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Abstract— In this work, we present a rigid-body attitude
control strategy for tracking desired time-varying orientation
under unknown-but-bounded disturbances. The control scheme
aims to achieve nominal performance and disturbance
attenuation. Initially, a nominal controller is designed to
guarantee asymptotically convergence of the error between
nominal and reference orientations to the origin in the
absence of disturbances, ensuring nominal system performance.
Thereafter, considering unknown-but-bounded disturbances, an
auxiliary robust adaptive backstepping control approach based
on projection modification is employed to ensure the maximum
tracking error deviation is ultimately bounded and the adaptive
parameters remain bounded. Experimental results with a nano
quadcopter corroborate our proposed control strategy.

I. INTRODUCTION

The control of rigid-body attitude plays a crucial role
in various engineering applications, ranging from spacecraft
maneuvering to aerial robotics and autonomous vehicles [1],
[2], [3], [4], [5]. These systems are characterized by their
ability to change their orientation in a three-dimensional
space. They are usually prone to the presence of disturbances,
which can arise from environmental factors, external forces,
and inherent uncertainties in the modeled system dynamics.
Achieving accurate robust attitude tracking is essential for
ensuring stability, performance, and safety of such systems
in their main applications. Especially Unmanned Aerial
Vehicles (UAVs), usually require the attitude tracking to
allow aggressive maneuvers while ensuring flight stability
in disturbed scenarios.

In recent years, extensive research has been conducted to
address the challenges associated with attitude control of
rigid bodies. Traditional methods for regulation problems,
such as PID and LQR controllers, have been widely
employed to achieve performance of the nominal system
under ideal conditions [6], [7]. However, these approaches
are often based on linearized models, which lead to poor
performance, in addition to not allowing the execution
of aggressive maneuvers. Additionally, controllers designed
only for ideal conditions often struggle to maintain
satisfactory performance when subjected to disturbances.
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To overcome these limitations, advanced control
schemes have been proposed, aiming to integrate nominal
performance with disturbance attenuation capabilities
through the utilization of both nonlinear and robust control
techniques. The compromise idea is to design controllers
that ensure asymptotic stability under nominal conditions
while also possessing the ability to mitigate the effects of
disturbances [8], [9], [10]. Although those works use this
idea, none of them employ backstepping.

In a previous recent work [11], we have proposed a
backstepping controller with integral action to control a
quadcopter with rigid-body attitude dynamics. This controller
has allowed constant disturbance rejection. The backstepping
technique has been widely used as a nominal controller,
especially for aerial robots [12], [13], [14], [15], [16], [17].

Now, we extend our previous controller by proposing
a robust adaptive backstepping control scheme to mitigate
not only constant disturbances but any norm-bounded ones,
aiming to better address the challenges of tracking orientation
references. The proposed control scheme leverages the
combination of a nominal controller and a robust adaptive
control approach for disturbances, enabling the system to
achieve robustness in the face of uncertainties while tracking
a time-varying reference attitude.

Accordingly, the nominal controller is designed to ensure
the asymptotic convergence of the error between the
nominal and reference orientations to the origin in the
absence of disturbances. Recognizing the practical reality
that disturbances are almost inevitable, we introduce a robust
adaptive backstepping control approach to mitigate their
effects. The controller allows the system to approach the
nominal trajectory while bounding the maximum deviation
[10].

In this sense, the proposed method is similar to the work
[18], which has inspired the current development. In [18],
the authors have proposed a guaranteed cost control with
a robust adaptive auxiliary controller to solve the origin
regulation problem. However, their solution cannot solve
the tracking problem and allows adaptive gains to drift
towards infinity. To overcome these limitations, we employ a
nonlinear nominal control law and a projection modification
[19] on the adaptive gains. Our approach also differs in the
orientation error calculation, employing a unit quaternion
error representation instead of combinations of real and
imaginary parts. In this way, it is possible to guarantee
the tracking using the unit error quaternion, which holds
properties of attitude quaternions.
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Overall, the main contribution of this work is a rigid-
body attitude tracking controller with the following features:
(i) guaranteed nominal stability; (ii) ultimate boundedness
of the tracking error in the disturbed case; (iii) bounded
evolution of the adaptive parameters; and (iv) validation
through simulation and experimental results.

Notation

We adopt quaternion algebra in this work, where unit
quaternions denote attitude. The main advantages of this
algebra are the singularity-free attitude representation,
the easier coupling between complex systems, and some
similarities with vector representations [20], [21], [22], [23].

For any quaternion o ∈ H, with o = o0+ox ı̂+oy ȷ̂+ozk̂,
its real part is R{o} = o0 ∈ R, and its imaginary part is
the pure quaternion (with null real part) I{o} = ox ı̂+oy ȷ̂+
ozk̂ ∈ Hp, such that ı̂ȷ̂ = k̂, ȷ̂k̂ = ı̂, k̂ı̂ = ȷ̂, ı̂ȷ̂k̂ = −1. The
conjugation operation is denoted by o∗ = R{o} − I{o}.
In this paper, given pure quaternions a, b ∈ Hp, we define
the operations a × b and a⊤b as the usual cross and inner
products for the vectors associated with their imaginary parts;
and the operation b = Ma, with M ∈ R3×3, as the usual
matrix multiplication [bx, by, bz]

⊤ = M [ax, ay, az]
⊤.

II. PROBLEM STATEMENT

Let o = cos(ϕ2 ) + n sin(ϕ2 ) ∈ H be the attitude unit
quaternion in terms of the rotation angle ϕ ∈ S, where
S is the circle space, around the axis given by the pure
quaternion n = nx ı̂ + ny ȷ̂ + nzk̂ ∈ Hp, with ∥n∥ = 1.
Let ω = ωx ı̂ + ωxȷ̂ + ωxk̂ ∈ Hp be the angular velocity
of the body-fixed reference frame w.r.t. the inertial reference
frame, expressed in the body-fixed reference frame. A rigid-
body attitude evolves with time according to

ȯ =
1

2
oω, (1)

ω̇ = Ω+ J−1τ + J−1τ d, Ω = −J−1(ω × Jω), (2)

where τ ∈ Hp is the control input, τ d ∈ Hp is the
disturbance, and J = J⊤ > 0 ∈ R3×3 is the inertia tensor.
This system is called the practical system.

The problem addressed in this work is the attitude
trajectory tracking, formalized below.

Problem 1 (Attitude trajectory tracking): Given the
rigid-body attitude system (1)-(2) with unknown-but-
bounded disturbance τ d, design a controller that drives the
system asymptotically to a small neighborhood around a
given reference trajectory od(t) given by

ȯd =
1

2
odωd, (3)

such that od(0) = od,0 and ωd(t) are known, with ωd ∈ Hp

defined as the desired angular velocity of the target reference
frame w.r.t. the inertial reference frame, expressed in the
target reference frame. In other words, find a control law τ
such that o(t) converges to a positively invariant set around
od(t), even in the presence of disturbances.

III. PROPOSED CONTROLLER

Our approach to address Problem 1 is inspired by [18],
while also incorporating several crucial additional elements
that have not been previously considered. Besides using a
multiplicative quaternion error as the basis for our theoretical
development, we provide experimental results and consider
time-varying reference attitude with guaranteed upper bounds
for the adaptive parameters. This last feature turns out to be
a requirement for any practical implementation.

Our control design methodology consists of three steps.
First, we find a nominal (i.e. when τ d = 0) feedback
controller that ensures nominal asymptotic convergence to
the reference od(t). One advantage of our controller w.r.t.
the strategy in [18] is that we solve the nominal control
problem for a given time-varying reference trajectory od(t)
rather than only solving the regulation problem (od ≡ 1).
Thereafter, we formulate a robust adaptive control law to
mitigate the error between the practical system and the
previously determined nominal trajectory, ensuring that the
tracking error converges to a small neighborhood around
the origin. By implementing a projection modification in
the adaptation law of the gains, we prevent these gains
from drifting towards infinity, as would invariably occur in
practical scenarios. Finally, we obtain the practical system
control law by combining the nominal and robust adaptive
controllers.

A. Nominal controller

We define the nominal system, as (1)-(2) when τ d = 0.
The corresponding variables are represented with a top bar,
such that

˙̄o =
1

2
ōω̄, (4)

˙̄ω = Ω̄+ J−1τ̄ , Ω̄ = −J−1(ω̄ × Jω̄). (5)

The first part of our method is achieved based on the
following Lemma.

Lemma 1: Let e ≡ o∗
dō be the attitude error quaternion

between reference and nominal attitudes, with zo ≡ I{e} ∈
Hp and the reference attitude od(t) evolving according to
(3). Define zω = ω̄ −ωd,B̄, where the representation of the
reference angular velocity ωd in the body-fixed reference
frame of the nominal system is given by ωd,B̄ = e∗ωde. The
nominal system asymptotically tracks the reference attitude
if the control law is defined as

τ̄ = ω̄ × Jω̄ + Jω̇d,B̄ + J τ̄L, (6)

τ̄L = −kozo −Kωzω, (7)

with ko ∈ R, ko > 0, Kω ∈ R3×3, Kω = K⊤
ω > 0.

Proof: Notice that the attitude error quaternion e
represents the orientation of the target reference frame w.r.t.
the body-fixed reference frame of the nominal system, in the
sense that aB̄ = e∗ade for any pure quaternions aB̄ and ad

representing the same vector w.r.t. the body-fixed nominal
reference frame and the target reference frame, respectively.
A complete alignment between these two reference frames
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means that ō = od, and therefore, e = o∗
dō = 1. The time

derivative of the error is given by

ė = ȯ∗
dō+ o∗

d
˙̄o =

(
1

2
odωd

)∗

ō+ o∗
d

(
1

2
ōω̄

)
,

=
1

2
ω∗

do
∗
dō+

1

2
o∗
dōω̄ = −1

2
ωde+

1

2
eω̄.

By considering ωd,B̄ = e∗ωde in the previous expression,
we have that

ė =
1

2
e
(
ω̄ − ωd,B̄

)
=

1

2
ezω, (8)

with zω = ω̄ − ωd,B. Denoting R{e} = zo, and using
I{e} = zo, one has that e = zo+zo, and the last expression
can be rewritten as

żo = −1

2
z⊤
o zω, żo =

1

2
(zozω + zo × zω) . (9)

Conversely, from (5), we obtain

żω = Ω̄+ J−1τ̄ − ω̇d,B.

By choosing τ̄ from (6), we have that

żω = −kozo −Kωzω. (10)

Using the following candidate Lyapunov function:

V (e, zω) = koz
⊤
o zo + ko(1− zo)

2 +
1

2
z⊤
ω zω, (11)

yields

V̇ = 2koz
⊤
o

[
1

2
(zozω + zo × zω)

]
− 2ko(1− zo)

(
−1

2
z⊤
o zω

)
+ z⊤

ω [−kozo −Kωzω] ,

V̇ = −z⊤
ωKωzω ≤ 0. (12)

Notice that V̇ = 0 ⇔ zω = 0, and the equilibrium point
(zo = 0, zω = 0, z2o = 1 − ∥zo∥2 = 1) is the only element
in the largest positively invariant set where V̇ = 0, as it can
be verified from the attitude error system dynamics given by
(9) and (10). By LaSalle’s invariance principle [24, Corollary
4.2], the attitude error will converge asymptotically to the
equilibrium point, and e = zo + zo → 1 ⇔ o → ōd.

B. Robust adaptive backstepping control

For the second part of our methodology, we propose a
robust adaptive backstepping control law to stabilize the error
between the practical (1)-(2) and nominal (4)-(5) systems.
Comparing both, the error system describes the mismatch
between them.

Let oe = ō∗o be the error between the practical and
nominal orientations. Accordingly, we obtain

ȯe = −1

2
ω̄oe +

1

2
oeω.

By considering the nominal angular velocity w.r.t. the inertial
reference expressed in the body-fixed frame ω̄B = o∗

eω̄oe,
yields

ȯe =
1

2
oeωe, (13)

where ωe = ω − ω̄B . Also, we have that

ω̇e = ω̇ − ˙̄ωB ,

ω̇e = Ωe + J−1τ d + J−1τ − J−1τ̄B , (14)

where Ωe = Ω−o∗
eΩ̄oe+ωe×ω̄B and τ̄B = Jo∗

eJ
−1τ̄ oe.

1) Step 1: In the first step, we want ωe to track a virtual
control law φe such that oe → 1 if ωe = φe. This virtual
control law is chosen as

φe = −kφeeo, kφe > 0, (15)

where eo ≡ I{oe} ∈ Hp. Also, let eo ≡ R{oe} ∈ R.
Lemma 2: Applying the virtual control law (15) in the

system (13), the point eo = 1 becomes an asymptotic stable
equilibrium point.

Proof: Since oe = eo + eo, (13) can be rewritten as

ėo = −1

2
e⊤o ωe, ėo =

1

2
(eoωe + eo × ωe) . (16)

Let Veo be a candidate Lyapunov function

Veo(oe) = (1− eo)
2 + e⊤o eo. (17)

The time derivative of (17) is

V̇eo =2e⊤o

[
1

2
(eoωe + eo × ωe)

]
− 2(1− eo)

[
−1

2
e⊤o ωe

]
,

V̇eo = e⊤o ωe. (18)

Applying (15) into (13), the time derivative of (17) yields

V̇eo =− kφe∥eo∥2, (19)

V̇eo(1) = 0, (20)

V̇eo(oe) < 0, ∀oe ∈ H, ∥oe∥ = 1,oe ̸= 1, (21)

which guarantees asymptotic convergence of the error oe to
1, and therefore, ensures o → ō.

2) Step 2: For the last step, let eω = ωe − φe ∈ Hp

be the angular velocity error that encompasses this virtual
control law. The error system is represented by

ȯe =
1

2
oeφe +

1

2
oeeω, (22)

ėω = Ωe + J−1τ e + J−1τ d − φ̇e, (23)

where τ e ≡ τ − τ̄B is its control input.
Following the approach in [18], in order to design the

robust adaptive control law, consider

χo = τ d + JΩe − Jφ̇e (24)

as a lumped term that contains the bounded disturbance τ d.
Using an indirect method [25], [26], the controller tackles χo

by focusing only on its bound. Accordingly, the following
assumption is considered.

Assumption 1 (Norm bounded disturbances): There
exist unknown constants ζ1 and ζ2 such that

∥χo∥ ≤ ζ1 + ζ2∥eω∥, (25)

and those constants ζ ≡
[
ζ1 ζ2

]T
belong to a convex set

Ξ described by

ζ ∈ Ξ, Ξ = {ξ ∈ R2 | α(ξ) ≤ 0}, (26)
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where α : R2 → R is a smooth function.
These constants are estimated in the controller by adaptive

parameters ζ̂ ≡
[
ζ̂1 ζ̂2

]T
, where ζ̂(0) ∈ Ξ.

Then, the robust adaptive control law for the error system
is given by1

τ e = −keoeo − keωeω − ζ̂1tanh(ζ̂1eω/ϵo)− ζ̂2eω, (27)

where keo, keω, ϵo > 0 are scalar gains, and the adaptive
parameters ζ̂1, ζ̂2 > 0 have the following update laws:

˙̂
ζ =

{
Pϵ if α(ζ̂) < 0 or ∇αTPϵ ≤ 0,

P ϵ− P ∇α∇αT

∇αTP∇α
Pϵ otherwise

P =

[
ρ1 0
0 ρ2

]
> 0, ϵ =

[
∥eω∥
∥eω∥2

]
, (28)

where a projection modification was applied [19].
Lemma 3: Considering Assumption 1, let Veoω be the

following control Lyapunov function:

Veoω = keoVeo +
1

2
e⊤ω Jeω +

ζ̃21
2ρ1

+
ζ̃22
2ρ2

, (29)

where ζ̃ ≡
[
ζ̃1 ζ̃2

]T
= ζ − ζ̂ are estimation errors. By

applying (27) in the system (22)-(23), V̇eoω < 0 if the system
is outside the attractive set ∆o given by

∆o = {(eo, eω) | ∥eo∥ ≤ δo, ∥eω∥ ≤ δω}, (30)

δo =

√
3κϵo
keokφe

, δω =

√
3κϵo
keω

, (31)

with κ ≈ 0.2785.
Proof: Consider Lemma 2 and the function (29). The

time derivative of Veoω is given by

V̇eoω = −keokφe∥eo∥2 + keoe
⊤
o eω − ζ̃1

˙̂
ζ1/ρ1 − ζ̃2

˙̂
ζ2/ρ2

+ e⊤ω (JΩe + τ d − Jφ̇e + τ e). (32)

For the sake of simplicity, consider for now that the first
conditions for ˙̂

ζ law in (28) are always met. Later we show
that the projection modification [19] does not impact on the
result. Then, substituting (27) and (28) in (32) yields

V̇eoω =− keokφe∥eo∥2 − keω∥eω∥2 + e⊤ωχo

− e⊤ω ζ̂1tanh(ζ̂1eω/ϵo)− ζ̂2∥eω∥2

− ζ̃1∥eω∥ − ζ̃2∥eω∥2. (33)

Considering Assumption 1 leads to

V̇eoω ≤− keokφe∥eo∥2 − keω∥eω∥2

− ζ̂1∥eω∥tanh(ζ̂1∥e∥ω/ϵo) + ζ̂1∥eω∥. (34)

Using both the following properties, [18], [27], (i) ∥q∥ ≤∑n
i=1 |qi|,∀q ∈ Rn; and (ii) 0 ≤ |a| − a tanh(a/εp) ≤

κεp,∀a ∈ R; yields:

V̇eoω ≤ −keokφe∥eo∥2 − keω∥eω∥2 + 3κϵo. (35)

1The function tanh(q) is defined in terms of exponential maps. It
is noteworthy that the bold tanh(q) is an abuse of notation, in which
we actually mean the element-wise hyperbolic-tangent, applied to each
imaginary field of q.

In which V̇eoω < 0 for ∥eo∥ >
√

3κϵo
keokφe

or ∥eω∥ >
√

3κϵo
keω

.
When the projection modification is active, i.e. the second

condition for the update law, ˙̂
ζ, in (28) is met, there is an

extra term in the Lyapunov function derivative V̇eoω given
by

ζ̃T
∇α∇αT

∇αTP∇α
Pϵ. (36)

By definition, ∇αTPϵ > 0 when this modification is active
and ζ̃T∇α ≤ 0 since Ξ is convex [19]. Therefore, the extra
term (36) does not make (35) more positive and ensures that
the adaptive gains remain in Ξ [19].

Lemma 4: Considering Assumption 1 and applying (27)
in the system (22)-(23), the error system state (eo, eω, ζ̃) is
uniformly ultimately bounded by

∥eo∥2 + ∥eω∥2 + ∥ζ̃∥2 ≤ k1 + k2 + r

c
, (37)

with

k1 =
6κϵo
kφe

> 0, k2 =
3κϵo∥J∥
2keω

> 0,

r =
1

2
∥P−1∥d2 > 0,

c = min{keo, 0.5λmin(J), 0.5λ
−1
max(P )},

where d is the maximum diameter of Ξ.
Proof: First, notice that the unit norm constraint on

the quaternion error oe = eo + eo implies that |eo(t)|2 +
∥eo(t)∥2 = 1, ∀t ∈ R, such that the candidate Lyapunov
function (17) can be rewritten as

Veo = (1− eo)
2 + ∥eo∥2,

= 2(1− eo) = 2
(
1−

√
1− ∥eo∥2

)
,

and
∥eo∥ ≤ 1 ⇒ ∥eo∥2 ≤ Veo ≤ 2∥eo∥2.

These last inequalities are true because ∥eo∥ ≤ 1 ⇒ (1 −
∥eo∥2) ≤

√
1− ∥eo∥2 ≤ 1− 0.5∥eo∥2. This shows that the

candidate Lyapunov function (29) can be rewritten as

Veoω = a1 + a2 + F,

where a1 = 2keo

(
1−

√
1− ∥eo∥2

)
≥ 0, a2 = 1

2e
⊤
ω Jeω ≥

0, and F = 1
2 ζ̃

⊤P−1ζ̃ ≥ 0. From Lemma 3, and the fact
that a1 ≤ 2keo∥eo∥2, a1 > k1 ⇒ V̇eoω < 0, or a2 > k2 ⇒
V̇eoω < 0. Thus, a1+a2 > k1+k2 ⇒ V̇eoω < 0, as a1 > k1
or a2 > k2.

This means that the set ∆ = {(eo, eω, ζ̃) | Veoω ≤ k1 +
k2+r} is attractive: if Veoω = a1+a2+F > k1+k2+r ⇔
a1+a2 > k1+k2+(r−F ) > k1+k2 ⇒ V̇eoω < 0. It is also
positively invariant because, when Veoω = k1 + k2 + r, we
also find that V̇eoω < 0 since a1 + a2 +F = k1 + k2 + r ⇒
a1 + a2 > k1 + k2.

Finally, notice that Veoω ≥ c
(
∥eo∥2 + ∥eω∥2 + ∥ζ̃∥2

)
,

and when the error system state reaches the attractive and
positively invariant set ∆ defined above, which happens in
finite time, condition (37) will be satisfied.
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C. Practical system control

The last part of our method is to combine the controller
design. Now, we can present the complete controller scheme,
which is given by

τ = τ̄B + τ e, (38)

The proposed method yields the following result.
Theorem 1 (Attitude Controller): Considering

Assumption 1 and applying (38) in the practical system
(1)-(2), the system trajectories asymptotically converge to
a control invariant set around the time-varying reference
orientation od(t).

Proof: Lemmas 1 states that the nominal system (4)-
(5) asymptotically converges to the reference orientation.
Furthermore, the error between the practical system and the
nominal trajectory is constrained as a result of Lemmas 3
and 4.

Figure 1 illustrates the idea behind the proposed controller.
The target attitude od is shown in the middle of the image
plotted in continuous lines. Then, the nominal system attitude
ō is plotted in dashed lines. A control law τ̄ aims to
asymptotically drive ō to od, as shown with the brown arrow.
Finally, the practical system attitude o is plotted in dashed-
dotted, where a control law τ e aims to stabilize o in a region
around ō. Combining both control law efforts we obtain
equation (38), where Theorem 1 holds.

Fig. 1. Illustration of the proposed control method. The reference frame
for the target od is plotted in continuous lines, the one for the nominal
system ō is plotted in dashed lines and the one for the practical system o
is plotted in dashed-dotted lines.

IV. RESULTS

A video with animations, recordings, and more
details about the results is available at youtu.be/r-
MWOgKWWqo. The code used in this section is available
at github.com/ArthurHDN/cdc2024.

A. Simulations

For the simulations, the rigid-body attitude (1)-(2) was
controlled to track a reference orientation trajectory given
by

od(t) = o1(t)o2(t),

o1(t) = cos

(
t

10

)
+ k̂ sin

(
t

10

)
,

o2(t) = cos
(π
6

)
+

(
î cos

(
t

5

)
+ ĵ sin

(
t

5

))
sin

(π
6

)
.

The system’s initial conditions were

o(0) = ō(0) = cos

(
1

2
· π
3

)
+ ĵ sin

(
1

2
· π
3

)
,

ω(0) = ω̄(0) = 0 rad s−1.

As for the inertia tensor, we introduced a +20% parameter
estimation error in the controller, given by

J =

2.3951 0 0
0 2.3951 0
0 0 3.2347

 · 10−5 kgm2,

J̄ = 1.2J,

where J is the actual system inertia and J̄ is the inertia used
in the controller.

The nominal controller gains were tuned as

ko = 5 s−2,

Kω =

10.3813 −0.0024 −0.0098
−0.0024 10.5941 −0.0003
−0.0098 −0.0003 10.5928

 s−1,

while the robust controller gains were

kϕe =2.5 s−1,

keo =10−2 Nmrad−1,

keω =6 · 10−3 Nms rad−1,

ϵo =2 · 10−3 sN−1 m−1 rad−1,

ρ1 =5 · 10−4Nmrad−1,

ρ2 =10−3Nms2 rad−3.

The added disturbances were given by

τ d =
(
îdx + ĵdy + k̂dz

)
Nm,

dx = N (0, 5 · 10−5),

dy = N (0, 5 · 10−5)115 + 2.5 · 10−3 sin(t/2)140,

dz = N (0, 5 · 10−5)165 + 1 · 10−3165,

where N (µ, σ) is a Gaussian distribution with mean µ and
deviation σ, and 1t0 is the unit time step starting at t = t0.
The set Ξ was chosen as a circle according to α(ξ) = ξT ξ−
r2, with r = 0.005.

Fig. 2 shows the attitude, represented in Euler angles for
better visualization, in continuous lines with the reference
attitude in dashed lines. The system attitude converged to
the desired trajectory, keeping a small error below δo, as
expected.
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Fig. 2. Simulation: attitude in continuous lines with the reference attitude
in dashed lines. For a more readable result, the attitudes were converted to
Euler angles: φ, θ, and ψ which corresponds to roll, pitch, and yaw.

The error between the practical and nominal systems
stayed in the set ∆o, as shown in Fig. 3.
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Fig. 3. Simulation: norm of attitude error between practical and nominal
systems (top), and norm of angular velocity error between practical and
nominal systems (bottom).

As for the norm of the error between the practical system
and the reference attitudes, denoted by ∥I{o∗

do}∥, is shown
by Fig. 4.
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Fig. 4. Simulation: norm of attitude error between the practical system
and the reference.

Fig. 5 shows the evolution in time of the adaptive gains,
which stayed in Ξ, and therefore, not drifting to infinity.
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Fig. 5. Simulation: evolution in time of adaptive gains.

To highlight the superiority of the combined nominal and
robust adaptive controller, we repeated the same simulation
scenario but employed only the nominal controller to the
system, which achieved a worse and unstable performance.
This can be seen by comparing Fig. 2 with Fig. 6 below.
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Fig. 6. Simulation: attitude when employing only the nominal controller.
in continuous lines with the reference attitude in dashed lines. For a more
readable result, the attitudes were converted to Euler angles: φ, θ, and ψ
which corresponds to roll, pitch, and yaw.

B. Experiments

For the experiments, a Crazyflie platform2 was attached to
a gimbal ring test-bench to allow the quadcopter to change
its orientation without colliding or changing its position.
We repeated the experiment with three different attitude
references passed to the controller, which achieved good
results. Besides the inherited uncertainties of the experiment,
the system sometimes was strongly externally disturbed by
shaking and hitting the test-bench as can be observed in the
afore mentioned video.

Fig. 7 shows the attitude in continuous lines and the
attitude reference in dashed lines.

2Crazyflie 2.1 available at bitcraze.io.
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Fig. 7. Experiments: attitude states in continuous lines and the attitude
references in dashed lines.

V. CONCLUSION

In this work, we proposed a rigid-body attitude control
scheme for tracking time-varying orientation references
under the presence of magnitude-bounded disturbances. Our
method consists in combining a nominal controller with
a robust adaptive backstepping control law to ensure the
system converges to a limited region around the reference
attitude.

In addition, the adaptive gains do not drift to infinity,
and the nominal asymptotic convergence is ensured to the
time-varying reference, while also guaranteeing an ultimate
bounded tracking error in the disturbed cases with formal
proofs. Simulations and experiments with a quadcopter
validate our control strategy.

This method, requires a design of a region for the adaptive
gains to reside within given the projection modification [19].
If this region is poorly designed and becomes smaller than
required, it may not contain values to properly mitigate the
disturbances. If the region is big, the gains might increase
and the behaviour of the system may approach a high-gain
control method.

For future work, we propose to extend this controller by
considering also the translation dynamics of the quadcopter.
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[20] F. F. Afonso Silva, J. José Quiroz-Omaña, and B. Vilhena Adorno,
“Dynamics of mobile manipulators using dual quaternion algebra,”
Journal of Mechanisms and Robotics, vol. 14, no. 6, p. 061005, 2022.

[21] Y.-B. Jia, “Quaternions,” Com S, vol. 477, p. 577, 2019.
[22] B. Vilhena Adorno, “Robot Kinematic Modeling and Control Based

on Dual Quaternion Algebra — Part I: Fundamentals..” working paper
or preprint, Feb. 2017.

[23] J. B. Kuipers, Quaternions and rotation sequences: a primer with
applications to orbits, aerospace, and virtual reality. Princeton
university press, 1999.

[24] H. K. Khalil, Nonlinear Systems. Prentice Hall, third ed., 2002.
[25] Z. Zhu, Y. Xia, and M. Fu, “Adaptive sliding mode control for attitude

stabilization with actuator saturation,” IEEE Transactions on Industrial
Electronics, vol. 58, no. 10, pp. 4898–4907, 2011.

[26] W. Cai, X. H. Liao, and Y. D. Song, “Indirect robust adaptive
fault -tolerant control for attitude tracking of spacecraft,” Journal of
Guidance, Control, and Dynamics, vol. 31, pp. 1456–1463, Sept. 2008.

[27] M. Polycarpou and P. Ioannou, “A robust adaptive nonlinear control
design,” Automatica, vol. 32, pp. 423–427, Mar. 1996.

4355


