWARD CONTROLLERS

Controller based on RMSE [cm/s]
Model Type Pressure Arm Boom Bucket

(i) SISO M = {1} no 1.156 0.766 1.368
yes 0.945 0.523 0.776

(ii) SISO M = [4]
no 0.973 0.639 0.895
yes 0.861 0.611 0.939

(iii) MIMO M = {1} no 1.034 0.582 1.078
yes 0.901 0.517 0.811
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Fig. 2. Desired (dark) and measured (light) velocity of the arm (blue), boom
(green), and bucket (red) cylinders over the course of one evaluation cycle
using the controller derived from the SISO model (i) including pressure
information.

points set in the operating space (see Fig. 3 or Video1). This
cycle was repeated twice per controller. Table II shows the
velocity tracking error of the cylinders. Similar to simulation,
we see smaller tracking errors when using pressure infor-
mation in almost every case. Without pressure, controllers
based on models (ii) and (iii) show significantly better
performance than (i). When using pressure, controllers based
on models (ii) and (iii) have a noticeable smaller error only
in case of the arm. For the bucket, the controller based
on model (i) also has the smallest tracking error. The best
performing controller in the case of arm and boom switch
when compared to velocity prediction. In summary, the
extensions of the SISO model inversion to MIMO, models
with ZD, and disturbance compensation each provide an
improvement, which highlights the importance of all three
contributions. However, in this application, the combination
of pressure with MIMO models or models with ZD does
not further improve performance. Reasons for this can be,
e.g., redundancy of the pressure information when using all
joystick signals as inputs. To determine the repeatability of
the experiment, the cycle was repeated six times for the con-
troller from model (i) with pressure, resulting in a standard
deviation of the RMSE of 0.604mms−1, 0.312mms−1, and
0.297mms−1 for arm, boom, and bucket, respectively. Fig. 2
shows the desired and the from the measurements estimated
cylinder velocities using the controller from model (i) with
pressure information.

VII. CONCLUSIONS AND FUTURE WORKS

We studied the extension of feedforward controller design
by feedback linearization of LMNs to MIMO models and
disturbance compensation. Further, we derived a criterion

1https://youtu.be/lrrWBx2ASaE

1 2

34

21

3 4 Boom

Arm

Bucket

Tool Center Point

Fig. 3. The hydraulic excavator (JCB Hydradig 110W) with controlled
hydraulic cylinders and the reference tool center point trajectory tracked
in our experiments (top). The configurations of the excavator at the corner
points (1-4) of the trajectory are shown at the bottom.

for BIBO stability of the resulting controller for the case
where the relative degree is one, which allows the approach
to be applied to models with ZD. We showed that this
method can be used in a complex real world application with
small datasets, noisy measurements, and limited computing
resources. Using data collected from a real hydraulic exca-
vator, we trained LMNs in a NARX structure and evaluated
the controllers in trajectory tracking hardware experiments.
The results highlight the effectiveness of our theoretical
contributions: The extensions to disturbance compensation,
MIMO systems, and models with ZD all improve tracking
performance compared to the baseline controller from [12].
Further, the advantages of our data-driven approach – no
tuning and few hyperparameters during model training –
are illustrated by our example in a high-mix, low-volume
production setting.

While the focus of this work was the BIBO stability of
the feedforward controller, criteria for stronger notions of
stability, such as input-to-state stability, can be useful. Also,
a stability criterion for the controller derived from the MIMO
system could be the focus of future work. To ensure stability
of the whole system, the dynamics of the outer closed loop
have to be considered as well.
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APPENDIX I
VALIDITY TRANSFORMATION

Lemma 2: Given are the validity vector
Φ = [Φ1 . . .ΦK ]⊤ with

∑K
i=1 Φi = 1, 0 ≤ Φi ≤ 1 and

the parameters b(i) = [b
(i)
M . . . b

(i)
2 ]⊤, i ∈ [K]. Let all

b
(i)
1 ̸= 0 for i ∈ [K] have the same sign. Then
∀Φ∃Φ̄ : 1∑K

i=1 Φib
(i)
1

(∑K
i=1 Φib

(i)
)

=
∑K

i=1
Φ̄i

b
(i)
1

b(i)

with
∑K

i=1 Φ̄i = 1, 0 ≤ Φ̄i ≤ 1.

Proof: Choose Φ̄i =
b
(i)
1 Φi∑K

j=1 b
(j)
1 Φj

, such that

∑K
i=1

Φ̄i

b
(i)
1

b(i) = 1∑K
j=1 b

(j)
1 Φj

(∑K
i=1 Φib

(i)
)
. (48)

With the same sign of all b(i)1 ,
∑K

i=1 Φ̄i = 1 and 0 ≤ Φ̄i ≤ 1
follows.

APPENDIX II
PROOF OF OPEN-LOOP STABILITY CRITERION

Proof: By applying Lemma 2 from Appendix I to
the last row of the combined system matrix Â(Φk) of the
controller (21), it can be rewritten as

Â(Φ̄k) =
∑K

i=1 Φ̄i(k)ΓiÂi (49)

with the alternative activation Φ̄k. In [23, Thm. 4.2] it has
been shown that a fuzzy system with K linear models

x̄(k + 1) =
∑K

i=1 ΦiĀix̄(k) (50)

with x̄(k) ∈ RS , Āi ∈ RS×S and normalized weights∑K
i=1 Φi = 1, 0 ≤ Φi ≤ 1 is globally asymptotically sta-

ble if ∃P ≻ 0 Ā⊤
i PĀi − P ≺ 0 ∀i ∈ [K]. By choosing

Φi = Φ̄i(k) and Āi = ΓiÂi, the claim follows.

APPENDIX III
PROOF OF BIBO STABILITY OF CONTROLLER

Proof: When applying Lemma 2 to the last rows of
B̂(Φk) and f̂(Φk) of the combined affine input and offset

f̂s(Φk, v̂(k)) = B̂(Φk)v̂(k) + f̂(Φk), (51)

it can be seen that they can also be represented as sum of
constant matrices weighted with alternative validities and
thus are bounded. Thus, f̂s(Φk, v̂(k)) is bounded for any
bounded input v̂(k).

The shift ∆x̂(k) of the coordinate transformation of the
state x̂s(k) = x̂(k) +∆x̂(k) can be chosen as

∆x̂(k) = Â(Φk)∆x̂(k)− f̂s(Φk, v̂(k)), (52)

such that

x̂(k + 1) = Â(Φk)x̂(k) + f̂s(Φk, v̂(k))

⇔ x̂s(k + 1)−∆x̂(k) = Â(Φk)(x̂s(k)−∆x̂(k))

+ f̂s(Φk, v̂(k))

⇔ x̂s(k + 1) = Â(Φk)x̂s(k)
(53)

is GAS with Lemma 1. The matrix Â(Φk) − I is non-
singular, since the eigenvalues are given as λ − 1, with λ
as the eigenvalues of Â(Φk). Due to the GAS, we know
λ ̸= 1 and with (52) follows

∆x̂(k) = (Â(Φk)− I)−1f̂s(Φk, v̂(k)). (54)

With the matrix Â(Φk)−I as non-singular, its multiplication
to a vector provides an invertible and bounded transformation
from one Banach space to another. With the bounded inverse
theorem follows that its inverse (Â(Φk) − I)−1 is also
bounded. Therefore, ∆x̂(k) and thus x̂(k) is bounded if
v̂(k) and thus f̂s(Φk, v̂(k)) is bounded. The output u(k) is
part of the state x̂(k).
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