
Predictive Norm Optimal Iterative Learning Control for
High-performance Formation Control Problem

Yueqing Zhang1 and Bin Chen2

Abstract— This paper develops a predictive optimisation-
based iterative learning control (ILC) strategy for the high-
performance formation control problem in networked dynam-
ical systems working repetitively. It avoids the need for exact
model information in traditional methods and achieves high
performance via a predictive framework incorporating a unique
performance index that integrates both immediate and future
performance. The proposed framework guarantees geometric
convergence of the formation error norm to zero and is
capable of handling both heterogeneous and non-minimum
phase systems. A distributed implementation of the frame-
work is developed using the Alternating Direction Method of
Multipliers to guarantee the framework’s scalability for large-
scale networks. Rigorous convergence analysis and numerical
examples are provided to confirm its effectiveness.

I. INTRODUCTION
In the last decade, formation control of networked dynam-

ical systems requiring all subsystems to form a predefined
formation repetitively with high precision has attained in-
creasingly more attention in wide research areas, such as
satellites, search and rescue robots, and unmanned aerial
vehicles (UAVs) [1], [2]. For example, UAVs in precision
agriculture require repeated high-accuracy formation control
to optimise resource use, prevent coverage gaps or overlaps,
and improve crop health monitoring and disease detection.
To achieve high-performance formation, traditional control
methods require highly accurate models of each subsystem,
which can be very difficult or expensive to know.

To address this limitation, recent designs apply a powerful
control approach, namely iterative learning control (ILC),
to the high-performance formation control problem. ILC
is especially suitable for tasks working repetitively and
requiring high precision, since it can learn the information
(in particular input and error) of previous attempts on the
same task to improve its control strategy without knowing
accurate model information [3]–[5].

Due to the suitability of ILC for the high-performance
formation control problem, many ILC-based methods have
been proposed: [6], [7] propose Proportional-type ILC for
linear networked dynamical systems with fixed and switching
topology, respectively; [8]–[11] design Proportional-Integral-
Derivative type ILC approaches for nonlinear networked
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dynamical systems; [12], [13] propose a high-order internal
model-based ILC method for nonlinear networked dynam-
ical systems; [14] designs a distributed norm optimal ILC
(NOILC) algorithm with great scalability and convergence.

However, except for [14], the existing papers have limited
convergence performance (e.g., monotonic convergence can-
not be guaranteed without tunning any control parameters)
and scalability to large-scale networks. Although the method
proposed in [14] can achieve monotonic convergence of the
formation error norm (without requiring parameter tuning)
even on large-scale networks, its convergence could be slow
if only the performance of the next step is considered.

To overcome the ‘short-sighted’ problem in the traditional
NOILC for networked systems, a predictive NOILC has been
proposed for consensus tracking of networked dynamical
systems in our recent publication [15]. By incorporating pre-
dictions on future performance, [15] has shown a faster con-
vergence speed with the other performances (e.g., monotonic
convergence of the tracking error norm, certain robustness
against model uncertainty) remaining unchanged as the dis-
tributed NOILC algorithm. However, the high-performance
consensus tracking problem considered in [15] has only one
unique input solution because there exists a reference signal,
that is much easier for design when compared with the
high-performance formation control problem which has an
infinite number of solutions to achieve the desired formation.
Furthermore, paper [15] only considers single-input-single-
output (SISO) networked dynamical systems, while multi-
input-multi-output (MIMO) networked dynamical system
that is often seen in practice, have not be considered.

Motivated by the above ideas, this paper further extends
[15] and proposes a predictive NOILC framework for high-
performance formation control problems with MIMO dy-
namics. The main contributions are summarised as follows:

• we consider a general system formulation allowing the
consideration of MIMO networked dynamical systems,
which has a high degree of industrial applicability;

• we design a novel predictive norm optimal performance
index for high-performance formation control problem
and incorporate it into the optimal-based ILC frame-
work. The resulting predictive NOILC framework can
greatly enhance the convergence speed without losing
the monotonic convergence properties;

• we prove that for the high-performance formation con-
trol problem which exists an infinite number of input
selection, the proposed predictive NOILC framework
can obtain the minimum energy solution by selecting the
initial input to be zero, which is appealing in practice;
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• we design a distributed implementation for the predic-
tive NOILC framework. The resulting distributed ILC
algorithm has great scalability in dealing with large-
scale heterogeneous networks.

The rest of this paper is summarised as follows: Section
II provides the problem formulation; Section III proposes a
centralised predictive NOILC to achieve the desired mission
with convergence properties analysed rigorously; Section
IV develops a distributed implementation for the proposed
predictive NOILC framework; Section V provides numerical
simulations to verify the algorithm’s effectiveness; Section
VI concludes this paper and provides the future direction.

II. PROBLEM FORMULATION

A. System Dynamics

Considers a networked system contains p agents, where
the ith subsystem’s dynamics is represented using a discrete-
time, MIMO, linear time-invariant system as follows:

xi,k(t+ 1) = Aixi,k(t) +Biui,k(t), xi,k(0) = xi,0

yi,k(t) = Cixi,k(t), 1 ≤ i ≤ p
(1)

where t ∈ [0, N ] is the time index and N is the trial
length; k is the trial index; xi,k ∈ IRni , ui,k(·) ∈ IRm and
yi,k(·) ∈ IRl are the state, input and output of the system
i at trial k respectively, in which ni is the subsystem’s
order; Ai, Bi and Ci are system matrices of the system i
with appropriate dimensions. The mission of the networked
dynamical system is to achieve formation control with high
precision repetitively over a finite time interval [0, N ], i.e.,
at t = N + 1, the time is reset to 0 and the state of each
subsystem is reset to initial values xi,0, and the networked
system then perform the same formation task again.

A ‘lifted matrix form’ representation [4] is introduced for
System (1) to facilitate later design:

yi,k = Giui,k + di (2)

where uk and yk are the super-vectors to represent the control
input and output of the ith subsystem on trial k, i.e.,

ui,k = [uT
i,k(0) uT

i,k(1) · · · uT
i,k(N − 1)]T

yi,k = [yTi,k(1) yTi,k(2) · · · yTi,k(N)]T

and the input-output mapping matrix G and the response of
the initial condition d of the ith subsystem are

Gi =


CiBi 0 · · · 0

CiAiBi CiBi · · · 0
...

...
. . .

...
CiA

N−1
i Bi CiA

N−2
i Bi · · · CiBi

 ,

di = [(CiAixi,0)
T (CiA

2
ixi,0)

T · · · (CiA
N
i xi,0)

T ]T .

Denote the input, output, and initial response for all subsys-
tems on the trial k respectively as

ûk =
[
uT
1,k uT

2,k · · · uT
p,k

]T
ŷk =

[
yT1,k yT2,k · · · yTp,k

]T
d̂ =

[
dT1 dT2 · · · dTp

]T
.

(3)

The ‘lifted matrix form’ of the networked dynamical system
can then be written as follows

ŷk = Gûk + d̂ (4)

where the global system matrix G = diag(G1, G2, · · · , Gp).

B. Network Topology

An undirected graph G = (V, E) is used to describe
the networked dynamical system’s topology, where V =
{1, 2, ..., p} is the set of nodes (corresponding to each
subsystem), and E ⊂ V × V is the set of edges. An edge
between two subsystems suggests they are neighbours to
each other, and Ni = {j : (i, j) ∈ E} is the neighbour
set of i, containing all of its neighbours.

To indicate the relationship between two agents, a Lapla-
cian matrix L = {Lij} is defined. It is a real positive semi-
definite matrix (the proof can be found in [1]) with element:

Lij =


−Wij if j ∈ Ni∑
l∈Ni

Wil if j = i

0 otherwise
(5)

where Wij > 0 is a weight that denotes the connection
strength of the edge.

In literature, to achieve the formation control of networked
dynamical systems, the following assumption is standard:

Assumption 1: There is at least one Euclidean path from
one node to other nodes, i.e., the graph G is connected.

C. ILC Design Problem

The formation is defined by some desired relative positions
between each pair of neighbouring subsystems, which is
denoted as rij(t) at time t. Consequently, its ‘lifted matrix
form’ can be obtained in the following:

rij = [rTij(1) rTij(2) · · · rTij(N)]T (6)

Now, by defining the relative position between subsystems
i and j to be yij = yi − yj , the high-performance formation
control problem can then be stated as designing inputs ui(i =
1, 2, . . . , p) to achieve the desired formation such that

rij − yij = rij − yi + yj = 0 (7)

Here, we can introduce a ‘virtual’ reference ri for the
subsystem i, and rij = ri − rj . The purpose of defining the
‘virtual’ reference is to facilitate the problem statement and
it is not supposed to be known and tracked by the subsystem.

By defining the global virtual reference r̂ as:

r̂ =
[
rT1 rT2 · · · rTp

]T
, (8)

the following assumption is important to achieve the desired
formation in the MIMO system:

Assumption 2: The global virtual reference r̂ is in the
range space of LG, where L = L⊗ INl; ⊗ is the Kronecker
product and INl is the identity matrix with order Nl ×Nl.

Following from Assumptions 1 and 2, at least one solution
exists to the formation control problem. Then, the ILC design
problem can be stated as finding an input updating law

ûk+1 = f(ûk, ŷk), (9)
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such that the output of the whole networked system can
establish the desired formation in high precision, i.e.,

lim
k→∞

yi,k−yj,k = Giui,k + di−(Gjuj,k + dj) = rij . (10)

For this mission, there exists an infinite number of solutions
to achieve the desired formation since no fixed reference
signal in the control problem. However, out of these infinite
solutions, there exists a solution that minimises the total
input energy, which is appealing in practice. Hence, in the
following section, we will design an ILC method that not
only achieves the desired formation but also converges to
the minimum input energy solution.

III. CENTRALISED PREDICTIVE NOILC
ALGORITHM AND CONVERGENCE ANALYSIS
In this section, a novel predictive NOILC framework is

proposed for high-performance formation control problems,
and its convergence properties are given.

A. Centralised Predictive NOILC Framework

Predictive optimal ILC decides the control action by
minimising a cost function evaluating the predicted future
performance over upcoming trials. For the formation control
problem, the performance index is expected to minimise
some formation errors. According to (10), the formation error
for the subsystem i is defined as

êi,k =
∑

j∈Ni

Wij(rij − yij,k), (11)

and the formation error for the networked dynamical system
is êk = [êT1,k êT2,k · · · êTp,k]

T .
Therefore, the cost function for the formation control by

predictive NOILC can be defined as

Jk+1,K(ûk+1)=

K∑
κ=1

γκ−1
(
∥êk+κ∥2Q̂ + ∥∆ûk+κ∥2R̂

)
, (12)

where ∆ûk+κ = ûk+κ − ûk+κ−1; K is the number of trials
to look-ahead; γ > 0 weights the importance of future costs;
the norms are defined as

∥ê∥Q̂ =

√
êT Q̂ê, ∥∆û∥R̂ =

√
∆ûT R̂∆û,

where Q̂ = diag(Q1, . . . , Qp), R̂ = diag(R1, . . . , Rp); Qi

and Ri (where i = 1, 2, · · · , p) are positive-definite matrices.
With the above definitions, we have the following predic-

tive NOILC algorithm:
Algorithm 1: For any initial input û0, the input sequence

is calculated by minimising (12) as follows

ûk+1 = argmin Jk+1,K (ûk+1) . (13)

This solves the formation control problem iteratively, i.e.,

lim
k→∞

yi,k − yj,k = rij , (14)
Note that, when the number of subsystems is small,

Algorithm 1 can be executed in a centralised manner by
directly finding the stationary point of the performance index
(12) according to the following input updating law

ûk+1 = ûk + LK êk, (15)

where LK is the learning gain matrix for Jk+1,K and can
be determined recursively

Lκ =
(
R̂+ ĜT (Q̂+ γPκ−1)Ĝ

)−1ĜT (Q̂+ γPκ−1), (16)

Pκ =(Q̂+ γPκ−1)(I − ĜLκ), ∀κ = 1, 2, 3, . . . ,K (17)

in which Ĝ = LG, and Pκ−1 is a positive definite matrix
satisfying the above recursive relationship with P0 = 0. Note
that, the formation error used in (15) can be obtained by (11),
with everything known or can be calculated from the system.

B. Convergence Analysis

Algorithm 1 has good convergence properties as shown in
the following theorem:

Theorem 1: Given any initial input û0, the formation error
norm ∥êk∥Q̂ converges monotonically to zero, i.e.,

∥êk+1∥Q̂ ≤ ∥êk∥Q̂ , lim
k→∞

êk = 0. (18)

The desired formation is then ultimately achieved, i.e.

lim
k→∞

(yi,k − yj,k) = rij , ∀i, j = 1, 2, · · · , p (19)
Proof: The proof is omitted here for brevity.

Theorem 1 indicates that Algorithm 1 is capable of suc-
cessfully achieving formation control for networked dynamic
systems, with a monotonic decrease in the formation error
norm. Additionally, the resulting control input converges to
the one that achieves the target formation while minimising
deviation from the initial control, as shown in the following:

Theorem 2: For any initial input choice û0, the input
generated by Algorithm 1 converges as follows

lim
k→∞

ûk = û∗

where û∗ is the optimal solution of the following problem

min ∥û− û0∥2R̂
s.t. L(Gû+ d̂) = Lr̂

(20)

Consequently, when initialised with a zero input, Algorithm
1 converges to the control solution with the minimum energy.

Proof: The proof is omitted here for brevity.
Theorems 1 and 2 show that Algorithm 1 ensures a

monotonic converging of formation error norm to zero and
minimises the control energy without a need for parameter
tuning, which is favouring in practical applications.

IV. DISTRIBUTED PREDICTIVE NOILC
ALGORITHM AND CONVERGENCE ANALYSIS

A distributed implementation is developed in this section
leveraging the Alternating Direction Multiplication Method
(ADMM) to overcome the potential computational chal-
lenges posed by centralised algorithms in large-scale net-
worked systems. Here, the control task is allocated to each
subsystem and they achieve the desired formation together
with only local information, enabling parallel processing to
enhance the computational efficiency.
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A. Distributed Predictive NOILC for Formation Control

Note that, the ILC problem (12) can be equivalent to
finding the input increment in each trial, i.e.,

Jk+1,K (∆ûk+1) =
∑K

κ=1
γκ−1

(
∥êk+κ∥2Q̂ + ∥∆ûk+κ∥2R̂

)
,

which can be written into the following form

Jk+1,K (∆ûk+1) =
∑p

i=1
Ji,k+1,K (∆ûi,k+1) (21)

where Ji,k+1,K (∆ûi,k+1) denotes the local cost function as:

Ji,k+1,K (∆ûi,k+1) =

K∑
κ=1

γκ−1(∥êi,k+κ∥2Qi
+∥∆ûi,k+κ∥2Ri

)

=

K∑
κ=1

γκ−1(∥êi,k+κ−1−LiGi∆ûi,k+κ∥2Qi
+ ∥∆ûi,k+κ∥2Ri

),

∆ûi,k+1 = ûi,k+1− ûi,k is the local input increment; ûi,k is
the local input; Ri is a local weight matrix; Li is the local
Laplacian matrix. As an example, if Ni = {l,m}, then

Gi = diag(Gi, Gl, Gm),

Li =
[∑

j∈Ni
Wij −Wil −Wim

]
⊗ IN ,

Ri = diag(
1

1 + |Ni|
Ri,

1

1 + |Nl|
Rl,

1

1 + |Nm|
Rm),

ûi,k =
[
uT
i,k uT

l,k uT
m,k

]T
, d̂i =

[
dTi dTl dTm

]T
.

The formation problem can be formulated as the follows:

min
ûi,k+1

∑p

i=1
Ji,k+1,K (∆ûi,k+1)

s.t. ∆ûi,k+κ − Ẽizk+κ = 0, (30)
i = 1, · · · , p, κ = 1, · · · ,K.

Correspondingly, the Lagrangian is defined as

Laug,i,k+1,K (∆ûi,k+1, λ, ρ) =
ρ

2

K∑
κ=1

∥∆ûi,k+κ − Ẽizk+κ∥2

+
K∑

κ=1

λT
i,k+κ(∆ûi,k+κ − Ẽizk+κ) +

1

2
Ji,k+1,K(∆ûi,k+1).

Applying ADMM (more details can be found in [16]) to Al-
gorithm 1, we have the following distributed implementation.

Algorithm 2: At the k + 1th trial, the input ûk+1 is gener-
ated by the following ADMM steps (with κ = 1, 2, · · · ,K):

∆ûq+1
i,k+κ =argmin{Laug,i,k+1,K} (31)

zq+1
i,k+κ =

1

1 + |Ni|
∑

o∈(Ni∪i)
(∆ûq+1

o,k+κ)i (32)

λq+1
i,k+κ =λq

i,k+κ + ρ(∆ûq+1
i,k+κ − Ẽiz

q+1
k+κ), (33)

which solves the formation problem (12) distributedly, i.e.,

lim
q→∞

zqk+1 = argmin{Jk+1,K(∆ûk+1)}, (34)

where zi,k+1 is the ith component of the global vector zk+1

at the k+1th ILC trial; (∆ûo,k+1)i is the element in ∆ûo,k+1

that corresponds to the subsystem i; and |Ni| is the amount
of the neighbours of the subsystem i.

Algorithm 3 Distributed predictive NOILC algorithm for the
high-performance formation control problem
Input: Initial input u0; reference signal r; number of ILC

trials kmax; number of ADMM iterations qmax

Output: Input of the each subsystem ui,max at trial kmax

1: for k = 0 to kmax do
2: Input ui,k to each plant to collect the output.
3: for q = 0 to qmax do
4: for i = 1 to p do
5: Receive information from neighbours
6: Update ∆ûq+1

i,k+1 according to (31)
7: Update zq+1

i,k+1 according to (32)
8: Update λq+1

i,k+1 according to (33)
9: Send information to neighbours

10: end for
11: end for
12: Transform ∆ûqmax

i,k+1 into ∆ui,k+1

13: ui,k+1 = ui,k +∆ui,k+1.
14: end for

Combining Algorithms 1 and 2 leads to the distributed
predictive NOILC Algorithm 3. This algorithm generates the
optimal input for each subsystem. Note that, there are two
indexes for iteration: k is the index for an ILC trial and q is
the index for an ADMM iteration. Each ILC trial includes an
ILC experiment (where the computed control inputs for each
subsystem are implemented) and some ADMM iterations (to
iteratively solve the Lagrangian and distributedly find the
optimal input increment for the next ILC trial). Within one
ADMM iteration, each subsystem first calculates an optimal
input increment according to the local predicted performance
for itself and for its neighbours in Step 6. In this step, the
local optimal input increments can be computed in parallel.
By averaging the corresponding local policy in Step 7, the
new global value can be obtained. Step 8 updates the dual
variable by dual ascent to gradually reduce the difference
between the local plan and its global counterpart. Every
subsystem achieves agreement on their respective plans,
thereby collectively resolving the optimisation problem by
repeating the above procedure. It also should be noted that,
during the ADMM iterations, the optimal input increments
for the future K ILC trials are predicted, but only the control
input for the next ILC trial (rather than the future K ILC
trials) is applied to the system.

Theoretically, ADMM is expected to converge to the
optimal solution as the number of ADMM iterations ap-
proaches infinity. In practice, however, ADMM is typically
efficient and a relatively small number of ADMM iterations
is sufficient to closely approximate the optimal solution.

B. Convergence Analysis

Algorithm 3 has good convergence properties as shown in
the following theorem:

Theorem 3: The distributed optimisation-based ILC algo-
rithm with K trials look-ahead is given by Algorithm 3.
Given any initial input û0, and any initialisation for the
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Fig. 1. The network topology of the example system

related parameters, the formation error norm ∥ẽk∥Q̃ conver-
gences monotonically to zero, i.e.,

∥ẽk+1∥Q̃ ≤ ∥ẽk∥Q̃ , lim
k→∞

ẽk = 0. (35)

Therefore, the desirable formation is ultimately achieved, i.e,

lim
k→∞

yij,k = rij , i = 1, 2, · · · , p. (36)

The generated input converges to the one with the least
deviation from the initial input selection

lim
k→∞

[
uT
1,k uT

2,k · · · uT
p,k

]T
= û∗

where û∗ is the solution of the following problem

min ∥û− û0∥2

s.t. L(Gû+ d̂) = Lr̂.

Specially, if the zero initial input is applied, then the Algo-
rithm 3 converges to the control solution with the minimum
energy required to achieve the desired formation.

Proof: The proof is omitted here for brevity.
Remark 1: The proposed algorithms are applicable to any

networked dynamical system, regardless of its size, trial
length or topology, as long as Assumptions 1 and 2 are met.

Remark 2: A large K ensures fast convergence to the de-
sired formation, with K = 2 is enough to achieve extremely
rapid reduction in the formation error for a large enough γ.

V. NUMERICAL SIMULATION

To illustrate the performance of the proposed method, an
example application is shown in this section. Consider the
system with p = 5 subsystems, and the transfer function of
each is described as:

Gi(s) =

[ s+1.2
s+i+10 0

0 s+0.1
s+i+8

]
(37)

where i = 1, 2, · · · , p and sampled using a zero-order hold
with the sampling time to be 0.3s. The trial length is 3s and
zero initial conditions of all subsystems are assumed. Fig. 1
shows its topology with the weight of each edge to be one.

The system is required to achieve the following formation:

ri,i+1 = R(t)

[
cos(2iπ/p)− cos(2(i+ 1)π/p)
sin(2iπ/p)− sin(2(i+ 1)π/p)

]
(38)

where i = 1, 2, . . . , p− 1 and R(t) is a rotation matrix

R(t) =

[
cos(2πt/p) − sin(2πt/p)
sin(2πt/p) cos(2πt/p)

]
.

0 5 10 15 20 25 30 35 40 45 50
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Fig. 2. Convergence of ∥û∗
k∥

2
R̂

for different K

To quantitatively explore the power of ‘looking forward’
on the improvement of the performance in-depth, two exper-
iments are designed and conducted. The first one compares
the performance for different formulation of performance
index (varying look-ahead horizon K) while maintaining
consistency in the parameter setting; the second one uses
an same formulation of performance index (i.e., a same K)
and examines the impact of varying the weights assigned to
future performance. For the first experiment, Fig. 3 compares
the results for centralised (solid lines) and distributed (dashed
lines) implementations. Here, the parameter setting is: Q =
I , R = 0.1I and γ = 0.2. For each K, the formation
error norms converge monotonically to zero along with the
increasing ILC trials, and the two lines are almost on top of
each other, which suggests the equivalence of two implemen-
tations. For a large K, it requires more ADMM iterations
to reproduce exactly the same performance as centralised
implementation. Besides, it can be seen that looking further
enables a huge improvement in the convergence speed, which
holds for both centralised and distributed implementations.
Also, Fig. 2 shows the convergence of the energy con-
sumption to the optimal solution (obtained from (20) and
∥û∗

k∥2R̂ = 64.9152) for varying K. It can be seen that, a
larger look-ahead horizon enables a more rapid reduction in
the energy consumption, which again supports the theory.

For the second experiment, K = 2, Q = I and R =
0.1I remain unchanged and we just focus on the impact of
varying γ on the formation results. The weighting parameter
γ is selected from 0.01 to 100 and the convergence in the
formation error norm square is compared in Fig. 4. It can be
seen that, even with the same formulation, a large focus on
the (predicted) future performance makes the algorithm less
shortsighted and enables a more efficient reduction in the
formation error. By comparing Fig. 3 and 4, it can be found
that, with a large enough weight on the predicted future
performance, a smaller looking-ahead (K = 2, γ = 100)
can achieve or even suppress the performance of the design
with more steps to look-ahead but less attention on the future
information (K = 5, γ = 0.2). This observation suggests
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Fig. 3. Convergence of ∥ẽk∥2 for different K
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Fig. 4. Convergence of the formation error norm for different γ

that, ‘looking forward’ is important and too many steps
looking-ahead can be replaced by more focusing on the
predicted future performance in the more recent future. A
simpler performance index formulation can achieve desirable
formation rapidly and requires less computational complex-
ity, which is desirable in practice.

Simulations with different network typologies have been
conducted. The algorithm also works for different network
typologies, hence they are omitted here for brevity.

VI. CONCLUSIONS

This paper addresses high-performance formation con-
trol problems in MIMO networked dynamical systems. A
novel predictive norm optimal performance index is designed
for high-performance formation control problem, which en-
ables a great enhancement in the convergence speed while
maintaining the monotonic convergence properties, even for
non-minimum phase networked dynamical systems, which
is important but quite challenging for traditional designs.
Moreover, though there are an infinite number of input selec-
tions for high-performance formation control problems, our
proposed algorithm can be guaranteed to converge to the one

with the minimum energy consumption, which is appealing
in practice. A distributed implementation for the proposed
predictive framework is also designed, which shows great
scalability in the large-scale networks. Simulation results are
provided to support the effectiveness of the proposed design.
Future work includes investigating the convergence of the
proposed algorithm under uncertainty or unknown dynamics.
Some results in [17] and [18] may answer this question, and
we will investigate them in the future.
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