
Imitation Learning from Nonlinear MPC via the Exact Q-Loss and its
Gauss-Newton Approximation

Andrea Ghezzi⋆,1, Jasper Hoffman⋆,2, Jonathan Frey1,3, Joschka Boedecker2, Moritz Diehl1,3

Abstract— This work presents a novel loss function for learn-
ing nonlinear Model Predictive Control policies via Imitation
Learning. Standard approaches to Imitation Learning neglect
information about the expert and generally adopt a loss function
based on the distance between expert and learned controls.
In this work, we present a loss based on the Q-function
directly embedding the performance objectives and constraint
satisfaction of the associated Optimal Control Problem (OCP).
However, training a Neural Network with the Q-loss requires
solving the associated OCP for each new sample. To alleviate
the computational burden, we derive a second Q-loss based on
the Gauss-Newton approximation of the OCP resulting in a
faster training time. We validate our losses against Behavioral
Cloning, the standard approach to Imitation Learning, on the
control of a nonlinear system with constraints. The final results
show that the Q-function-based losses significantly reduce the
amount of constraint violations while achieving comparable or
better closed-loop costs.

I. INTRODUCTION

Model Predictive Control (MPC) is an optimization-based
approach for controlling dynamical systems [1]. It is used in
many different applications due to the versatility, handling
of constraints and stability guarantees. For each new state,
MPC computes a control by solving an optimal control
problem (OCP), that contains the performance objectives,
system dynamics and system properties. Yet, the computa-
tional complexity of real time optimization can be a major
limitation of the applicability of MPC, when a certain control
frequency is necessary or one uses embedded systems with
constrained computationally resources.

One approach to tackle this problem is explicit MPC.
Instead of having an implicit control policy that is derived
from online optimization, explicit MPC computes the control
policy beforehand in an offline setting which then can be
simply evaluated online. For linear MPC it is possible to
represent the state feedback policy by a piece-wise affine
function and store the corresponding gain as a look-up table.
However, for nonlinear MPC (NMPC) is not possible to
exactly represent the policy and the available approaches
suffer from approximation errors. Therefore, the common
choice is to rely on the implicit online computation of the
control policy.

⋆ These authors contributed equally, order is alphabetical.
1 Department of Microsystems Engineering (IMTEK), University of

Freiburg, 79110 Freiburg, Germany
2 Department of Computer Science, University of Freiburg
3 Department of Mathematics, University of Freiburg
Correspondents: andrea.ghezzi@imtek.uni-freiburg.de,

hoffmaja@informatik.uni-freiburg.de
This research was supported by DFG via Research Unit FOR 2401 and

project 424107692 and by the EU via ELO-X 953348.

A promising approach related to explicit MPC is Imitation
Learning (IL). Here, one tries to imitate the behavior of the
MPC policy with a parameterized policy like a Neural Net-
work. The main issue of this approach is that we introduce
approximation errors while imitating. On the other hand,
IL can be used, even in the case of NMPC, to drastically
reduce online computational costs. Previous works mainly
used methods like Behavioral Cloning (BC) to imitate the
MPC policy. However, the loss function used in BC is just
a surrogate loss that minimizes the difference between the
MPC policy and the learned policy [2]. With such a surrogate
loss, we lose all information why the MPC took a control
in the first place. Thus, during training, the learned policy
gets no feedback in terms of constraint satisfaction and
performance objectives.

In this work, instead of falling back to a surrogate loss like
in BC, we introduce a new loss formulation that exposes to
the policy the inner objective of the MPC during training.
For this, we introduce a Q-function which corresponds to
the cost at the optimal solution of the associated OCP for a
given initial state and fixed initial control.

Specifically, our contributions are twofold:

1) we propose a loss for IL based on the Q-function of
the given OCP such that the loss directly embeds the
characteristics of the OCP;

2) we introduce a quadratic programming approximation
of the Q-function loss to reduce the computational
burden and make it more suitable for training Neural
Networks.

We compare both proposed loss functions against Behavioral
Cloning (BC) on the stabilization of a nonlinear cart-pole
system. The policies learned with the Q-function losses
achieve a lower cost and significantly less constraint vio-
lations compared to the BC policy. This is promising since
we expect that the potential performance difference between
the proposed losses and the standard one will be even more
evident on more complex examples.

Related work: For explicit linear MPC, it is possible
to have an exact representation of the policy via piece-wise
affine functions [3], [4]. Via approximation of such policies,
explicit MPC has been extended to the nonlinear case [5].
The use of Neural Networks to represent optimal control
policies has been investigated in [6] and applied to chemical
process control in [7]. Thanks to the success of deep learning,
the use of Neural Network for explicit MPC has grown, with
recent applications in power electronics, building control and
robot manipulators [8]–[10]. However, these works are based

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 4766

on Behavior Cloning, thus they minimize a surrogate loss
function.

Regarding properties and guarantees for learned con-
trollers, for linear MPC, two methods are presented in
[11] to verify the closed-loop stability of Neural Network
controllers and quantify their worst-case approximation error.
For NMPC, in [12] a statistical guarantee on stability and
constraint satisfaction is derived via a condition on the
approximation error of the learned MPC. In [13], control
barrier functions are introduced as a way to transfer safety
from the expert to the learned controller and a formal
guarantee of input-to-state stability is provided. In [14] a
trajectory is not only optimized for costs but also whether
the trajectories can be recreated by the learned policy.

A very related line of work, looking at IL from MPC,
can be found in [15] and [16], where IL is reformulated
by minimizing the control Hamiltonian of a continuous-time
OCP formulation. One major difference to our approach,
apart from that we look at discrete-time OCPs, is that with
the Hamiltonian, one does not resolve the OCP for each new
control, but only use the gradient of the cost-to-go function
with respect to the state. In order to incorporate information
about inequality constraints into this gradient, they introduce
log-barrier functions to the OCP formulation.

A. Notation

Given a ∈ Rna and b ∈ Rnb , we denote the vector
c = [a⊤ b⊤]⊤ by c = (a, b). Given a ∈ Rna , we denote
∥a∥2W := a⊤Wa, for every W ∈ Rna×na a positive definite
matrix. With U(a, b), we denote the uniform distribution with
boundaries a, b respectively.

II. BACKGROUND

In this section, we provide the necessary background of
Optimal Control and Imitation Learning.

A. Optimal Control

In this work, we want to approximate NMPC policies,
which are defined by the repetitive solution of an OCP.
Specifically throughout this paper, we regard the following
generic discrete-time OCP

min
x0,u0,s0,...,
uN−1,xN ,sN

N−1∑
k=0

L̃(xk, uk, sk) + Ẽ(xN , sN) (1a)

s.t. x0 = x̄0, (1b)
xk+1 = f(xk, uk), k = 0, . . . , N − 1, (1c)
h(xk, uk) ≤ sk, k = 0, . . . , N − 1, (1d)
r(xN) ≤ sN , (1e)
sk ≥ 0, k = 0, . . . , N, (1f)

with N shooting intervals. Here, xk ∈ Rnx and uk ∈
Rnu represent the state and the control trajectories which
follow the possibly nonlinear system dynamics f in (1c).
Inequality (1d) enforces path constraints and (1e) encodes
a condition on the system terminal state. We assume the
functions L,E, f, h, r to be twice continuously differentiable

in their respective variables. In order to guarantee feasibility,
we introduce slack variables sk ∈ Rns,k and we penalize
their use in the cost function. Thus, the stage cost is defined
as L̃(xk, uk, sk) := L(xk, uk)+ z⊤sk + ∥sk∥2Z and terminal
cost as Ẽ(xN , sN) := E(xN) + z⊤e sN + ∥sN∥2Ze

. Note,
that for some values of the positive slack penalties z, Z an
exact penalization of the constraints can be achieved [17]. In
contexts where constraint satisfaction is critical we can tune
the weights of the slacks to favor feasibility over optimality.
In an NMPC scheme, the OCP (1) is solved in every control
step for a new initial state x̄0 and the optimal control u⋆

0(x̄0)
is applied to the system.

Note that for notational convenience we derive every
further OCP formulation by omitting the slack variables.

B. Imitation Learning
We are interested in using Imitation Learning (IL) to

imitate the control law derived by solving a discrete-time
OCP as described in (1). We can define the expert policy,
that we want to imitate, by the first optimal control π⋆(x) :=
u⋆
0(x̄0) of the solution for a given x̄0. We aim to approximate

π⋆ as well as possible by a parameterized policy π(·;w) :
Rnx → Rnu . A parameterized policy could be for example
a Neural Network where the parameter w ∈ Rnw are the
weights of the Neural Network.

In the following, we will give a short introduction to the
IL framework. The IL objective can be defined as

L(w) := Ex∼D [ℓ (x, π(· ;w))] , (2)

where D is a given state distribution over Rnx and ℓ the
point wise loss function of the policy π(· ;w) for a given
state x [2]. The final goal of IL is then to find the optimal
combination of parameters w⋆ that minimizes the expected
loss L(w):

w⋆ = arg min
w

L(w). (3)

In its most general form, IL assumes no prior knowledge
about the internal objective of the expert policy. For example
the expert could be a human. Thus, methods like Behavior
Cloning, replace the internal objective by using a surrogate
loss function ℓ that measures the behavioral difference be-
tween the policy π and the expert policy π⋆. Popular choices
are the quadratic loss function ℓ2 defined as

ℓ2(x, π) := (π(x)− π⋆(x))
2
, (4)

the Huber loss [18], the ℓ1 loss or the cross-entropy loss in
the case of stochastic policies. In this paper, we will use the
quadratic loss function ℓ2 for comparison, which results in
the following expected quadratic loss:

L2(w) := Ex∼D [ℓ2 (x, π(· ;w))] . (5)

Finally, the state distribution D seen when deploying the
expert policy might differ from the learned policy. This is
called the covariate shift and can be mitigated by adopting
Dagger [19], which samples controls from a mixture of the
expert and the current policy while collecting states from
rollouts. We use Dagger for all methods compared in this
paper.

4767

III. Q-LOSS FOR IMITATION LEARNING

In the following, we will see that when the expert policy
is the solution of an OCP, we do not necessarily need a
surrogate loss.

A. The exact Q-loss

In fact, we can directly define a loss based on the internal
objective of the expert, which we call the exact Q-loss.
This proposed loss function directly embeds the information
contained in the OCP such as its cost and constraints. The
main idea is to reuse the OCP formulation (1) and fix the
first control u0 of the OCP by the value returned from the
policy, ū0 = π(x;w). By solving the resulting OCP, we can
assign a cost to the policy value π(x;w).

Specifically, we reformulate the OCP (1) to expose exclu-
sively the first control. Given x̄0 we define the exact Q-loss
by the following “Q-function OCP”

Q(x̄0, ū0) := min
x0,u0,...,
uN−1,xN

N−1∑
k=0

L(xk, uk) + E(xN) (6a)

s.t.

x0 − x̄0 = 0, (6b)
u0 − ū0 = 0, (6c)
xk+1 − f(xk, uk) = 0, (6d)
h(xk, uk) ≤ 0, k = 1, . . . , N − 1, (6e)
r(xN) ≤ 0. (6f)

We remind that for notational convenience we omit the slack
variables in the OCP formulation. With the exact Q-loss, the
imitation learning objective becomes

LQ(w) := Ex∼D [Q(x, π(x;w))] . (7)

The name “Q-loss” is motivated from the related concept
of Q-functions in reinforcement learning. The gradient of
LQ(w) is defined as

∇wLQ(w) = Ex∼D

[
∇wπ(x;w) ∇uQ(x, u)|u=π(x;w)

]
.

(8)

Lemma 1: The gradient of the Q-loss is given by the
Langrangian multiplier λ̄u corresponding to the constraint
(6c) for the optimal solution

λ̄u = ∇uQ(x, u)|u=π(x;w) . (9)
Proof: This can be derived by looking at the cost-to-go from
dynamic programming and the first order necessary condition
of optimality, [1, §8.8.3], [20, §3.3.3]. □

Lemma 2: If π⋆(x̄0) is a unique minimizer of (1) then
Q(x̄0, ū0) > Q(x̄0, π

⋆(x̄0)) for any ū0 ̸= π⋆(x̄0). Thus, the
exact Q-loss penalizes any deviation of ū0 from π⋆(x̄0).

When looking at (7), an interesting connection to actor-
critic algorithms [21] emerges, where the actor is the policy π
which is criticized by a parameterized value function Q,
called the critic. In this framework, the Q-function derived
from the OCP can be seen as the critic. Following this per-
spective, the gradient of (8) is directly related to deterministic
policy gradients [22].

−25 0 25
u0

0

20

40

60

V
a
lu

e

L2

LQ

LQa

Fig. 1. Comparison of the losses for the example presented in Section
IV, for a given initial state x̄0 = (0.8, 0, π/4, 0) and u⋆

0(x̄0) = −25. The
pink line corresponds to the gradient of LQ at ū0 = 15.

B. Discussion of the exact Q-loss

The exact Q-loss is computationally more complex than
a standard loss. To get a better understanding of the com-
putational costs, one can compare the gradients of behavior
cloning and the exact Q-loss. For the behavior cloning loss
L2, the gradient is given by

∇wL2(w) = Ex∼D [∇wπ(x;w)(π(x;w)− π⋆(x))] . (10)

Comparing the gradient of both losses, we first note that
both require a forward and backward pass of π to com-
pute π(x;w) and the gradient of the policy ∇wπ(x;w).
The exact Q-loss (8) additionally requires the gradient
∇uQ(x, u)|u=π(xi;w), which depends on x and u. Thus, we
need to solve the OCP (6) not only for each new sample x
but also for each new control u. Note that we get the gradient
via the multiplier when solving this OCP (cf. Lemma 1).

Since we might evaluate the loss (7) for any couple
(x, π(x;w)) we need to guarantee feasibility of problem (6)
by introducing slack variables to soften the constraint, as
presented in problem (1).

Finally, we remark that according to the properties of
(6), the function Q might be a piece-wise nonlinear and
nonconvex function. As a result of the nonconvexity in u0,
the tangent plane derived from the gradient of Q at a given
point (x̄0, ū0) might not be a lower bound for Q(x̄0, u

⋆
0), an

example of this is given in Figure 1. This might slow down
the minimization of the loss (7).

In the next section, we address the computational com-
plexity of the exact Q-loss issue by proposing a convex
approximation of it.

C. The Gauss-Newton Q-loss

We propose a simplified loss which aims to alleviate both
the computational burden related to LQ and the possible
misleading gradients generated by the nonconvexity of Q.
The loss exploits the optimal control structure of LQ but

4768

it builds a quadratic programming approximation of the Q-
function OCP (6) around the optimal solution.

Assumption 1: Let us consider functions L and E in (1a)
being the square of vector-valued functions of the form ∥L̄∥2
with L̄ : Rnx × Rnu → Rny , ∥Ē∥2 with Ē : Rnx → Rne

respectively. Cost functions of this type appear frequently
in optimal control since they represent tracking cost, most
importantly they allow for a Gauss-Newton Hessian approx-
imation [23].

Given a sample x̄0 and a first control ū0, we solve (1)
and denote its solution as ζ = (x̃0, ũ0, . . . , ũN−1, x̃N)
and we use it as a linearization point for the
quadratic approximation of problem (6) as follows

Qa(x̄0, ū0) :=

min
x0,u0,...,
uN−1,xN

N−1∑
k=0

∥LL(xk, uk; x̃k, ũk)∥2 + ∥EL(xN ; x̃N)∥2

s.t. x0 − x̄0 = 0,

u0 − ū0 = 0,

xk+1 − fL(xk, uk; x̃k, ũk) = 0,

hL(xk, uk; x̃k, ũk) ≤ 0, k = 1, . . . , N − 1,

rL(xN ; x̃N) ≤ 0,
(11)

with LL(xk, uk; x̃k, ũk) being defined as the first order
Taylor series of L at (x̃k, ũk) as follows

LL(xk, uk; x̃k, ũk) = L(x̃k, ũk) (12)

+∇x,uL(x̃k, ũk)
⊤

([
x

u

]
−
[
x̃k

ũk

])
.

The functions fL, hL are defined in the same way, while for
EL, rL the linearization is done at x̃N and only with respect
to x. The function Qa is now described by a convex piece-
wise quadratic function.

Lemma 3: If we use the optimal solution of (1) as lin-
earization point, i.e., set (¯̄x0, ¯̄u0) := (x̄0, π

⋆(x̄0)), then the
Gauss-Newton Q-loss is a convex distance function with
Qa(x, u) ≥ Qa(x, π

⋆(x)), for every x, u.
We can introduce the approximate Q-loss as

LQa(w) := Ex∼D [Qa(x, π(x;w))] , (13)

and its gradient ∇LQa(w) is given by

∇LQa(w) = Ex∼D

[
∇wπ(x;w) ∇uQa(x, u; ζ)|u=π(x;w)

]
.

(14)

Compared to (8) the function ∇LQa requires the gradient
of the QP problem, i.e., ∇uQa which is less expensive to
compute.

IV. NUMERICAL EXAMPLE

We show the effectiveness of the proposed losses against
the standard ℓ2 loss on the example of the cart-pole. The
system is depicted in Figure 2. The task is to control the
system such that the rod stays in upright position and the
cart stays at the center of the track.

Fig. 2. Schematic of the cart pole

By neglecting friction forces, the dynamics of the system
are defined by the following equations

ṗ(t)

v̇(t)

θ̇(t)

ω̇(t)

 =

v

−ml sin(θ)θ̇2+mg cos θ sin(θ)+u
M+m−m cos2(θ)

ω
−ml cos(θ) sin(θ)θ̇2+(M+m)g sin(θ)+u cos(θ)

l·(M+m−m cos2(θ))

 ,

(15)

with l = 0.8 (m),m = 0.1 (kg), M = 1 (kg),
g = 9.81 (m/s2). The system state is x(t) =
(p(t), v(t), θ(t), ω(t)) ∈ R4, the control is u(t) ∈ R. We
assume full state observability.

We use multiple shooting with N = 20 shooting intervals
of ∆t = 0.05 (s) and an RK4 integrator to discretize (15)
and obtain the discrete time OCP

min
x0,u0,...,
uN−1,xN

1

N

N−1∑
k=0

[
xk

uk

]⊤ [
S 0

0 R

][
xk

uk

]
+ x⊤

NPxN

s.t. x0 = x̄0,

xk+1 = f(xk, uk), k = 0, . . . , N − 1,

xlb ≤ xk ≤ xub k = 0, . . . , N,

ulb ≤ uk ≤ uub k = 0, . . . , N − 1,
(16)

where x̄0 is the given initial state, xub = (2, 4, π
3 , 2), xlb =

−xub and uub = 25, ulb = −uub. The weight matrices
in the cost function are S = diag(0.25, 0.025, 0.25, 0.025),
R = 0.0025 and P corresponds to the solution of the
discrete algebraic Riccati equation for the system linearized
at x̄ = (0, 0, 0, 0), ū = 0. In order to guarantee fea-
sibility during training the box constraints on (x, u) are
softened via slack variables which are penalized in the
cost with the weights Z = ∆t · (50, 5, 50, 5, 500), z =
∆t · (0.5, 0.05, 0.5, 0.05, 5000) for the path constraints and
Ze = (50, 5, 50, 5), ze = (0.5, 0.05, 0.5, 0.05) for the termi-
nal ones.

By modifying the OCP formulation (16) according to (6)
and (11) we obtain the Q-function OCP and the approximate
Q-function OCP, respectively.

The formulation and solution of the OCP is carried out in
acados [24] via its Python interface. In order to speed up
interactions with the OCP solver, we have used the compiled

4769

Cython interface for the solver objects1. Every computation
runs exclusively on one CPU thread, on a Linux Ubuntu
20.04 server with Intel Xeon E5-2687W @3.1 GHz, 16 cores
and 32 GB RAM.

A. Training Setup

For approximating the MPC policy we use feed-forward
Neural Networks with ReLU activation functions for the
hidden layers. Additionally, after the last linear layer, we
apply a tanh activation function, which bounds the output
of the policy such that we fulfill the box constraints for the
controls of the cart-pole OCP formulation (16). We optimize
the Neural Networks by doing mini-batch stochastic gradient
descent with the Adam optimizer [25].

The next important decision is on what states we want to
imitate, or more specifically, on which state distribution D
we want to minimize our imitation loss. For this, we first
sample an initial state uniformly from U(α · x, α · x̄) with
α = 0.3. We sample and discard until the drawn initial states
generate optimal open-loop trajectories without constraint
relaxation. Starting from the initial state, we then do a rollout
with the Dagger algorithm as described in [19]. Instead of
only following the expert MPC policy during the rollout,
we use a mixture policy that randomly applies either the
control of the expert MPC policy or our currently learned
policy π(x;w). This is done in order to generate samples that
better match the distribution that we will encounter when
applying the final learned policy. In more detail, we train
the Neural Network for 2000 updates and every 20 updates
collect additional samples by doing a rollout for 50 steps.
The mixture coefficient between the expert policy and the
learned policy is linearly scaled down over the training time
from 1, we only use the expert, to 0, we only use the learned
policy.

B. Evaluation

For evaluation, we train each algorithm for 10 different
random seeds. For the initial states we either sampled from
a uniform distribution with easier initial states α = 0.2,
the same distribution as during training α = 0.3 or harder
initial states with α = 0.4. We do this to see how the
performance on easier and harder initial states differ and also
test the generalization capabilities of the different losses. We
generate one fixed test dataset of 2000 initial states for all
algorithms and seeds, with the same sampling procedure as
during training. For each initial state, we then do a rollout
of 50 steps for each learned policy.

We evaluate the performance of the final policies with
two metrics: (1) The average rollout cost: We sum up all
stage costs and slack variable costs of one rollout and then
average over all rollouts and random seeds. (2) The average
violation ratio, which is the ratio of rollouts that violated a
constraint over all rollouts, averaged over all random seeds.
Additionally, we only consider the 0.99 or 0.9 quantile to
robustify our estimates against outliers, when the policy fails
to stabilize the system.

1https://github.com/aghezz1/learning-nmpc-q-loss

TABLE I
LOSS PERFORMANCE COMPARISON

Loss α Quantile Avg. Cost Violation ratio

L2

0.2 0.99 0.866± 0.013 0.054± 0.042

0.3 0.99 2.267± 0.250 0.225± 0.064

0.4 0.90 3.229± 0.385 0.299± 0.064

LQ

0.2 0.99 0.919± 0.093 0.005± 0.012

0.3 0.99 2.308± 0.209 0.090± 0.049

0.4 0.90 3.267± 0.365 0.147± 0.059

LQa

0.2 0.99 0.884± 0.019 0.002± 0.001

0.3 0.99 2.179± 0.081 0.088± 0.024

0.4 0.90 3.076± 0.150 0.154± 0.025

π⋆ MPC
0.2 0.99 0.795± 0.833 −
0.3 0.99 1.888± 2.027 −
0.4 0.90 2.604± 2.373 −

C. Hyperparameters

To allow for a better comparison, we do a hyperparameter
search in form of a grid search over the network depth
{1, 2, 3}, the network width {64, 128, 256} and the learning
rate {10−5, 10−4, 10−3, 10−2}. We used a fixed batch size of
32. We use the same hyperparameters for the Gauss-Newton
Q-loss as for the exact Q-loss. The search objective is the
average rollout cost over the same initial state dataset as
described in the previous section, but only using 3 random
seeds.

D. Results

In the following, we present the experimental results.
In Table I, we compare the performance of the different
algorithms. For the average rollout cost, we see that the
exact Q-loss performs slightly worse than BC, whereas
the Gauss-Newton Q-loss performs significantly better for
the harder initial state dataset α = 0.4. However, for the
harder examples the gap to the original MPC policy is
also significantly larger. One explanation is that for harder
examples the non smoothness of the optimal control policy
increases, making it harder for the network to approximate
the MPC, especially for BC.

For the average violation ratio, we see that the exact Q-loss
and the Gauss-Newton Q-loss perform significantly better,
than BC with L2. This can be attributed to the fact that the
exact Q-loss and the Gauss-Newton Q-loss contain constraint
satisfaction and do not rely on a surrogate loss.

In Figure 3, we compare the controls of the policies
learned with the different algorithms on exemplary rollouts
of a trained Neural Network for one seed. We see that the
original MPC shows a very non smooth control signal, which
the BC loss L2 tries to imitate. The policies corresponding
to the exact Q-loss and the Gauss-Newton Q-loss show a
smoother control signal, that deviates more from the original
MPC. This can be explained by the fact that the proposed
losses directly optimize (approximate) versions of the OCP,
thus finding their own trade-off between feasibility and
optimality.

4770

−25

0

25
u

[r
a
d
/
s2

]
L2

−25

0

25

u
[r

a
d
/
s2

]

LQ

−25

0

25

u
[r

a
d
/
s2

]

LQa

0.0 0.5 1.0 1.5 2.0 2.5

time [s]

−25

0

25

u
[r

a
d
/
s2

]

π? MPC

Fig. 3. Representative 100 rollouts for α = 0.3 for one network.

TABLE II
AVERAGE GRADIENT COMPUTATION SPEED

Loss L2 LQ LQa

Speed (batch/second) 151.78 4.12 15.23

In Table II, we compare the average speed for computing
the gradient on a batch (with batch size 32) for 300 iterations.

V. CONCLUSIONS

In this paper, we have presented a new loss for Imitation
Learning from MPC based on the underlying OCP. This
loss allows the learned policy to directly minimize the OCP
performance objectives and constraint satisfaction. Compared
to standard losses, the Q-loss evaluation requires the solution
of a possibly nonlinear and nonconvex optimization problem
for each new sample, resulting in demanding computational
effort. We suggest to mitigate this issue by a second Q-
loss based on the Gauss-Newton approximation of the as-
sociated OCP, therefore its evaluation requires the solution
of a convex quadratic program. Finally, we have compared
the policy learned using the Q-losses against Behavioral
Cloning, on the control of a constrained nonlinear system. On
this example, the Q-loss-based policies achieve significantly
lower constraint violations and comparable closed-loop costs.
In the future, we aim to test the losses on more complex
examples and combine them with Reinforcement Learning.

REFERENCES

[1] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl, Model Predictive
Control: Theory, Computation, and Design, 2nd ed. Nob Hill, 2017.

[2] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters
et al., “An algorithmic perspective on imitation learning,” Foundations
and Trends® in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[3] A. Bemporad, F. Borrelli, and M. Morari, “The explicit solution of
constrained LP-based receding horizon control,” in Proceedings of the
IEEE Conference on Decision and Control (CDC), Sydney, Australia,
1999.

[4] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, pp. 3–20, 2002.

[5] T. A. Johansen, “Approximate explicit receding horizon control of
constrained nonlinear systems,” Automatica, vol. 40, no. 2, pp. 293–
300, 2004.

[6] T. Parisini and R. Zoppoli, “A receding-horizon regulator for nonlinear
systems and a neural approximation,” Automatica, vol. 31, no. 10, pp.
1443–1451, 1995.

[7] B. M. Åkesson and H. T. Toivonen, “A neural network model pre-
dictive controller,” Journal of Process Control, vol. 16, no. 9, pp.
937–946, 2006.

[8] S. Lucia, D. Navarro, B. Karg, H. Sarnago, and O. Lucia, “Deep
learning-based model predictive control for resonant power convert-
ers,” IEEE Transactions on Industrial Informatics, vol. 17, no. 1, pp.
409–420, 2020.

[9] J. Drgoňa, A. Tuor, E. Skomski, S. Vasisht, and D. Vrabie, “Deep
learning explicit differentiable predictive control laws for buildings,”
IFAC-PapersOnLine, vol. 54, no. 6, pp. 14–19, 2021.

[10] J. Nubert, J. Köhler, V. Berenz, F. Allgöwer, and S. Trimpe, “Safe and
fast tracking on a robot manipulator: Robust mpc and neural network
control,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
3050–3057, 2020.

[11] R. Schwan, C. N. Jones, and D. Kuhn, “Stability verification of
neural network controllers using mixed-integer programming,” IEEE
Transactions on Automatic Control, 2023.

[12] M. Hertneck, J. Köhler, S. Trimpe, and F. Allgöwer, “Learning
an approximate model predictive controller with guarantees,” IEEE
Control Systems Letters, vol. 2, no. 3, pp. 543–548, 2018.

[13] R. K. Cosner, Y. Yue, and A. D. Ames, “End-to-end imitation learning
with safety guarantees using control barrier functions,” in 2022 IEEE
61st Conference on Decision and Control (CDC). IEEE, 2022, pp.
5316–5322.

[14] I. Mordatch and E. Todorov, “Combining the benefits of function
approximation and trajectory optimization.” in Robotics: Science and
Systems, vol. 4, 2014, p. 23.

[15] J. Carius, F. Farshidian, and M. Hutter, “Mpc-net: A first principles
guided policy search,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 2897–2904, 2020.

[16] A. Reske, J. Carius, Y. Ma, F. Farshidian, and M. Hutter, “Imitation
learning from mpc for quadrupedal multi-gait control,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 5014–5020.

[17] R. H. Byrd, J. Nocedal, and R. A. Waltz, “Steering exact penalty meth-
ods for nonlinear programming,” Optimization Methods and Software,
vol. 23, no. 2, pp. 197–213, 2008.

[18] P. J. Huber, “Robust estimation of a location parameter,” The Annals
of Mathematical Statistics, vol. 35, no. 1, pp. 73–101, 1964.

[19] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, 2011, pp.
627–635.

[20] D. Bertsekas, Dynamic programming and optimal control: Volume I.
Athena scientific, 2012, vol. 1, 3rd edition.

[21] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE
transactions on systems, man, and cybernetics, no. 5, pp. 834–846,
1983.

[22] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in International
conference on machine learning. Pmlr, 2014, pp. 387–395.

[23] R. Verschueren, N. van Duijkeren, R. Quirynen, and M. Diehl,
“Exploiting convexity in direct optimal control: a sequential convex
quadratic programming method,” in Proceedings of the IEEE Confer-
ence on Decision and Control (CDC), 2016.

[24] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren,
A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl,
“acados – a modular open-source framework for fast embedded
optimal control,” Mathematical Programming Computation, Oct 2021.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

4771

