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Abstract— Recent advances in nonlinear observer design for
homography estimation have exploited the Lie group structure
of SL(3). Existing work requires the group (homography)
velocity input, while the available measurements are typically
only the camera velocity. Consequently, prior contributions
exploiting the SL(3) geometry either reconstruct the group
velocity or restrict the camera motion to allow adaptive es-
timation of the group velocity online. This paper presents a
novel symmetry-based approach to observer design for the
more general problem of estimating both the homography
and the structure parameters of a planar scene, allowing
homography estimation for arbitrary trajectories using only
camera velocity measurements and direct point-feature corre-
spondences between images. A new Lie group is introduced for
the homography and structure parameters, whose symmetry
structure is exploited to establish the system and output
equivariance properties. We show that the system kinematics
admit an equivariant lift, and the proposed observer is then
designed based on the recently developed Equivariant Filter
framework. Simulation results demonstrate the performance
and consistency of the proposed approach.

I. INTRODUCTION

Homographies are invertible mathematical transformations
that relate 3D point projections from multiple views of a
planar structure [8]. This projective mapping encodes the
camera’s relative position and orientation between two views
of the scene, the distance between the camera and the scene,
and its normal vector into a single matrix. Homographies are
widely used for various computer vision applications such
as 3D reconstruction [5]. They have also found significant
applications in the field of robotics [14], [17] and are
particularly suitable in scenarios where the primary features
of the surrounding environment are planar surfaces [16].

Computing homographies has been extensively studied
over the past two decades. Traditional estimation methods in
the computer vision literature rely on algebraic algorithms
that compute the homography on a frame-by-frame basis.
These algorithms solve algebraic constraints related to image
feature correspondences [1], [8] resulting in high-quality
homography estimates. In robotic systems, measurements
provided by the camera are a continuous temporal sequence
of images that depict a time-varying homography due to
the robot’s motion in the environment. Algebraic algorithms
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proved ineffective in such scenarios since they compute
individual homographies for each image and cannot im-
prove the homography estimate over time. To address this
impediment, significant work has been devoted during the
last fifteen years to designing nonlinear observers for ho-
mography estimation [11], [6] that exploit kinematic models
and velocity information to provide improved homography
estimates. Recent successful approaches have exploited the
structure of the Special Linear group SL(3), isomorphic to
homographies [2]. These observers have provided powerful
stability guarantees and have proven to be highly effective
when it comes to robustness and practical implementation
[9]. A drawback of these algorithms is that they rely on
the homography group velocity measurements to propagate
state estimates over time. The group velocity is induced by
the rigid-body motion of the camera but also depends on
the unknown structure parameters of the scene and cannot
be directly constructed from camera velocity measurements.
Recent work has attempted to overcome this limitation by
assuming that the group velocity is either unknown [15] or
only partially known by fusing angular velocity information
[6] and proposed an integral extension of the observer to
obtain estimates for both the homography and the velocity
under certain motion assumptions. In [6] and [9], the authors
proposed an observer under the assumption that the camera
motion is constant or slowly time-varying. A solution to
estimate the group velocity for periodic and nearly periodic
rigid-body motions was later introduced in [4]. These as-
sumptions remain constraining, and the considered motions
are not intuitive for a rigid-body robotic system. The authors
presented another approach to address the problem in [3],
where the observer was designed to estimate the camera pose
and structure parameters, and the homography structure was
modeled in the state measurement process.

In this paper, we consider the problem of estimating the
homography along with the structure parameters using direct
feature point correspondences between a pair of images and
the camera velocity measurements. The proposed solution,
unlike previous work [6], [9] makes no restrictive assump-
tions on the group velocity. The homography kinematics
are instead explicitly modeled in terms of the structure
parameters and the rigid-body velocities. We introduce an
appropriate symmetry group that acts on the total state space
consisting of the homography and the structure parameters.
We present a set of Lie group symmetries, and we show that
the system and the output are equivariant under these actions
[12], [13]. We then introduce a novel equivariant lift of the
system kinematics onto the symmetry group and derive the
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proposed equivariant filter on the lifted system [19], [18].
The performance of the proposed observer is demonstrated
through simulation experiments.

II. PRELIMINARIES

For a thorough introduction to smooth manifolds and Lie
groups, the authors recommend [10] and [20].

A. Smooth Manifolds
Given a smooth manifold M, TξM denotes the tangent

space at ξ ∈ M and X(M) denotes the set of all smooth
vector fields on M. For a differentiable function between
smooth manifolds h :M→N , we denote its differential at
ξ0 by Dξ|ξ0h(ξ) : Tξ0M→ Tξ0N .

Let f : M → N and g : N → N ′ be linear maps. The
composition of f and g is denoted f · g.

Denote the 2-sphere as S2 := {v ∈ R3 | |v| = 1}, the
2-sphere projection πS2 : R3 \ {0} → S2 is defined as

πS2(v) :=
v

|v|
.

The projection onto the tangent space of the 2-sphere at the
point v ∈ S2 is denoted Πv := (I3 − vv>).

B. Lie Groups
Denote a general Lie group G, and its Lie algebra g. The

identity is denoted id ∈ G, left and right translation are
written LX(Y ) := XY and RX(Y ) := Y X, respectively,
which induce the corresponding mappings on g, dLX : g→
TXG and dRX : g→ TXG, respectively.

The Lie algebra g is isomorphic to a vector space Rdim g.
Define wedge (·)∧ : Rdim g → g and its inverse vee (·)∨ :
g → Rdim g, as linear isomorphisms satisfying (u∨)∧ = u
for all u ∈ g. The exponential map exp : g → G defines a
local diffeomorphism from a neighbourhood of 0 ∈ g to a
neighbourhood of id ∈ G, and its inverse (when defined) is
the logarithmic map log : G → g. The Adjoint map Ad :
G× g→ g is defined by AdX(U) := DLXDRX−1U . If G
is a matrix Lie group, then AdX(U) := XUX−1.

The G-torsor, denoted G, is defined as the set of elements
of G (underlying manifold), but without the group structure.

A right action is a smooth function φ : G ×M → M
satisfying the identity and compatibility properties:

φ(id, ξ) = ξ, φ (Y, φ(X, ξ)) = φ (XY, ξ) ,

for all ξ ∈ M and X ∈ G. For any ξ ∈ M the partial map
φX :M→M is defined to be φX(ξ) = φ(X, ξ). Similarly,
for any X ∈ G, the partial map φξ : G→M is defined to
be φξ(X) = φ(X, ξ).

A group action is called transitive if for all ξ1, ξ2 ∈ M,
there exists X ∈ G such that φ(X, ξ1) = ξ2. If a manifold
M admits a transitive group action then it is called a
homogeneous space. The group G acting on M is called
a symmetry of M.

A product Lie group is formed by combining multiple
existing Lie groups. If G1, . . . ,Gn are Lie groups, then their
product Lie group is

G1 × · · · ×Gn := {(X1, . . . , Xn)|Xi ∈ Gi},

with identity idG1×···×Gn := (idG1 , . . . , idGn), the group
multiplication is a direct product with the standard inverse.

C. Matrix Lie Groups

The special orthogonal group SO(3) of 3D rotations and
its Lie algebra so(3) are defined by

SO(3) := {R ∈ R3×3 | RR> = R>R = I3,det(R) = 1},

so(3) := {a× | a ∈ R3}, a× :=

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 ,
respectively, where a× denotes the skew-symmetric matrix
associated to the cross product, satisfying a×b = a × b for
all b ∈ R3. For any a ∈ R3, a∧so(3) = a×.

The special linear group SL(3) and its Lie algebra sl(3)
are defined by

SL(3) := {H ∈ R3×3 | det(H) = 1},
sl(3) := {u∧sl(3) | u ∈ R8},

u∧sl(3) :=

u1 u4 u7

u2 u5 u8

u3 u6 −u1 − u5

 ,
respectively. The SL(3)-torsor is denoted SL(3).

D. Homographies

Consider the scenario of a moving camera observing a
static planar scene. Let {C̊} be the fixed reference frame and
{Ct} the current camera frame at time t. Let R ∈ SO(3)
and x ∈ R3 denote the orientation and position, respectively,
of the camera frame {Ct} with respect to the reference
frame {C̊}. Given a set of n points that belong to the
scene, the Euclidean coordinates P̊i ∈ {C̊} and Pi ∈ {Ct},
i ∈ {1, . . . , N}, of the same i-th point are related by

P̊i = RPi + x. (1)

Let λ ∈ R+ denote the distance from the origin of {Ct}
to the planar scene and η ∈ S2 denote the normal vector
pointing towards the scene expressed in {Ct}. Inserting the
planar constraint η>Pi

λ = 1 in (1) yields

P̊i =

(
R+

xη>

λ

)
Pi, (2)

H := R+ xη>

λ denotes the Euclidean homography that maps
the scene points’ Euclidean coordinates from {Ct} to {C̊}.

For any homography matrix H , there exists a unique
corresponding matrix H ′ := det(H)−

1
3H ∈ SL(3). All

homographies are appropriately scaled to satisfy H ∈ SL(3)
to ensure consistency throughout this work.

Using the pinhole camera model as described in [8], the
homogeneous coordinates for the image point ζ◦i ∈ {C̊} and
ζi ∈ {Ct} corresponding to P̊i and Pi, respectively, are

ζ◦i := KP̊i, ζi := KPi,
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where K denotes the invertible 3× 3 camera matrix.
Provided the camera is well-calibrated, the image coordinates
can be projected onto the 2-sphere as

p̊i = πS2(K−1ζ◦i ), pi = πS2(K−1ζi),

and the projected vectors satisfy the homography constraint

pi = πS2

(
H−1p̊i

)
. (3)

The measurements are represented, in this work, directly
on the 2-sphere rather than on the image plane. This offers
several benefits as it provides a more natural representation
and can model a wide range of monocular cameras.

The parameters η and λ are termed structure parameters
because they describe the scene’s structure. They correspond
to the reference structure parameters η̊ = Rη and λ̊ = λ +
η̊>x, which remain constant for a static scene.

E. Problem formulation

The rigid-body angular and linear velocities of the camera
with respect to frame {C̊} expressed in {Ct} are denoted Ω
and v respectively.

The objective is to design an observer for the homography
H and structure parameters (η, λ) using the available camera
velocity measurements (Ω, v) and the set of n feature point
correspondences between the frames {Ct} and {C̊}.

Define the total state space

M := SL(3)× S2 × R+,

with elements ξ = (H, η, λ) ∈M. The input space is defined
as V := R3 × R3 with elements u = (Ω, v) ∈ V.

The measurements are represented by n bearings of the
current image, each with an output space Ni := S2. The
total output space is defined as N :=

∏n
i=1Ni = (S2)n.

Similarly, the reference points define the parameter spaces
Pi := S2, and the overall parameter space is P := (S2)n.

The system’s output is defined as y = [p1, . . . , pn]
>.

Therefore, from equation (3), we define the output function
h :M×P → N as

h (ξ; (p̊1, . . . , p̊n)) :=
[
h1(ξ; p̊1), . . . , hn(ξ; p̊n)

]
, (4)

hi(ξ; p̊i) := πS2

(
H−1p̊i

)
. (5)

Note that all p̊i ∈ S2, i = {1, . . . , n} are constant vectors.

III. SYSTEM KINEMATICS

This section will derive the kinematics for an element of
the state space ξ = (H, η, λ).

The kinematics of the pose of the camera are given by
Ṙ = RΩ× and ẋ = Rv for orientation and position,
respectively. However, these kinematics are not directly used
in the development.

Recall that η(t) = R>η̊ and η̊ is a constant, then

η̇ = −Ω×R>η̊ = −Ω×η. (6)

For λ, recall that η(t)>Pi(t)−λ(t) = 0, Pi(t) = R>(P̊i−
x) and λ̊ and P̊i are constants, then

λ̇ = −η>v. (7)

According to [11, Lemma 5.3], the kinematics of the
homography H ∈ SL(3) are given by

Ḣ = H

(
Ω× +

vη>

λ
− η>v

3λ
I3

)
. (8)

The full kinematics of the system state considered can
be expressed as a system that takes the form ξ̇ = f(ξ, u),
f : V→ X(M), with the velocity u = (Ω, v) ∈ V as input

ξ̇ =


Ḣ = H

(
Ω× + vη>

λ −
η>v
3λ I3

)
,

η̇ = −Ω×η,

λ̇ = −η>v.
(9)

Note that we explicitly model the structure of Ḣ in terms
of the state (H, η, λ) and velocities (Ω, v).

IV. GROUP ACTIONS AND EQUIVARIANCE

We introduce a novel symmetry group

G := SL(3)× SO(3)×MR(1) (10)

where MR(1) denotes the multiplicative group of positive
(non-zero) reals, mr(1) denotes the associated Lie algebra.
We will write the elements of G as X = (P,Q, r) ∈ G,
P ∈ SL(3), Q ∈ SO(3), r ∈MR(1). The group identity is
idG = (I3, I3, 1) and the associated Lie algebra is denoted
g = sl(3)× so(3)×mr(1).

In the following, we provide the key symmetry properties
of the group G that will be exploited to design an equivariant
observer for the kinematic system described in (9).

A. Symmetry actions

We define four key actions of the symmetry group G: φ,
the action of G on the state space M; ψ, its action on the
input space V; ρ, its action on the output spaces Ni; and θ, a
novelty of this work, its action on the parameter spaces Pi.

The proofs of the following lemmas are provided in the
Appendix A.

Lemma 1 (Symmetry of the total space). Define the mapping
φ : G×M→M as

φ((P,Q, r), (H, η, λ)) :=

(
P−1HQ,Q>η,

λ

r

)
. (11)

Then, φ is a right group action of G on M.

Note that φ is transitive on the state space M.

Lemma 2 (Symmetry of the velocity space). The mapping
ψ : G× V→ V defined as

ψ((P,Q, r), (Ω, v)) :=

(
Q>Ω,

Q>v

r

)
(12)

is a right group action of G on the velocity space V.

Lemma 3 (Symmetry of the output space). The function ρ :
G×Ni → Ni defined by

ρ((P,Q, r), pi) := Q>pi (13)

is a right group action of G on Ni.
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Lemma 4 (Symmetry of the parameter space). The function
θ : G× Pi → Pi defined by

θ((P,Q, r), p̊i) := πS2

(
P−1p̊i

)
(14)

is a right group action of G on Pi.

B. Equivariance

The equivariance of the system and the output under the
group actions defined in IV-A are established below.

Lemma 5 (System equivariance). The system kinematics
given in equation (9) are equivariant under the group actions
φ and ψ. That is,

DφXf(ξ, u) = f(φ(X, ξ), ψ(X,u)), (15)

for any X ∈ G, ξ ∈M and u ∈ V.

Although the present formulation does not satisfy the
equivariant output property as defined in [19], an alternative
approach to attaining output equivariance involves using the
symmetry action θ, as outlined in the following lemma.

Lemma 6 (Output equivariance). The output configurations
defined in equation (5) are equivariant with respect to actions
φ, ρ and θ. That is, for any X ∈ G, any ξ ∈ M, and any
p̊i ∈ Pi,

ρ((P,Q, r), hi((H, η, λ); p̊i))

= hi(φ((P,Q, r), (H, η, λ)); θ((P,Q, r), p̊i)).
(16)

V. LIFTING THE KINEMATICS TO THE LIE ALGEBRA

To consider the system on the symmetry group, a lift
of the kinematics from the state space onto the group is
necessary. An equivariant lift is guaranteed since the group
G acts transitively on the state space M, and the system is
equivariant [12].

Lemma 7 (Equivariant lift). The smooth map Λ :M×V→
g defined as

Λ((H, η, λ),(Ω, v))

:=

(
−AdH

(
vη>

λ
− η>v

3λ
I3

)
,Ω×,

η>v

λ

)
(17)

is a lift for the system (9). That is, Λ satisfies

DX|idφξΛ(ξ, u) = f(ξ, u). (18)

In addition, the lift Λ is equivariant with respect to the
symmetry group φ, i.e.

AdX−1(Λ(ξ, u)) = Λ(φX(ξ), ψX(u)),

for all X ∈ G, ξ ∈M and u ∈ V.

The lift defined in (17) allows the construction of a
lifted system on the symmetry group. This requires choosing
a global state origin ξ◦ ∈ M for a global coordinate
parametrization ofM by the group G given by the projection
φξ◦ : G→M. The lifted system is expressed as

Ẋ = dLXΛ (φ(X, ξ◦), u) . (19)

VI. OBSERVER DESIGN

This section presents an equivariant observer designed on
the symmetry group G and uses the lifted system (19) as its
internal model. It follows the equivariant filter (EqF) design
approach, as presented in [12], [19] and [18].

A. Equivariant observer

Let X̂ = (P̂, Q̂, r̂) ∈ G be the observer state. The filter
error on the group E = (EP , EQ, Er) ∈ G is defined as

E := XX̂−1 =
(
PP̂−1, QQ̂>, rr̂−1

)
. (20)

To compute the linearized error dynamics, we need to fix
a state origin. Let ξ◦ = (I3, e3, 1) ∈M be the chosen origin,
the observer state estimate at any time t is given by

ξ̂(t) = φ(X̂(t), ξ◦). (21)

The global state error e = (eH , eη, eλ) := φX̂−1(ξ) ∈ M is
written as

e = φ(E, ξ◦) =
(
E−1
P EQ, E

>
Qe3, E

−1
r

)
. (22)

The goal of the equivariant observer is to drive the state
error e → ξ◦ to ensure that the state estimate ξ̂ = φX̂(ξ◦)
converges to the true state ξ.

Let ε = (εH , εη, ελ) := ϑ(e) ∈ R11 represent local
coordinates on the state around the origin ξ◦, defined as

ϑ(e) :=

(
logSL(3)(eH)∨,

e3×eη
|e3×eη|

sin−1(|e3×eη|), log (eλ)

)
,

(23)

with inverse given by

ϑ−1(ε) :=(
expSL(3)

(
(εH)∧sl(3)

)
, expSO(3)

([
εη
0

]×)
e3, exp(ελ)

)
.

(24)

Note that the equivariant observer provides a minimal (11-
dimensional) representation of the observer error.

A key contribution of this work is allowing both the
reference points and the current points to be acted on by the
group, as discussed in IV-A. Then, the innovation is defined
as δ =

[
δ>1 . . . δ>n

]>
, where each element δi is given by

δi = ρX̂−1(pi)− hi(ξ◦; θX̂−1(p̊i)). (25)

Using the output equivariance from Lemma 6 yields

ρX̂−1(pi) = ρX̂−1

(
hi(ξ; p̊i)

)
= hi(e; θX̂−1(p̊i)).

From there, the derivation of the linearised error dynamics,
as well as linearised output are defined according to [18],
with state matrix Åt and output matrix Ct given by

Åt = De|ξ◦ϑ(e) ·DE|idφξ◦(E) ·De|ξ◦Λ(e, ů) ·Dε|0ϑ
−1(ε),

(26)

Ct = De|ξ◦h(e; θX̂−1(p̊i)) ·Dε|0ϑ
−1(ε), (27)

where ů(t) = ψX̂−1(u(t)) denotes the origin velocity.
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Remark 1. The state and output matrices of the linearised
system are similar to those in the classical EqF design [18],
with one key difference. In the current design, the output
matrix employs θX̂−1(p̊i) instead of just p̊i, which, unlike
earlier work, leads to a time-varying output matrix Ct.

Then the observer is given by the solution of

˙̂
X := dLX̂Λ(φ(X̂, ξ◦), u) + dRX̂∆, (28)

∆ := DE|idφξ◦(E)†dϑ−1ΣC>t N
−1
t δ, (29)

Σ̇ := ÅtΣ + ΣÅ>t +Mt − ΣC>t N
−1
t CtΣ, Σ(0) = Σ0,

(30)

where ∆ ∈ g is the equivariant observer correction term, Σ ∈
S+(11) is the Riccati gain, Mt ∈ S+(11) and Nt ∈ S+(3n)
are the covariances of the state and output, respectively.
S+(k) denotes the set of positive definite k × k matrices.
DE|idφξ◦(E)† is a fixed right-inverse of DE|idφξ◦(E); that
is DE|idφξ◦(E) ·DE|idφξ◦(E)† = id.

Lemma 8. If the pair (Åt, Ct) of the linearised system
is uniformly observable in the sense of [7, Theorem 3.1].
Then, Σ(t) and Σ−1(t) are uniformly bounded and the origin
e(t)→ ξ◦ is locally exponentially stable.

The Riccati matrix Σ(t) of the EqF can be seen as the
covariance of the linearised error ε = ϑ

(
φX̂−1(ξ)

)
, such

that ε ∼ N(0,Σ). The initial Riccati matrix Σ0 is modeled
as being on the state ξ and needs to be transformed to an
uncertainty on the group. This is done using the relation

ΣEqF = De|ξ◦ϑ(e)Dξ|ξ◦φX̂−1(ξ)Σ0Dξ|ξ◦φX̂−1(ξ)De|ξ◦ϑ(e).

The noise is modeled as being injected into the velocity
u = (Ω, v), s.t. u ∼ N(umt , Vt), where umt is the measured
velocity and Vt is the velocity noise covariance. Thus the
process noise covariance is expressed as

Mt = Mε +BtVtB
>
t , (31)

where Mε is the state noise covariance and the linearised
input matrix Bt is given by

Bt = De|ξ◦ϑ(e) ·DE|idφξ◦(E) ·Du|0Λ(ξ◦, u) ·Du|0ψX̂−1(u).

The measurement noise covariance also needs to be trans-
formed, to reflect the fact that the measurements pi are
transformed by ρX̂−1 , as illustrated in equation (25). Let Ns
be the measurement noise covariance, then the transformed
noise covariance for a given point pi is

N i
t = Dz|piρX̂−1 (z)Ns

(
Dz|piρX̂−1 (z)

)>
. (32)

The components of matrices Åt, Ct, Bt, DE|idφξ◦(E)†,
dϑ−1 and Dz|p̊iρX̂−1 (z) are derived in Appendix B.

VII. SIMULATION RESULTS

In the following section, we discuss the performance of the
proposed observer through simulation results. The simulation
scenario involves a planar target located at the stationary
horizontal plane and a moving camera following a Lissajous
trajectory with known linear and angular velocities.

We conduct a Monte-Carlo simulation with RMC = 100
runs. The initial position estimates are distributed normally
around zero with a standard deviation of 1m per axis and the
initial orientation estimates are distributed normally around
zero with a standard deviation of 30◦ per axis. Similarly,
the initial normal vector and distance to the scene estimates
are randomly generated using Gaussian distributions, with a
standard deviation of 22.5◦ around η̂(0) = e3 and a standard
deviation of 1m around λ̂(0) = 7m, respectively. The
observer is initialized with the Riccati matrix Σ0 = diag(0.1)
and the velocity and output measurement noise covariances
Vk = diag(0.01) and Nk = diag(0.01), respectively.

While the EqF is derived using a continuous algebraic
Riccati equation (30), its practical implementation involves
using the corresponding discrete algebraic Riccati equation.
The update is performed using the matrix exponential map
to ensure that the estimates remain in the Lie group.

To assess the consistency of the equivariant filter, we
compute the Average Normalized Estimation Error Squared
(ANEES), also known as the average energy, given by

ANEES =
1

RMC

RMC∑
k=1

(
1

m
ε>k Σ−1

k εk

)
,

where εk denotes the filter state error for the k-th simulation
run and m = 11 is the dimension of the state space M.

A. Results and discussion

Fig. 1. Average homography error.

Fig. 2. Average normal direction error.

Figures 1, 2 and 3 illustrate the average estimation errors
εH = ‖I3 −HĤ−1‖2, εη = (1 − η>η̂) and ελ = |λ − λ̂|2,
respectively. The shaded areas show the 5th to 95th percentile
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Fig. 3. Average distance to the scene error.

0 5 10 15 20 25 30

10
0

Fig. 4. Log plot of the average NEES.

of error. The errors gradually decrease and converge to zero
over time, with a fast transient response of the homography
and normal direction. Figure 4 shows the log of the average
energy of the filter which settles slightly below the ideal
value of 1. These results confirm that the proposed equiv-
ariant observer provides accurate and consistent estimates of
the true state of the system.

VIII. CONCLUSIONS

In this paper, we introduced a novel symmetry-based
observer design to estimate the homography and structure
parameters of a planar scene. The proposed approach is
founded on the recently proposed Equivariant Filter (EqF)
design methodology and relies solely on camera velocity
measurements and direct feature point correspondences be-
tween a pair of images. The unknown homography velocity is
retrieved, by explicitly expressing it in terms of structure pa-
rameters and rigid-body velocities, allowing the homography
to be estimated for arbitrary camera motion. A new symmetry
group was introduced, incorporating the Special Linear group
SL(3) and operating on the total state space. The symmetry
structure of this group was exploited to establish system and
output equivariance properties. It was shown that the system
kinematics admit an equivariant lift, providing the basis for
the proposed equivariant observer designed on the resulting
lifted system. We validated the theoretical findings through
simulation, demonstrating the performance and consistency
of the proposed observer solution.
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APPENDIX

A. Proofs
Proof of Lemma 1. Trivially φ ((I3, I3, 1), (H, η, λ)) =
(H, η, λ) for any (H, η, λ) ∈ M. Let (H, η, λ) ∈ M and
(P1, Q1, r1), (P2, Q2, r2) ∈ G be arbitrary. Then

φ ((P1, Q1, r1), φ ((P2, Q2, r2), (H, η, λ))) ,

= φ

(
(P1, Q1, r1),

(
P−1

2 HQ2, Q
>
2 η,

λ

r2

))
,

=

(
P−1

1 P−1
2 HQ2Q1, Q

>
1 Q
>
2 η,

λ

r1r2

)
,

= φ ((P2P1, Q2Q1, r1r2), (H, η, λ)) ,

= φ ((P2, Q2, r2)(P1, Q1, r1), (H, η, λ)) .

so it satisfies compatibility. This demonstrates that φ is a
right action as required.

Proof of Lemma 2. It is straightforward to verify that
ψ is a right group action. Let (Ω, v) ∈ V and
(P1, Q1, r1), (P2, Q2, r2) ∈ G be arbitrary. Then

ψ((P1, Q1, r1), ψ((P2, Q2, r2), (Ω, v))),

= ψ

(
(P1, Q1, r1),

(
Q>2 Ω,

Q>2 v

r2

))
,

=

(
Q>1 Q

>
2 Ω,

Q>1 Q
>
2 v

r1r2

)
,

= ψ((P2P1, Q2Q1, r2r1), (Ω, v)),

= ψ((P2, Q2, r2)(P1, Q1, r1), (Ω, v)),

ψ satisfies compatibility, and ψ((I3, I3, 1), (Ω, v)) = (Ω, v),
so ψ is a right group action as required.

Proof of Lemma 3. It is straightforward to verify that
ρ((I3, I3, 1), pi) = pi for all pi ∈ Ni. Let pi ∈ Ni and
(P1, Q1, r1), (P2, Q2, r2) ∈ G be arbitrary. Then,

ρ((P1, Q1, r1), ρ((P2, Q2, r2), pi)),

= ρ((P1, Q1, r1), Q>2 pi),

= (Q>1 Q
>
2 pi),

= ρ((P2P1, Q2Q1, r1r2), pi),

= ρ((P2, Q2, r2)(P1, Q1, r1), pi).

As required.

Proof of Lemma 4. It is straightforward to verify that
θ((I3, I3, 1), p̊i) = p̊i for any p̊i ∈ Pi. Let p̊i ∈ Pi and
(P1, Q1, r1), (P2, Q2, r2) ∈ G be arbitrary. Then,

θ((P1, Q1, r1), θ((P2, Q2, r2), p̊i)),

= θ
(
(P1, Q1, r1), πS2(P−1

2 p̊i)
)
,

=
(
πS2

(
(P2P1)−1p̊i

))
,

= θ((P2P1, Q2Q1, r1r2), p̊i),

= θ((P2, Q2, r2)(P1, Q1, r1), p̊i).
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As required.

Proof of Lemma 5. Let (P,Q, r) ∈ G, (H, η, λ) ∈ M and
(Ω, v) ∈ V be arbitrary. Note that φ is linear in H, η and λ,
so DφXf(ξ, u) acts on f(ξ, u) the same way that φX acts
on ξ. Therefore, one has

DφXf(ξ, u)

= DφX

(
H

(
Ω× +

vη>

λ
− η>v

3λ
I3

)
,−Ω×η,−η>v

)
,

=

(
P−1H

(
Ω× +

vη>

λ
− η>v

3λ
I3

)
Q,−Q>Ω×η,

−η>v
r

)
,

= f

((
P−1HQ,Q>η,

λ

r

)
,

(
Q>Ω,

Q>v

r

))
,

= f(φ(X, ξ), ψ(X,u)).

As required.

Proof of lemma 6. To see the equivariance of h, let
(P,Q, r) ∈ G, (H, η, λ) ∈ M and p̊i ∈ Pi be arbitrary.
Then,

ρ((P,Q, r), h((H, η, λ), p̊i),

= ρ((P,Q, r), H−1p̊i),

= (Q>H−1p̊i),

= (Q>H−1PP−1p̊i),

= ((P−1HQ)−1P−1p̊i),

= h

((
P−1HQ,Q>η,

λ

r

)
, P−1p̊i

)
,

= h (φ ((P,Q, r), (H, η, λ)) , θ((P,Q, r), p̊i)) .

As required. Note that Q>η, λr don’t enter in the equation,
so they can be added without loss of generality.

Proof of Lemma 7. Recall that φ((P,Q, r), (H, η, λ)) =(
P−1HQ,Q>η, λr

)
. To find D(P,Q,r)|(I3,I3,1)φξ first choose

a ∈ sl(3), q ∈ so(3) and b ∈ mr(1), and then evaluate φ
applied to P = eta, Q = etq and r = etb:

D(P,Q,r)|(I3,I3,1)φξ(a, q, b)

=
d

dt
φ((eta, etq, etb), (H, η, λ)) |t=0,

=
d

dt
(e−taHetq, e−tqη, de−tb) |t=0,

= (−ae−taHetq + e−taHqetq,−qe−tqη,−λbe−tb) |t=0,

= (−aIHI + IHqI,−qIη,−λb1),

= (−aH +Hq,−qη,−λb),

and so

D(P,Q,r)|(I3,I3,1)φξ[Λ(ξ, u)]

=

(
AdH

(
vη>

λ
− η>v

3λ
I3

)
H +HΩ×,−Ω×η,−λη

>v

λ

)
,

=

(
H

(
Ω× +

vη>

λ
− η>v

3λ
I3

)
,−Ω×η,−η>v

)
,

= f(ξ, u),

as required. Now to show that Λ is equivariant

AdX−1(Λ(ξ, u))

= AdX−1

(
−AdH

(
vη>

λ
− η>v

3λ
I3

)
,Ω×,

η>v

λ

)
,

=

(
−AdP−1HQ

(
Q>vη>Q

λ
− η>v

3λ
I3

)
, (Q>Ω)×,

η>QQ>v

rλ/r

)
,

= Λ

((
P−1HQ,Q>η,

λ

r

)
,

(
Q>Ω,

Q>v

r

))
,

= Λ(φX(ξ), ψX(u)).

As required.

B. Equivariant observer derivations
This section provides a detailed derivation of the necessary

terms and derivatives for the equivariant observer design.

dϑ−1 = Dε|0ϑ
−1(ε)

= Dε|0

(
expSL(3)

(
(εH)∧sl(3)

)
, expSO(3)

([
εη
0

]×)
e3,

exp(ελ)) ,

=



[
I8
−1 01,3 −1 01,3

]
09,2 09,1

03,8

 0 1
−1 0
0 0

 03,1

01,8 01,2 1

 .

De|ξ◦ϑ(e)

= De|ξ◦

(
logSL(3)(eH)∨,

e3×eη
|e3×eη|

sin−1(|e3×eη|), log (eλ)

)
,

=


I8 08×1 08×3 08×1

02,8 02,1

[
0 −1 0
1 0 0

]
. 02,1

01,8 0 01,3 1

 .

DE|idφξ◦(E) =

 (∗) I3 ⊗ I3 09,1

03,9 I3 ⊗ e>3 03,1

01,9 01,9 −1

 ,
where the elements of (∗) are given by

∂(P−1Q)ij
∂Pnm

|P=Q=I3 =
1

|P |2
∑
k

(
|P | ∂

∂Pnm
(|P |P−1)ik

−(|P |P−1)ik
∂|P |
∂Pnm

)
(Q)kj |P=Q=I3 .

To determine DE|idφξ◦(E)† : Tξ◦M → g, taking the
pseudo-inverse of DE|idφξ◦(E) directly does not work as
it does not respect the geometry. Instead, the structure of
Tξ◦ is used, which has a skew-symmetric first part and a
tangent plane to e3 with zero z-component. This results in

DE|idφξ◦(E)† =

−I9 (∗) 09,1

09,9 (∗) 09,1

01,9 01,3 −1

 ,
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where

(∗) =



0 0 0
0 0 1
1 0 0
0 0 −1
0 0 0
0 1 0
−1 0 0
0 −1 0
0 0 0


.

The origin velocity ů(t) = (Ω̊, v̊) is expressed as

ů := ψX̂−1(u) =
(
Q̂Ω, Q̂r̂v

)
.

De|ξ◦Λ(e, ů) =

(∗1) (∗2) (∗3)
09,9 09,3 09,1

01,9 v̊> −e>3 v̊

 ,
where the elements are given by

(∗1) :
∂(−AdH U

′)ij
∂Hnm

= −
∑
l

(
∂

∂Hnm
Him

)
U ′ml(H

−1)lj

−
∑
l,k

HikU
′
kl

∂

∂Hnm
(H−1)lj ,

(∗2) :
∂
(
−AdH (̊vη> − η>v̊

3 I3)
)
ij

∂ηn
=
∑
k

−Hikv̊k(H−1)nj

+Hik
v̊n
3

(H−1)kj ,

(∗3) =

(
v̊e>3 −

e>3 v̊

3
I3

)∨
.

De|ξ◦h(e; θX̂−1(p̊i)) = De|ξ◦πS2

(
e−1
H P̂ p̊i

)
,

=
[
ΠπS2 (P̂ p̊i)

P̂ p̊i ⊗ I3 03,4

]
.

Du|0Λ(ξ◦, u) =

09,3 (∗4)
(∗5) 09,3

01,3 e>3

 ,
where

(∗4) = −I3 ⊗ e3 +
1

3

[
09,1 09,1 I∨3

]
,

(∗5) =



0 0 0
0 0 1
0 −1 0
0 0 −1
0 0 0
1 0 0
0 1 0
−1 0 0
0 0 0


.

Du|0ψX̂−1(u) =

[
Q̂ 03,3

03,3 Q̂r̂

]
.

De|ξ◦φX̂(e) =

(∗6) 09,3 09,1

03,9 Q̂> 03,1

01,9 01,3
1
r̂

 ,
(∗6) =

∂(P̂−1eHQ̂)ij
∂eHnm

|eH=I3 = (P̂−1)inQ̂mj .

Dz|p̊iρX̂−1 (z) = Q̂.
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