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Abstract— The solution of optimal control problems is funda-
mental to numerous concepts, such as model predictive control.
Despite recent advancements, solving these problems remains a
challenge, particularly with complex systems involving multiple
states. Employing reduced order models is a strategy to simplify
these problems, but accurately estimating system states from
output measurements continues to be difficult. We address the
challenge of reconstructing the state of a linear dynamical
system using measured input and output data, intending to
use this reconstructed state in an optimal control framework,
reducing the problem size. Our objective is to minimize the
discrepancy between the optimal solution derived from the true
system state and that from the reconstructed state. We approach
the reconstruction problem through the lens of observability
within a finite horizon, which allows us to confine our search to
a subspace of the original state space containing only observable
components. This confinement effectively yields a reduced-order
system representation. We delineate conditions under which
the reconstruction problem can be solved and demonstrate the
practicality of our approach with a case study.

I. INTRODUCTION

Solving optimal control problems is at the core of many
methodologies, such as model predictive control (MPC) [1],
[2]. One key challenge in optimal control is the trade-off
between prediction accuracy and computational complexity
of the used mathematical model. Since the optimization is
typically performed online in real time, the model must not
be too complex.

In this work, we are concerned with high-dimensional
linear systems. Despite their linear nature, they are often
challenging because the computational complexity associated
with solving optimization problems appearing in MPC scales
in general cubically with the state dimension [3], [4]. While
one could aim to use data-driven control approaches [5],
[6], one would still need to consider input/output data with
the length of the state dimension to fix the initial state of
the predicted trajectory. Furthermore, harvesting the insight
contained in an available model might be challenging.

One possibility to alleviate this problem is to reduce the
mathematical model in dimension, and then use it as a
prediction model; see, e.g., [7], [8], [9], [10]. The reduction
step constrains the system dynamics to a low-dimensional
subspace of the original state space.

A popular method for model reduction is balanced trunca-
tion [11], [12]. The core idea is to focus on directions of the
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state space which are equally well to control and to observe.
The controllability and observability measures are, however,
based on the infinite-time behavior of the system [12].

We argue that this is not the best criterion for many
methods using optimal control problems such as MPC, as
often they are used for transitional processes where the goal
should be achieved in finite, not infinite time. Consequently,
we are interested in a subspace that captures the system
behavior over this finite horizon. For example in MPC this
might be sufficient because the prediction happens repeatedly
in closed-loop with updated information on the system state.

Another problem in using “off-the-shelf” reduction meth-
ods like balanced truncation in our context is that balanced
truncation is based on the minimal realization of the transfer
function associated with the dynamical system. This means
that only system trajectories with zero initial state are
considered. In many control applications, this is justifiable,
because the system solutions that are not modeled by the
minimal realization are not influenced by the control anyway.
Furthermore, they decay exponentially fast, so they are
neglectable for the long-term system behavior. For example
in MPC, we want to find – given the current state of the
system – the optimal input sequence over the finite prediction
horizon. The unmodeled solutions might very well play a
role in the system’s short-term behavior, so not knowing
them might lead to an uneducated choice of the optimal input
sequence over the horizon.

The contribution of this work is the characterization of a
low-dimensional subspace to which the system description
is restricted, based on the finite-time behavior of the system.
We focus on the output feedback problem, i.e., full-state
measurement is unavailable. Thus, we need to reconstruct
the state with a suitably tailored observer. For this, we adapt
the scheme from [8]. There, the observer is not based on its
asymptotic properties, but the most recent input/output data
is used to infer the best possible current state. We put special
focus on the problem of using the available input/output
information to infer a state that contains the most important
information with respect to the system behavior on the
finite prediction horizon. All unnecessary information for this
horizon is neglected.

A closed-loop analysis of the optimization-based con-
troller, such as MPC, in conjunction with our proposed
reconstruction method, is out of the scope of this paper and
will be the focus of future work.

We structure the paper as follows. In Section II, we
introduce the considered system class, while Section III
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outlines the considered problem. In Section IV, we present
our solution strategy for this problem. Section V illustrates
the approach for an example system and we give a conclusion
in Section VI.

Notation: We denote the field of real numbers by R
and the group of integers by Z. For a map f : X → Y and
a subset M ⊆ X , the restriction of f to M is f |M .

An inner product space over R is the quadruple
(V,+, ·, gV ) where (V,+, ·) is a R-vector space and gV : V ×
V → R is an inner product. We denote the evaluation of gV
at v, v′ by gV (v, v

′) = ⟨v, v′⟩V . The inner product implies
the norm ∥v∥V :=

√
⟨v, v⟩V .

Let V and W be finite dimensional inner product spaces
and consider a linear map A : V → W . The subspace
ranA := {Av | v ∈ V } ⊆ W is called its image and the
subspace kerA := {v | Av = 0} ⊆ V its kernel. Its adjoint
A† : W → V is defined by ⟨Av,w⟩W = ⟨v,A†w⟩V for all
v ∈ V and w ∈ W . If A is surjective, its pseudoinverse is
the map A♯ :=A†(AA†)−1 : W → V , and A♯w is the unique
solution of Av = w of smallest possible norm.

Let U1, U2 be subspaces of V . We say that V is the direct
sum of U1 and U2, denoted V = U1 ⊕ U2, if V = U1 + U2

and U1 ∩ U2 = {0} holds. There is one and only one linear
map P : V → V with P 2 = P , ranP = U1 and kerP = U2,
which we call the projection on U1 along U2. [13, Sec. 6.6].
A vector v ∈ V is contained in U1 if and only if v = Pv
holds. We can uniquely express any vector v ∈ V as a sum
of vectors in U1 and U2, i.e., v = Pv + (idV − P )v.

The orthogonal complement of a subspace U ⊆ V is
U⊥ := {v ∈ V | ∀u ∈ U : ⟨v, u⟩V = 0}. Then, V = U⊕U⊥.

Additionally, V ×W can be made into an inner product
space by letting (v, w)+α(v′, w′) := (v+αv′, w+αw′) and
⟨(v, w), (v′, w′)⟩V×W := ⟨v, v′⟩V + ⟨w,w′⟩w for v, v′ ∈ V ,
w,w′ ∈W and α ∈ R.

Let I ⊂ Z be an interval. This allows the construction
of a new inner product space V I := {f : I → V } where
(f + αg)(t) := f(t) + αg(t) and

⟨f, g⟩V I :=
∑
t∈I

⟨f(t), g(t)⟩V

for f, g ∈ V I , α ∈ R and t ∈ I .
If I is an empty interval, then the set V I only contains

one element, which we denote by ⋄.
Consider t0, t1, t2 ∈ Z with t0 ≤ t1 ≤ t2, and let

f1 ∈ V [t0,t1) and f2 ∈ V [t1,t2). Then, their concatenation
– denoted by f1f2 – is the map f ∈ V [t0,t2) defined by

f(t) :=

{
f1(t) if t ∈ [t0, t1),
f2(t) if t ∈ [t1, t2).

II. PRELIMINARIES

We restrict our analysis to discrete-time systems. We
thoroughly introduce the system class that we consider,
which is mainly motivated by [14], [15], [16]. They are
characterized by a discrete underlying time set T , which is
defined as a subgroup of (R,+). We use T = Z as the
time set throughout this work. Since Z is always implicitly

understood to be the time set, we will not explicitly mention
it. All intervals are restricted to Z, e.g., [a, b) is to be read
as {t ∈ Z | a ≤ t < b}.

We consider linear systems with outputs defined as fol-
lows:

Definition 1. A linear system with outputs is the collection
S = (X,U, Y, ϕ, h) consisting of:

• An inner product space X with dimension dimX =
n <∞ called the state space of S ;

• An inner product space U with dimension dimU =
m <∞ called the control-value space of S ;

• An inner product space Y with dimension dimY = q <
∞ called the measurement-value space of S ;

• A map ϕ : D → X , with

D = {(t1, t0, x, ω) |
t0, t1 ∈ Z, t0 ≤ t1, x ∈ X, ω ∈ U [t0,t1)},

the transition map of S , and;
• A map h : Z×X → Y , the measurement map of S ,

such that the following properties hold:
• For each triple t0, t1, t2 ∈ Z with t0 < t1 < t2, if
ω0 ∈ U [t0,t1) and ω1 ∈ U [t1,t2), and if x0 ∈ X is a
state so that

ϕ(t1, t0, x0, ω0) = x1 and ϕ(t2, t1, x1, ω1) = x2,

then ϕ(t2, t0, x0, ω) = x2 for ω = ω0ω1. (semigroup)
• For each t ∈ Z and each x ∈ X , we have ϕ(t, t, x, ⋄) =
x for the empty sequence ⋄ ∈ U [t,t). (identity)

• For each pair t0, t1 ∈ Z with t0 < t1, the two maps

X × U [t0,t1) ∋ (x, ω) 7→ ϕ(t1, t0, x, ω) ∈ X

and X ∋ x 7→ h(t1, x) ∈ Y are linear. (linearity)

We call elements of X states, elements of U control
values, elements of Y measurement values and maps ω ∈
U [t0,t1) controls. The transition map ϕ has an intuitive
interpretation. It defines – with given control ω ∈ U [t0,t1)

– the state ϕ(t1, t0, x0, ω) ∈ X of the system at time t1
if the system was in state x0 ∈ X at time t0. We say that
ξ ∈ X [t0,t1] is a path or solution of S on [t0, t1] if there exists
a control ω ∈ U [t0,t1) such that, for each pair t, s ∈ [t0, t1]
with t ≥ s, the statement ξ(t) = ϕ(t, s, ξ(s), ω|[s,t)) is
true. For a specific control ω, we denote the set of all such
solutions by Lt0,t1(ω).

While we state all our results for systems as in Defini-
tion 1, we focus in Section V on time-invariant systems.

Definition 2. A linear system with outputs S =
(X,U, Y, ϕ, h) is time-invariant if for each ω ∈ U [t0,t1), each
x ∈ X and each τ ∈ Z the equalities

ϕ(t1, t0, x, ω) = ϕ(t1 + τ, t0 + τ, x, ωτ )

h(t0, x) = h(t0 + τ, x)

hold, where ωτ ∈ U [t0+τ,t1+τ), ωτ (t) := ω(t− τ).
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III. PROBLEM FORMULATION

We consider an arbitrary linear system with outputs S =
(X,U, Y, ϕ, h). For clearer readability, we will refer to S just
as “the system” S . We look at the following scenario.

Scenario 1. Let t0, t1 ∈ Z with t0 < t1. Suppose that S is
in the state xs a time t0, and that the control ω0 ∈ U [t0,t1)

is applied to the system. The resulting solution of S on
[t0, t1] is ξ0 ∈ Lt0,t1(ω0), with initial state ξ0(t0) = xs and
terminal state xf = ξ0(t1) = ϕ(t1, t0, xs, ω0). The associated
measurement is λ0 ∈ Y [t0,t1], given by λ0(t) = h(t, ξ0(t)).

Additionally, let t2 ∈ Z with t1 < t2. We consider the
system on the interval [t1, t2]. In an optimal control setting
in finite time, we are interested in selecting a control ω ∈
U [t1,t2) such that – given the initial condition (t1, xf) – the
system solution behaves “optimally” on [t1, t2]:

Pt1,t2(xf) : minimize
ω ∈ U [t1,t2)

⟨λ, Q̃λ⟩Y (t1,t2] + ⟨ω, R̃ω⟩U [t1,t2)

subject to λ(t) = h(t, ξ(t)),

ξ(t) = ϕ(t, t1, xf , ω|[t1,t)),
(1)

where Q̃ ⪰ 0 and R̃ ≻ 0, with Q̃ ̸= 0.
The optimal control problem (1) requires knowledge of

the system state xf at the current time t1. In our setting,
however, the state information itself is not directly available,
but only control and measurement values.

For this reason, the optimal control problem is accom-
panied by a reconstruction problem, in which we seek to
leverage the available measurement and control information
over the past interval [t0, t1] to estimate or reconstruct a state
x1 ∈ X at time t1, which is a “good” approximation for
xf . Then, x1 is used as an estimate for xf , i.e., the optimal
control problem Pt1,t2(x1) is solved instead of Pt1,t2(xf).

This approach is motivated by [8]. In particular, we do not
rely on the structure of a Luenberger observer to reconstruct
a state, as done in, e.g., [7]. The motivation for this is that
we do not want to design an observer that asymptotically
converges to the true system state, but we want to use the
available information (ω0, λ0) on [t0, t1] to infer a state at
time t1 which brings us in the best position to solve (1)
without knowing the true system state exactly. This leads to
the following problem formulation.

Problem 1. Consider Scenario 1. Use the available infor-
mation (ω0, λ0) to infer a path ξ ∈ Lt0,t1(ω0) such that, for
each t ∈ [t0, t1], the equality λ0(t) = h(t, ξ(t)) holds.

The intuitive explanation for this problem formulation is
that we want to find a solution for S on [t0, t1] that explains
the available information. Then, the state x1 = ξ(t1) can be
used as an estimate for the true system state xf at time t1.
By doing so, we have exploited all information available to
us on the interval [t0, t1].

The conclusion that we can draw if Problem 1 admits a
solution is that xf = x1 could hold, but – as we will see –
it does not have to. We discuss the consequences in the later

sections; specifically the question of how possible degrees
of freedom can be used in solving Problem 1.

The fact that xf ̸= x1 might be true stems from our
assumption that the dimension of the state space X is
“very large”. We can now be more precise. In particular,
we assume that n = dimX and q = dimY are such that
it is not economical from a computational perspective for
Scenario 1 to consider intervals that lead to measurement
spaces with dimensions larger than n. By this, we mean that
dimY [t0,t1] < n and dimY (t1,t2] < n certainly holds. This
will imply that (ω0, λ0) does not infer an unique solution ξ.

IV. OBSERVABILITY-BASED RECONSTRUCTION

First, for notational convenience, we introduce – for t, s ∈
Z with t ≥ s – the map

φ(t, s) : X → X, x0 7→ φ(t, s)x0 := ϕ(t, s, x0, 0)

which is linear by linearity of S . With this map, the solutions
ξ ∈ Lt0,t1(0) with t, s ∈ [t0, t1] satisfy ξ(t) = φ(t, s)ξ(s).

Assumption 1. The map φ(t + 1, t) is bijective for each
t ∈ Z.

Remark 1. Note that this also implies that φ(s, t) is bijective
for all s > t+1, since φ(t+2, t) = φ(t+2, t+1)φ(t+1, t)
is bijective by composition, and so on inductively.

Since we want to study S both on [t0, t1] an [t1, t2], we
first state some required intermediate results on an arbitrary
interval of the form [σ, τ ] with −∞ < σ < τ <∞.

Theorem 1. Let ω ∈ U [σ,τ) be arbitrary. For each pair
(t0, x0) ∈ [σ, τ ] × X , there exists a unique solution ξ ∈
Lσ,τ (ω) with ξ(t0) = x0.

Proof. Note that, under Assumption 1, the map f0 : x 7→
ϕ(t0, σ, x, ω|[σ,t0)) is bijective, with inverse given by
f−1
0 : x̂ 7→ φ−1(t0, σ)(x̂ − ϕ(t0, σ, 0, ω|[σ,t0))). This im-

plies that a solution ξ ∈ Lσ,τ (ω) with ξ(t0) =
ϕ(t0, σ, ξ(σ), ω|[σ,t0)) = x0 always exists, and that it sat-
isfies ξ(σ) = f−1

0 (x0). We can construct such a solution by
defining ξ(t) = ϕ(t, σ, f−1

0 (x0), ω|[σ,t)) for each t ∈ [σ, τ ].
We prove uniqueness by contradiction. For this, assume that
there exists ψ ∈ Lσ,τ (ω) with ψ(t0) = x0 and ψ ̸= ξ. Using
the same argument as above, ψ(σ) = f−1

0 (x0) = ξ(σ) must
hold. Then, for each t ∈ [σ, τ ], we have

ψ(t) = ϕ(t, σ, ψ(σ), ω|[σ,t)) = ϕ(t, σ, ξ(σ), ω|[σ,t)) = ξ(t)

since ξ, ψ ∈ Lσ,τ (ω), which contradicts the assumption.

We further examine linear combinations of possible solu-
tions of S on [σ, τ ].

Lemma 1. Consider arbitrary ω1, ω2 ∈ U [σ,τ), and suppose
that ξ1 and ξ2 are solutions of S on [σ, τ ] with ξ1 ∈ Lσ,τ (ω1)
and ξ2 ∈ Lσ,τ (ω2). Then, for arbitrary α, β ∈ R, the
following holds:

ξ = αξ1 + βξ2 ∈ Lσ,τ (αω1 + βω2).
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Proof. Let t, s ∈ [σ, τ ] with t ≥ s. We have

ξ(t) = αϕ(t, s, ξ1(s), ω1|[s,t)) + βϕ(t, s, ξ2(s), ω2|[s,t))
= ϕ(t, s, αξ1(s) + βξ2(s), αω1 + βω2|[s,t))
= ϕ(t, s, ξ(s), αω1 + βω2|[s,t)),

where we have used linearity of S .

We can use this result to decompose solutions of S .

Theorem 2. Let ω ∈ U [σ,τ) and consider an arbitrary ξ̃ ∈
Lσ,τ (ω). Then, Lσ,τ (ω) = {ξ + ξ̃ | ξ ∈ Lσ,τ (0)}.

Proof. On the one hand, let ψ ∈ Lσ,τ (ω) be arbitrary. Then,
Lemma 1 implies that ξ = ψ− ξ̃ ∈ Lσ,τ (ω− ω) = Lσ,τ (0),
i.e., we have ψ = ξ+ ξ̃ with ξ in Lσ,τ (0). On the other hand,
let ξ ∈ Lσ,τ (0) be arbitrary. Relying again on Lemma 1, we
have that ψ = ξ + ξ̃ ∈ Lσ,τ (0 + ω) = Lσ,τ (ω) holds.

Apparently, the specific solution set Lσ,τ (0) plays a promi-
nent role in describing an arbitrary solution set Lσ,τ (ω). We
proceed by further studying the structure of this set.

Corollary 1. Lσ,τ (0) is a subspace of X [σ,τ ].

Proof. This follows directly from Lemma 1.

As a next step, we establish that the state space X and the
space Lσ,τ (0) of autonomous solutions are closely related.

Lemma 2. Let s be an arbitrary element of [σ, τ ]. Then, the
map

Φs
σ,τ : Lσ,τ (0) → X, ξ 7→ Φs

σ,τ ξ := ξ(s)

is a vector space isomorphism.

Proof. For linearity, note that Φs
σ,τ (αξ1 + βξ2) = αξ1(s) +

βξ2(s) = αΦs
σ,τξ1 + βΦs

σ,τξ2 holds. Now consider ξ ∈
Lσ,τ (0) and assume that ξ ∈ kerΦs

σ,τ i.e., ξ(s) = 0 holds.
This implies ξ(σ) = 0 under Assumption 1 and linearity
of φ−1(s, σ), since ξ(σ) = φ−1(s, σ)ξ(s). But then, for
each t ∈ [σ, τ ], ξ(t) = φ(t, σ)ξ(σ) = 0 by linearity of
φ(t, σ), i.e., kerΦs

σ,τ = {0}. Therefore, Φs
σ,τ is injective.

Additionally, Theorem 1 states that for each x0 ∈ X , there
exists a solution ξ ∈ Lσ,τ (0) with ξ(s) = x0, so that Φs

σ,τ

is also surjective.

Let us denote the inverse of Φs
σ,τ by Ls

σ,τ , i.e., Φs
σ,τL

s
σ,τ =

idX . This allows the identification X ∋ x0 ∼= ξ ∈ Lσ,τ (0)
via ξ = Ls

σ,τx0. Then, ξ is the unique element of Lσ,τ (0)
that satisfies ξ(s) = x0.

A. Observability

We first turn our attention to the optimal control problem
(1). Hence, we want to study, for ω ∈ U [t1,t2) and x0 ∈ X
arbitrary, the influence of the initial condition (t1, x0) on the
system solution ξ on [t1, t2]. For this, let ξ̃ denote the path in
Lt1,t2(ω) defined by ξ̃(t1) = 0. Using Theorem 2, we may
decompose ξ ∈ Lt1,t2(ω), which is defined by ξ(t1) = x0,
as ξ = ξ̂ + ξ̃, where ξ̂ ∈ Lt1,t2(0) is fixed by ξ̂(t1) = x0.
Next, we map ξ to the measurement space Y (t1,t2] via

λ(t) = h(t, ξ(t)) = h(t, ξ̂(t)) + h(t, ξ̃(t)) = λ̂(t) + λ̃(t),

with the “obvious” definition of λ̂ and λ̃, where we have
used linearity of h(t, ·). We shall denote the linear map that
sends ω to λ̃ by Gt1,t2 . Furthermore, using Lemma 2, we
identify ξ̂ ∼= x0 via the isomorphism Lt1

t1,t2 . Then, we denote
by Ft1,t2 the linear map that sends x0 to λ̂.

Thus, we obtain λ = Ft1,t2x0+Gt1,t2ω ∈ Y (t1,t2], which
motivates the following notions:

Definition 3. The state x0 ∈ X is called indistinguishable
from 0 on [t1, t2] if it is an element of Wt1,t2 := kerFt1,t2 .
The states x0 ∈ W ⊥

t1,t2 are called observable on [t0, t1].

Note that observable is not the negation of indistinguish-
able from 0. Since X = W ⊥

t1,t2 ⊕ Wt1,t2 , any state xf ∈ X
can be decomposed as xf = v̂f + ŵf , having a component
v̂f ∈ W ⊥

t1,t2 that is observable on [t1, t2] and a component
ŵf ∈ Wt1,t2 which is indistinguishable from 0 on [t1, t2].
The states in Vt1,t2 do not have non-trivial parts that are
indistinguishable from 0 on [t1, t2].

In Scenario 1, if xf is indistinguishable from 0 on [t1, t2],
then it has the same influence on all possible measurements
on [t1, t2] as the zero state. This implies that, in order to
solve Problem 1, we only need to know the parts of xf that
are observable on [t1, t2] if we aim to solve Pt1,t2(xf).
To be more precise, the optimal solutions to Pt1,t2(xf)
and Pt1,t2(v̂f) coincide. One can see this by explicitly
computing the optimal solution ω⋆ ∈ U [t1,t2) to Pt1,t2(xf):

ω⋆ = −(R̃+G†
t1,t2Q̃Gt1,t2)

−1G†
t1,t2Q̃Ft1,t2xf . (2)

B. Reconstruction

In this section, we focus on Problem 1. In particular,
considering the insights from Section IV-A, we are interested
in the observable part of x1 = ξ(t1), since we use x1 as our
guess for xf when we solve the optimal control problem (1).
For this reason, we first leverage the results of Theorem 2
and Lemma 2 to state Problem 1 in terms x1.

Let us use Theorem 2 to decompose ξ = ξ̄ + ξ̃, with
ξ̄ ∈ Lt0,t1(0) and ξ̃ ∈ Lt0,t1(ω0). Specifically, we choose
the fixed solution ξ̃ in Lt0,t1(ω0) to be defined by ξ̃(t1) = 0,
c.f. Theorem 1. This implies ξ(t1) = ξ̄(t1) + 0, so that the
terminal state of ξ and ξ̄ coincide.

Next, we rely on Lemma 2 to identify ξ̄ with its terminal
state ξ̄(t1) = x1, i.e., we set ξ̄ = Lt1

t0,t1x1.
Since the reconstruction problem is stated in the space of

measurement values, we map ξ to λ ∈ Y [t0,t1] by

λ(t) = h(t, ξ(t)) = h(t, (Lt1
t0,t1x1)(t)) + h(t, ξ̃(t)),

where we have used linearity of h(t, ·). Thus, our task boils
down to finding x1 ∈ X such that λ = λ0 holds. To state
that even more concisely in terms of x1, let λ̄ be the element
of Y [t0,t1] given by λ0 − h(·, ξ̃(·)) and introduce the map

Kt0,t1 : X → Y [t0,t1], x1 7→ Kt0,t1x1

with (Kt0,t1x1)(t) := h(t, (Lt1
t0,t1x1)(t)), which is linear by

linearity of S . This leads to the following reformulation.

Problem 2. Consider Scenario 1 and λ̄ ∈ Y [t0,t1] defined
above. Find a state x1 ∈ X such that λ̄ = Kt0,t1x1 holds.
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We introduce an additional assumption to ensure the
solvability of Problem 1.

Assumption 2. The map Kt0,t1 is surjective.

Under this assumption, we can always find a terminal
state x1 that solves the reconstruction problem. Note that
this implies x1 = xf only if Ut0,t1 := kerKt0,t1 = {0},
i.e., if dimY [t0,t1] = dimX . Otherwise, if x1 satisfies
Kt0,t1x1 = λ̄, then all states x1 + w ∈ X with w ∈ Ut0,t1

satisfy the equality as well. Thus, in this case, there are
infinitely many possible terminal states, living in an affine
subspace A(ω0, λ0) ⊂ X , which all fit the given control and
measurement, and one of them is the true state xf .

C. Proposed Solution to the Reconstruction Problem

Now, we analyze solutions to Problem 2, combining the
results from the previous sections. For this, we assume
throughout the section that V is a subspace of the state space
X such that X is the direct sum of V and Ut0,t1 . Let P
denote the projection on V along Ut0,t1 .

Theorem 3. For every λ ∈ Y [t0,t1], there exists a unique
state x1 ∈ V that satisfies λ = Kt0,t1x1.

Proof. Fix an arbitrary λ ∈ Y [t0,t1]. Under Assumption 2,
there exists a state x ∈ X with λ = Kt0,t1x. We can
decompose x as x = x1 + u1, with x1 = Px ∈ V and
u1 = (idX −P )x ∈ Ut0,t1 . Since Kt0,t1u1 = 0 by definition
of Ut0,t1 , linearity of Kt0,t1 implies λ = Kt0,t1x1.

We show uniqueness by contradiction. Assume that x2 ∈
V is a state such that λ = Kt0,t1x2 and x2 ̸= x1 holds. Then,
by linearity of Kt0,t1 , we have 0 = λ−λ = Kt0,t1(x1−x2),
which implies the inclusion x1−x2 ∈ Ut0,t1 . However, since
V is a linear space, we have x1−x2 ∈ V , i.e., the difference
x1 − x2 lies in V ∩ Ut0,t1 = {0}, where we have used X =
Ut0,t1 ⊕ V . This implies x1 − x2 = 0, which is equivalent
to x1 = x2, and thus contradicts the assumption.

Let us discuss the consequences of Theorem 3 on Prob-
lem 1. For this, we denote with SV : Y [t0,t1] → V the
inverse of the restriction Kt0,t1 |V , i.e., Kt0,t1SV = idY [t0,t1]

holds. By setting x1 = SV λ̄, we perfectly reconstruct the
component v̄f = Pxf ∈ V of the true state xf in the subspace
V , i.e., x1 = v̄f holds. This is illustrated for a single-input,
single-output example system with a two-dimensional state
space in Fig. 1, where we have used t0 = t1 = 0 and
t2 = 1. Since we are only interested in the observable part
of a state, we project v̄f on W ⊥

t1,t2 along Wt1,t2 . This is our
final estimate for the influence of xf on (1).

We have the free choice in selecting V , under the condition
that X is the direct sum of V and Ut0,t1 . We can state the
following about states in V .

Corollary 2. Consider Problem 2 and set x1 = SV λ̄. If
the inclusion xf ∈ V holds, then the optimal solutions to
Pt1,t2(x1) and Pt1,t2(xf) coincide.

Proof. The assumption implies x1 = SV λ̄ = Pxf = xf .

Thus, we are able to perfectly solve Pt1,t2(xf) by only
relying on the available information (ω0, λ0) if the state xf
happens to lie in a subspace of dimension r := dimV =
dimX − dimUt0,t1 = dimY [t0,t1] = (t1 − t0 + 1)q.1

One particular and possible choice for V would be to work
with the orthogonal complement of Ut0,t1 , i.e., V = U⊥

t0,t1 .
In this case, the map SV coincides with the pseudo-inverse
K♯

t0,t1 . This would be the “standard” way to solve Problem 2.
In the light of Section IV-A, however, one would also

be able, by a suitable choice of V , to exclude directions
in the reconstruction that are indistinguishable from 0 on
[t1, t2]. If, for instance, the intervals are chosen such that
dimWt1,t2 = dimX − r, and if X = Ut0,t1 ⊕ W ⊥

t1,t2 holds,
another choice is to use V = W ⊥

t1,t2 , which ensures that the
dominant directions for the optimal solution (2) – the states
that are observable on [t1, t2] – are perfectly reconstructed.
We show in Section V with an example that the choice of
V does influence the quality of the reconstructed solution.

Remark 2. These results justify calling our method a
“reduced-order” method. Since we can restrict the system
description to the subspace W ⊥

t1,t2 for the optimal control
problem, and to the subspace V for the reconstruction
problem, we effectively work with a system description that
has the dimension of the considered measurement spaces.

V. NUMERAL EXAMPLE

We consider the sixth-order linear time-invariant system
with outputs S = (R6,R,R, ϕ, h) that was presented in [10],
and which was also used in [7]. Notably, the system has a
zero outside the unit circle and is non-minimum phase. For
Scenario 1, we choose t0 = 0, t1 = 3 and t2 = 7.

As the initial state xs ∈ R3 at time t = 0, we use the one
given in [10]. For this initial state, we create Ntest = 104

control sequences ωi
0 ∈ R3 with components drawn from the

uniform distribution on the open interval (−1, 1). The initial
state and the controls imply the measurements λi0 ∈ R4,
while the terminal states at time t = 3 are xif ∈ R6.

We compare the influence of the choices Va = U⊥
0,3 and

Vb = W ⊥
3,7 on the optimal solution (2). More precisely,

we compute xi1,a = SVa
λ̄i and xi1,a = SVb

λ̄i. Then, for
j ∈ {a,b}, we compute ω̃i

j as the optimal solution to
Pt1,t2(x

i
1,j); see (2). We denote the true optimal solution

to Pt1,t2(x
i
f) by ωi.

As a measure of how well the inferred terminal states
capture the optimal solution on [t1, t2], we use

εij :=
∥ω̃i

j − ωi∥R4

∥ωi∥R4

, εj :=
1

Ntest

Ntest∑
i=1

εij

for j ∈ {a,b}. Hence, the smaller εij , the better xi1,j is
suited to approximate xif . Finally, we use εj as a heuristic
approximation of how well method j is suited to predict the
measurement on [t1, t2] from input/output information on the
interval [t0, t1] for the initial condition (t0, xs).

1Under Assumption 2, the dimension of Ut0,t1 can be inferred straight-
forwardly from the rank-nullity theorem.
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Fig. 1: Illustration of the reconstruction problem. On the left, we use V = U⊥
t0,t1 , while on the right we use a different

V . In both cases, we reconstruct v̄f = SV λ̄ = Pxf ∈ V , and consider its orthogonal projection on W ⊥
t1,t2 to solve (1). We

denote the solution to (1) with initial state xo and xc by ω̃o and ω̃c, respectively. For the chosen state xf , the reconstruction
in terms of optimal solutions works better for the latter choice. This is because – in this case – the component w̄f ∈ Ut0,t1

of xf that we are unable to reconstruct has a smaller component ṽ2 in W ⊥
t1,t2 .

For our simulation, we obtain εa = 33.55% and εb =
53.96%, so for this academic example, we gain a significant
advantage by prioritizing the observable subspace in the
reconstruction problem.

VI. CONCLUSION

This study addresses the challenge of state reconstruc-
tion for high-dimensional linear dynamical systems using
input/output measurements. The goal is to utilize the recon-
structed state within an optimal control framework, leverag-
ing a reduced-order model to mitigate complexity issues.

We presented a novel approach for state reconstruction
by exploiting control and measurement information, under-
pinned by a detailed analysis and revision of system observ-
ability over a finite horizon. By constraining the system to
an observable subspace of lower dimensionality, we achieved
a reduced-order description that encompasses all pertinent
information for effective reconstruction. The application to
an example system demonstrated the benefits of focusing
on this specific subspace, enhancing both reconstruction
accuracy and optimal control problem integration.

A critical future direction is to “close the loop,” i.e., to
consider and solve the reconstruction and optimal control
problems within a receding horizon framework. This will
involve an in-depth study of the dynamics and performance
of the resultant closed-loop system.

Moreover, the exploration of the remaining degrees of
freedom in selecting the subspace V – especially when
the reconstructed state is ambiguously defined within the
observable subspace – promises to refine the reconstruction
process further.
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