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Abstract— This paper deals with the target localisation prob-
lem in search and rescue scenarios in which the technology
is based on electromagnetic transceivers. The noise floor and
the shape of the electromagnetic radiation pattern make this
problem challenging. Indeed, on the one hand, the signal-
to-noise ratio reduces with the inverse of the distance from
the electromagnetic source thus impacting estimation-based
techniques applicability. On the other hand, non-isotropic
radiation patterns lessen the efficacy of gradient-based policies.
In this work, we manage a fleet of autonomous agents, equipped
with electromagnetic sensors, by combining gradient-based
and estimation-based techniques to speed up the transmitter
localisation. Simulations specialized in the ARTVA technology
used in search and rescue in avalanche scenarios confirm that
our scheme outperforms current solutions.

I. INTRODUCTION

Target localisation is subject to time constraints, especially
in Search and Rescue (SAR) operations in critical environ-
ments such as avalanches [1]. In these contexts, deploying
a fleet of autonomous agents with strategic sensing and
actuation capabilities can streamline the localisation effort.
Hence, coordinating multi-agent systems to collaboratively
localise a target, while simultaneously addressing estimation
and control problems, remains an active research area [2],
[3]. Particularly challenging are the SAR scenarios in which
the technology is based on electromagnetic transceivers due
to the noise floor and the shape of the radiation pattern.

In general, most of the existing solutions for target lo-
calisation through multi-agent systems adopt a double-layer
architecture, comprising a target position estimator and an
agents’ trajectory planner, commonly leveraging the concept
of active sensing. In more detail, as for the target position
estimate, the state-of-art literature can be classified into two
main categories based on the nature of inferred information:
direction-related and distance-related [4]. Distance-related
schemes access direct or indirect distance measurements.
In contrast, algorithms based on direction-related data rely
on bearing information, which consists of a unitary-length
vector pointing to the target. When accounting for bearing-
only data, the estimation task is commonly addressed through
two primary approaches. The first relies on traditional and
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evolutionary Kalman filtering techniques, and the second
utilizes batch-form methods based on ordinary Least Squares
(LS) [5]. The LS-based approaches are generally more ef-
fective in handling the non-ideal nature of the measurements
compared to Kalman-based methods, which often struggle
with instability induced by data noise [6]. In the case of
electromagnetic transceivers, the bearing uncertainty due
to a small Signal-to-Noise Ratio (SNR) impacts also the
LS-based estimation algorithms’ efficacy especially when
the sensing agents are far from the target representing the
electromagnetic source. Since the SNR decreases with the
distance, a suitable active sensing policy should steer the
multi-agent system toward the estimated target.

If the target represents a signal source, the Extremum
Seeking (ES) represents a valid alternative to the traditional
double-layer architecture. Indeed, ES adjusts the agents’
position to maximize the received signal power through a
gradient-based policy [7]. In practice, the agents’ movement
induced by ES is twofold. On the one hand, the agents
explore their neighbourhood to estimate the local gradient
and, on the other hand, the agents exploit this estimation to
move toward the source. A possible drawback of this tech-
nique is a slow convergence speed due to the inherent time
scale separation between the exploration and exploitation
phases. Moreover, since the target localisation is achieved
by moving the agents to the source, non-isotropic radiation
patterns make the gradient-based search pattern longer than
necessary, further slowing down the localisation procedure.

In this work, we tackle the localisation of a stationary
target consisting in an electromagnetic source by using a fleet
of autonomous vehicles equipped with the so-called ARTVA
technology [8], usually adopted in avalanche scenarios. In
particular, we combine an ES scheme with a centralized
bearing-only LS-based estimation technique to speed up the
localisation procedure. In detail, each agent implements an
ES scheme to estimate the local gradient, whose normal-
ization is interpreted as a bearing. Then, the localisation
technique, inspired by [9], exploits the estimated bearings
through a recursive LS paradigm. Finally, the multi-agent
system is regulated by combining ES-based search move-
ments and formation-to-target estimate distance minimiza-
tion. The integration of these two approaches is dynamically
regulated depending on the quality of the gathered bearings.

Through numerical simulations, we show the advantages
of steering the centroid of a multi-agent system through
a combination of ES and LS target position estimates. In
particular, we show that the localisation time of our novel
approach is shorter than those of individual ES and LS target
localisation algorithms.
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Fig. 1: Scheme of the proposed solution involving n ARTVA’s gradient
estimators based on ES paradigm, a recursive LS centralized TX
position estimator, and a combinatorial formation controller.
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Fig. 2: Behavior of the counters t (white circles)
and τ (black dots) which, every N steps, are
incremented and reset, respectively.

Notation: We use R and N to describe the set of real
numbers and the set of natural numbers greater than zero,
respectively. The set of rotation matrices is represented by
SO(3), and if R ∈ SO(3), then RR⊤ = I and det(R) = 1.
The symbol ⟨·, ·⟩ denotes the scalar product. Let Xi ∈ Rni×n

for i ∈ {1 . . .m}, with ni, n,m ∈ N, be matrices. Then, we
define col(X1, . . . , Xm) as the column stack of X1, . . . , Xm.

II. PROBLEM STATEMENT AND PROPOSED SOLUTION

A. Sensing Technology

The developed automatic search technique relies on
the ARTVA system, composed of devices operating in
two modalities, i.e., transmitter (TX), and receiver (RX).
Roughly, the ARTVA technology relies on electromagnetic
fields emitted by coils of wires wrapped around ferromag-
netic cores.

We introduce the reference frames FI , FT , and Fi, with
i ∈ {1 . . . n} and n ∈ N, to model the system. Frame FI

represents an inertial reference, FT is rigidly attached to the
TX device (assumed unique) and Fi are rigidly attached to
the ith RX device. Let the inertial position of the TX device
be pT ∈ R3, and the inertial position of the ith RX device
be pi ∈ R3. Moreover, let RT ∈ SO(3) be a rotation matrix
describing the attitude of FT to FI . Then, as reported in [10],
the magnetic field generated by TX evaluated at position pi,
and expressed in Fi, is

hi(pi) =
Π

4π
RiR

⊤
T

m(RT (pi − pT ))

∥pi − pT ∥5
where Π > 0 denotes the nominal power associated with
TX and m(p) := col(2x2 − y2 − z2, 3xy, 3xz), with p :=
col(x, y, z) and x, y, x ∈ R. In this paper, we assume the
RXs are equipped with isometric ARTVA antennae [11],
whereas the TX’s signal is anisotropic. Therefore, assuming
the antennae are subject to a uniform noise, we model the
output of the ith RX as

v(pi, νi) = hi(pi) + νi

with νi ∈ R3. From this, we compute the signal intensity
received by the ith RX device as

y(pi, νi) = ∥v(pi, νi)∥−2/3 (1)

where the power −2/3 has been introduced to ensure
y(pi, 0) ∝ ∥pi − pT ∥2, y(·, 0) ∈ C2, and y(pT , ·) = 0.

B. Problem Statement

With the quantities described in Section II-A at hand, we
now introduce the standing assumption framing the problem.

Assumption 1 (Noise Ergodicity & Boundedness): The
noise νi(t) is a position-independent zero-mean ergodic
stochastic process and ∃ ν : ∥νi(t)∥∞ ≤ ν,∀i = 1, . . . , n.

We formally state the following problem.
Problem 1: Design a centralised algorithm with inputs pi,

and y(pi, νi), with i = 1, . . . , n, such that:
1) there exist two non-empty sets P0 ⊆ R3 and P̂0 ⊆

R3 such that the trajectories of the RXs and the TX
position estimator, pi(t) and p̂T (t), remain bounded
for any t > 0, for any initial condition (pi0, p̂T0) ∈
P0 × P̂0, with i = 1, . . . , n;

2) for every ϵ ≥ 0 there exists t⋆ ≥ 0 such that
lim supt→∞ ∥p̂T (t)− pT ∥ < ϵ, for t ≥ t⋆.

Remark 1: Solving this problem represents a hard task.
Indeed, the inverse of the distance law embedded into (1)
makes the SNR go to zero for ∥pi − pT ∥ → ∞ and vice-
versa, to infinite when ∥pi − pT ∥ → 0.

C. Proposed Solution

The proposed solution to Problem 1 consists of three
components: an ARTVA’s gradient estimator, a target’s po-
sition estimator, and a formation controller (Figure 1). In
more detail, each RX runs a private ARTVA’s gradient
estimator, which elaborates y(pi, νi) and pi and provides
∇̂i ∈ R3 representing an estimation of ∇pi

y(pi, νi). All
∇̂i feed a centralised algorithm in charge of estimating
the TX position, namely p̂T . Finally, the formation control
consists of a centralised algorithm that moves the formation
at any research step through a convex union of the estimated
directions ∇̂i and p̂T − pi, for i = 1, . . . , n.

The solution is described as a discrete-time system in
which we use two counters, namely t and τ , evolving as
periodic functions of the step-index k ∈ N. Let N ∈ N be
the desired period. Then, we introduce

τ(k + 1) =

{
1 k/N = ⌊k/N⌋

τ(k) + 1 otherwise
t(k) = ⌈k/N⌉

(2)

with τ(1) = 1, and where ⌊·⌋ and ⌈·⌉ are the floor and
the ceiling operators. In essence, we reset τ and increment t
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every N steps (Figure 2). The scheme allows the TX position
estimator to run at every step, resetting it every N steps.
Conversely, the gradient estimator and formation controller
run once every N steps. Hence, the gradient estimator and
formation controller evolve with t, while the TX position
estimator operates on τ . Intuitively, we update the formation
only at the end of each optimisation step.

1) Gradient Estimator: For estimating ∇piy(pi, νi) we
exploit an ES approach. In detail, the ES algorithm per-
turbs the RX’s position by forcing pi to follow a reference
trajectory. Then, we correlate the measurements y(pi, νi)
with the reference trajectory to provide, at the average, ∇̂i.
Technically, we define the controlled position pi of the ith
RX as the sum of two components, i.e., a base position p̄i
which will be updated by the formation controller, and a
dither trajectory δΓ(ωt) with amplitude δ > 0, and pulsation
ω > 0 and where Γ(ωt) := col(sin(ωt), cos(ωt), sin(κωt)),
with κ ≥ 0. The position is then defined as

pi(t) = p̄i(t) + δΓ(ωt). (3a)

As for the gradient estimator, we propose

∇̂i(t+ 1) = (1− α)∇̂i(t) + αεi(t)Γ(ωt) (3b)
zi(t+ 1) = zi(t) + αεi(t) (3c)

εi(t) = y(pi(t), νi(t))− zi(t) (3d)

with initial conditions ∇̂i(1) = ∇̂i1 ∈ R3 and zi(1) = z1 ∈
R, and where α > 0 is a tunable parameter that will be
designed later. Basically, (3b) represents a low-pass filter of
εi(t)Γ(ωt) which, inspired by an ES approach, represents
an instantaneous gradient estimation. It is worth noting that
∥∇̂i−∇piy(pi, νi)∥ is tunable through the design of δ, ω, and
α. The dynamics (3c)-(3d), i.e., zi with output εi, represent
a high-pass filter whose goal is to get rid of the continuous
component of y(pi(t), νi(t)).

2) TX position estimation: The centralised TX position
estimator collects pi(t) and ∇̂i(t), with i = 1, . . . , n, and
provides p̂T (t). In more detail, we define the ith estimated
bearing as the normalisation of ∇̂i, namely

bi(t) := ∇̂i(t)
/√

ϵ+ ∥∇̂i(t)∥2, (4a)

where ϵ > 0 makes bi well-posed for any ∥∇̂i∥ ≥ 0, and
we collect all the bi, with i = 1, . . . , n, in the vector b(t) :=
col(b1(t), . . . , bn(t)). Roughly, the idea is finding p̂T that
minimises

∑
i ∥bi − (p̂T − p̄i)/∥p̂T − p̄i∥∥2. Intuitively, in

the lucky case that all bi are exactly oriented toward the TX,
p̂T could be computed as the point at the intersections of all
bi. At the opposite, when vectors bi are not oriented toward
a common position, the minimisation could have no bounded
solutions. We let

p̄c(t) :=
1

n

n∑
i=1

p̄i(t) (4b)

be the formation’s centroid. Then, inspired by these argu-
ments, we introduce ρ̂ as a maximum norm for p̂T − p̄c and

Bρ̂ ⊂ R3 as a closed ball of radius ρ̂. Then, we denote with
p̂⋆T the solution to the following constrained minimisation

p̂⋆T (t) := argminp ∥b(t)− f(p, p̄(t))∥2

subject to p ∈ p̄c(t) + Bρ̂

(4c)

in which p̄(t) = col(p̄1(t), . . . , p̄n(t)), and

f(p, p̄) = col

(
p− p̄1√

ϵ+ ∥p− p̄1∥2
, . . . ,

p− p̄n√
ϵ+ ∥p− p̄n∥2

)
.

While the well-posedness of the problem (4c) is guaran-
teed by the constraints, its convexity depends on p̄c, and
on ∇̂i via bi. Intuitively, problem (4c) is locally convex
when all the ∇̂i points inward the convex hull containing
the formation. Solutions to the problem (4c), namely p̂T , are
computed with a degree of approximation through recursive
algorithms. In particular, we propose to estimate the TX
position through the recursive LS algorithm reported in (4d)
at the top of the next page, with initial conditions p̂T (t, 1) =
p̂T0(t) and step size β > 0, where the superscript † denotes
the Moore-Penrose left pseudo-inverse, and in which

F (p̂T , p̄) :=

(ϵ+ ∥p̂T − p̄1∥2)−1/2 Pr(p̂T − p̄1)
...

(ϵ+ ∥p̂T − p̄n∥2)−1/2 Pr(p̂T − p̄n)

 (4e)

Pr(p̂T − p̄i) :=I − (ϵ+ ∥p̂T − p̄i∥2)−1(p̂T − p̄i)(p̂T − p̄i)
⊤

with i = 1, . . . , n. The term F (p̂T , p̄) = ∂f(p, p̄)/∂p|p=p̂T

represents the variation of f , evaluated at the current p̂T ,
induced by a variation of p̂T . Since f is composed of nor-
malised vectors, its partial derivative introduces the operator
(ϵ+∥p̂T − p̄i∥2)−1/2 Pr(p̂T − p̄i) representing the projection
of the variation of p̂T−p̄i into the unitary sphere. In practice,
(4d) looks for the p̂T , constrained into p̄c + Bρ̂, making
p̂T − p̄i collinear to and oriented as bi for all i = 1, . . . , n.

Finally, the initial condition p̂T0(t) represents an estima-
tion reset defined as

p̂T0(t) := arg min
p∈R3

1

2

n∑
i=1

(p̄i(t)− p)⊤ Pr(bi(t))(p̄i(t)− p).

Roughly, p̂T0(t) is the solution to a point-to-line distance
minimisation problem, whose solution is found in closed
form by imposing zero gradient. It holds that

p̂T0(t) :=

(
n∑

i=1

Pr(bi(t))

)−1 n∑
i=1

Pr(bi(t))p̄i(t). (4f)

Note that p̂T0(t) is the point in R3 that minimizes the sum of
distances to the parameterized lines ℓi(v) := p̄i(t) + bi(t)v,
where v ∈ R. In practice, p̂T0(t) typically lies near the
intersection of all ℓi(v). On the one hand, p̂T0(t) is finite
if the matrix [b1(t) · · · bn(t)] is full-rank but, on the other
hand, this does not imply that ⟨p̂T0(t) − bi(t), bi(t)⟩ > 0
for all i = 1, . . . , n, i.e., the directions of p̂T0(t)− bi(t) and
bi may disagree for some i ∈ {1, . . . , n}. This makes (4f) a
good reset for (4d) but it cannot be used in place of (4d).
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p̂T (t,τ+1) =

p̄c(t) +
p̂T (t,τ) + ∆p̂T (t,τ)− p̄c(t)

∥p̂T (t,τ) + ∆p̂T (t,τ)− p̄c(t)∥
ρ̂ ∥p̂T (t,τ) + ∆p̂T (t, τ)− p̄c(t)∥ > ρ̂

p̂T (t,τ) + ∆p̂T (t,τ) otherwise

∆p̂T (t,τ) :=β (F (p̂T (t,τ), p̄(t)))
†
(b(t)−f(p̂T (t,τ), p̄(t))).

(4d)

3) Formation Controller: We outline a controller preserv-
ing the formation shape. More in detail, we define pib ∈ R3

as the ith agent’s position relative to p̄c such that

p̄i(t) := pib + p̄c(t).

Then, we impose that pib is a constant, for all i = 1, . . . , n.
As a consequence, we designed the formation controller for
updating p̄c to improve the accuracy of p̂T . In particular,
we mixed, in a convex combination, the information coming
from the ES, b, and that generated by the TX position
estimator, p̂T . We combined these two via σ : N × N →
[0, 1] such that σ = 0 means p̂T is error-free and σ = 1
means p̂T is totally unreliable. Then, we defined

σ(t, τ) := ∥(b(t)−f(p̂T (t, τ), p̄(t)))∥
/
(2
√
n). (5a)

The ES-based and LS-based directions toward which we
move the formation are respectively defined as

b̂ES(t) :=
∑n

i=1 ∇̂i(t)

/√
ϵ+

∥∥∥∑n
i=1 ∇̂i(t)

∥∥∥2
b̂LS(t, τ) :=

(p̂T (t, τ)− p̄c(t))√
ϵ+ ∥p̂T (t, τ)− p̄c(t)∥2

.

(5b)

Then, we propose the following policy to manage the fleet

p̄c(t+ 1) = p̄c(t) + γ
(
σ(t,N)b̂ES(t)

+(1−σ(t,N))b̂LS(t,N)
)
,

(5c)

where γ > 0 is introduced to enforce time-scale separation
between the fleet control and the target position estimation.

D. Theoretical Working Principles of the Proposed Solution

We conceive our algorithm as a double-time scale system
in which the formation controller (5) represents the slow
system, while the composition of the ES gradient estima-
tor (3) and the TX localiser (4) is the fast system. The time
scale separation is induced by small γ. Then, as common in
the singular perturbation theory [12], we define the so-called
boundary layer as the fast system evaluated at γ = 0. We
denote with ∇̂i,∞(t) and p̂T,∞(t) as the asymptotic solutions
of the boundary layer. Let σ∞(t), b̂ES,∞(t), and b̂LS,∞(t)
be (5a) and (5b) evaluated at ∇̂i,∞(t) and p̂T,∞(t). Then,
the so-called reduced system is represented by the formation
controller evaluated at b̂ES,∞(t), b̂LS,∞(t), and σ∞(t). We
define pc,red(t) the solutions of the reduced system.

The formation design relies on the principle that the
ARTVA SNR increases when the agents are closer to the
TX. Let ∇⋆

i (pi) be the gradient of y(·, 0) evaluated at pi
at zero noise. Then, for any given desired accuracy c′ > 0

and any noise level ν > 0 there exists a maximum radius ρ′

such that ∥∇i(pi) − ∇⋆
i (pi)∥ ≤ c′ for all ∥pi − pT ∥ ≤ ρ′.

Moreover, the gradient estimation error ∥∇̂i,∞−∇i∥ can be
tuned via standard averaging arguments [13]. In detail, for
any ω ≤ 2π/3, κ ∈ (0, 1), c′′ > 0 there exist α > 0, δ > 0,
ρ′′ > 0 such that ∥∇̂i,∞ − ∇i∥ ≤ c′′ for all α ∈ (0, α),
δ ∈ (0, δ), and ∥pi − pT ∥ ≤ ρ′′. This implies that the
formation radius r := maxi,j∈{1,...,n} ∥pi − pj∥ must be
chosen as r < ρ := min{ρ′, ρ′′}. Hence, there exists a set
of initial conditions, namely P0, such that pi ∈ pT + Bρ.

Given y as in (1), there exists c ∈ (0, 1) (c ≈ 0.9 ) such
that c ≤ ⟨∇⋆

i (pi)/∥∇⋆
i (pi)∥, (pT − pi)/∥pT − pi∥⟩ ≤ 1.

This implies that we can design our system to keep a tight
coherency between b̂ES,∞(t) and (pT − pi(t))/∥pT − pi(t)∥,
for all t ∈ N, thanks to the previous arguments about the
estimation accuracy of the nominal gradient ∇⋆

i (pi(t)). Let
bi,∞(t) be defined as (4a) evaluated at ∇̂i,∞(t). Since, the
boundary layer TX estimation problem, i.e., problem (4c)
evaluated at bi(t) = bi,∞(t), becomes locally convex around
pT , then we can demonstrate that for any desired estimation
performance index d > 0 there exists N > 0 such that
∥p̂T (t,N) − pT ∥ ≤ d for all N ≥ N [14]. Since also the
boundary layer TX estimator, i.e. (4) evaluated at bi(t) =
bi,∞(t), works well if all bi,∞(t) are coherent with (pT −
pi(t))/∥pT − pi(t)∥, we have that ⟨b̂ES,∞(t), b̂LS,∞(t)⟩ > 0,
when the formation is far from pT . This implies that the
reduced system steers the formation in the right direction
when far from the TX. On one hand, ∥b̂ES,∞∥ reduces as pc
approaches the target. On the other, the estimation p̂T gets
more reliable when p̄c approaches pT because the formation,
whose agents are supposed uniformly distributed on a sphere
of radius r, surrounds pT . This makes pc,red(t) converge in
a neighbourhood of pT .

Finally, once the boundary layer and the reduced system
have been assessed to have an asymptotic stable behavior,
standard singular perturbation arguments guarantee the exis-
tence of γ > 0 such that also the original system (1)-(5) is
asymptotically stable for any γ ∈ (0, γ).

The performance required in 2) of Problem 1 is verified
through a suitable selection of the design parameters, includ-
ing δ and pib for i = 1, . . . , n.

III. SIMULATION RESULTS

We assess the performance of the proposed solution
through numerical simulations, focusing on the 2D case.
Specifically, we consider a group of n = 4 RX agents placed
at the corner of a square formation, whose edge is ℓ = 10m
long, initially centered in p̄c(1) = col(25, 25)m and required
to localise the position pT = col(0, 0)m. In implementing
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(a) ES+LS (b) ES (c) LS

Fig. 3: Formation controllers comparison: combined ES+LS (a) vs ES and LS only (b-c). The top row shows the trajectories
for the RX agents, the bottom row reports the errors in the TX position estimation - solid green lines mark ±1[m] range.

the outlined solution, we rest on the selection Π = 1 W and
νi = 10−5T for the sensing model (1) and N = 200 for the
period in (2). The ES scheme (3) is run by setting ω = π/2
and α = 10−2 and imposing ∇̂i(1) ∼ N (0, 10−5I3). In
the LS-based estimator, we choose ρ̂ = 50 m because
it represents a typical ARTVA range. Finally, the fleet is
governed by imposing γ = 10−2.

Figure 3 reports the overall behavior of the RX agents in
localising and surrounding the TX, showing in the top panels
their trajectories (black markers) and the trend of the TX
position estimation (red dots). The mid and bottom panels
report the trend of the components of the vector e = p̂T −pT
at the end of each research step which coincides with the
update of the fleet’s centroid. The superior performance
of the newly designed ES+LS formation control solution
(Figure 3a) can be appreciated in terms of convergence speed
(with respect to the ES-only formation control, obtained by
forcing the parameter σ(t,N) in (5a) to 1 and depicted
in Figure 3b) and the smoothness of the trajectories (with
respect to the LS-only formation control, obtained by forcing
σ(t,N) to 0 and depicted in Figure 3c). This result is also
confirmed by looking at the TX position estimation errors
of the bottom row, which highlight the effective trend of the
combined solution (a), the slow convergence of the ES-only
regulator (b), and the more erratic behavior of the LS-only.

In Figure 4, we report the value of the parameter σ(t,N)
computed according to (5a), referring to the combined algo-
rithm ES+LS updating the RX agents’ position as in (5c).
As expected, the algorithm trusts the ES direction b̂ES
(σ(t,N) > 0.5), being this more reliable than b̂LS during

the first phase of the research. Conversely, as long as the
RX agents get closer to the TX, their LS direction becomes
more reliable and the corresponding contribution allows to
boost the localisation performance.

Then, we compare the performance of the proposed solu-
tion in terms of the distance between the formation’s centroid
p̄c and the actual TX position pT , namely d (p̄c, pT ) =
∥p̄c − pT ∥, reported in Figure 5. It appears that the ES+LS
solution (red) behaves like the ES-only scheme (green) in the
initial transient, and it behaves like the LS-only paradigm
(blue) asymptotically. Then, the benefits of the combined
solution ES+LS stay in the improved transient.

To conclude, we compare the performance of the ES+LS
approach with the ES-only and LS-only approaches within
a statistical framework. We conducted 1000 Monte Carlo
runs, maintaining the same parameters as in previous tests.
Fixing a maximum of 104 research steps, the focus is on the
number of those required to ensure that ∥e∥ ≤ 2 meters
for 30 consecutive steps. Figure 6 shows that the mean
number of steps is 4, 287 · 103 for the ES-only solution
and 6, 696 · 102 for the LS-only one while adopting the
combined ES+LS approach yields a mean of 4, 411 · 102
steps (green dots). The LS-only and ES+LS solutions exhibit
similar mean performance; however, the LS-only method
presents a higher number of outliers and greater variance.
This observation aligns with the fact that the LS-based
estimator heavily relies on reliable input data. Consequently,
this concluding comparison reaffirms the effectiveness of the
ES+LS approach in speeding up the localisation process,
particularly in comparison to the ES-only method. Moreover,
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Fig. 4: Trend of σ(t,N) depicted in terms of punctual values
for each research step (red dots) and interpolated dynamics
(blue line). In the convex combination (5c), σ(t,N) = 1
implies that the fleet position is updated according the ES
output, while σ(t,N) → 0 indicates the formation controller
major reliance on LS position estimation.

Fig. 5: Evolution of the distance d(p̄c, pT ) between the
formation centroid p̄c and the (true) TX position pT .

it also highlights the superior robustness of the ES+LS
approach when compared with the LS-only method.

IV. CONCLUSIONS AND FURTHER DEVELOPMENTS

In this paper, we outline a novel solution to coordinate
a multi-agent system involved in the localisation of a tar-
get consisting of an electromagnetic source. The proposed
approach aims to combine the reliable features of the ES
paradigm with the promptness of cooperative LS estimation.
Any agent utilizes the output of a private ES-based ARTVA’s
gradient estimator method to infer a reliable bearing towards
the unknown target. The set of bearings gathered from the
multi-agent system then serves as input to a centralized
algorithm responsible for estimating the target’s position by
recursively solving an LS minimization problem. Finally,
the formation controller is designed to steer the system’s
centroid by properly accounting for both the ES and LS
contributions, to reduce the localisation time. The results of
the numerical simulations assess the effectiveness of the pro-
posed approach. Compared to the more traditional ES-only
approach, the new solution achieves an order of magnitude

Fig. 6: Statistical analysis of the number of research steps
required to ensure that ∥e∥ ≤ 2 meters for 30 consecutive
steps - green dots indicate the mean number.

reduction (from 103 to 102) in the number of search steps
and, consequently, in the time required to confidently localise
the target within a 2-meter accuracy threshold. In addition,
it turns out to be more robust with respect to the LS-only
approach. Further research steps include the formal proof of
the asymptotic stability of the proposed algorithm and the
extension to the localisation of multiple targets.
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[12] P. Kokotović, H. K. Khalil, and J. O’reilly, Singular perturbation
methods in control: analysis and design. SIAM, 1999.

[13] J. A. Sanders, F. Verhulst, and J. Murdock, Averaging methods in
nonlinear dynamical systems, vol. 59. Springer, 2007.

[14] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

5107


