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Abstract— This paper presents a class of counter-swarm
problems wherein the mean-field behavior of the swarm is
modeled as an infinite dimensional system. This work considers
two classes of problems, one in which the spatial distribution
of the agents is fixed and one in which it is dynamic and driven
by the standard continuity equation in mechanics. The counter-
swarm objectives are formulated as optimal control problems
and solved numerically using deep Q-networks.

I. INTRODUCTION

Robotic swarms are evolving into a promising technology
for carrying out complex surveillance and related tasks using
a large number of simple, low-cost robots [1]. In the context
of military applications, the development of robust swarming
methods has been complemented by the development of
methods to control or disrupt swarms using adversarial
agents. Such engagements take the form of herding [1], [2],
[3], [4] or attrition-driven combat [5]. While it is challenging
enough to herd swarms using a small number of pursuers,
additional difficulties arise from the need to estimate the
dynamics of the swarms [6] and dealing with instances where
the swarm might prefer to split in order to maximize its
effectiveness [3].

Graph-based models for swarms have been used to study a
wide range of control and estimation problems [7]. However,
as the number of agents increases, these methods suffer from
the curse of dimensionality and from difficulties associated
with generating the inter-agent communication graphs. As an
alternative to graph-based approaches, systems with a large
number of almost homogeneous agents can be examined
using mean-field techniques. These techniques convert the
governing ordinary differential equations into a system of
partial differential equations (PDEs) that governs the mean-
field behavior of the swarm. The resulting equation is usually
some form of the Fokker-Planck equation, and the system
theoretic properties of several classes of such systems have
been examined in the literature [8], [9]. This includes control-
lability in the sense of whether or not the swarm can achieve
a certain target density distributions [10] and its amenability
to stabilization via optimal control [11], [12].

A. Contribution

In this paper, we consider two classes of counter-swarm
problems, recognizing that the states of a swarm consisting
of physical or virtual agents can be split into two groups.
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Longitudinal states describe the spatial distribution of the
agents, where the notion of space can be abstract. We refer to
all other states as transverse states. For instance, the density
of the swarm is a longitudinal state, while the velocity of the
agents is a transverse state.

We develop PDE-based mean field models for two classes
of swarms based on longitudinal and transverse dynamics,
respectively. The longitudinal dynamics are described by the
well-known continuity equation from fluid mechanics, which
takes the form of a nonlinear, integro-differential equation.
The transverse model is a linear integro-differential equation.
Next, we pose optimal control problems representative of
typical counter-swarm objectives for each of these systems.
We solve these problems numerically using the well-known
Q-learning method.

The work presented in this paper is preliminary in nature.
To the best of the author’s knowledge, the two systems pre-
sented here are novel despite apparent similarities with those
described in the prior work (for instance, the aforementioned
references). We do not attempt a formal analysis of the
well-posedness of these systems and leave it is as an open
problem. We focus on the formulation and the numerical
solution of the optimal (counter-swarm) control problem.

The rest of the paper is organized as follows. We present
the preliminaries in Sec. II. We present our models, together
with a few properties, in Sec. III. After presenting the
problem formulation in Sec. IV, we present numerical results
in Sec. V and conclude the paper thereafter.

II. PRELIMINARIES

A. Notation

Definition 1: Let U = {u1, . . . , um} where ui ∈ R and
m need not be finite. Let Pτ ([0, T ];U) denote the set of all
U-valued piecewise constant functions with a dwell time of
τ > 0 over an interval [0, T ] ⊂ R; i.e., if a function f ∈ Pτ ,
then, f(s) = f(t) for all s, t that satisfy ⌊(s/τ)⌋ = ⌊(t/τ)⌋.

B. First order Reynolds’ model with actuation

Reynolds’ models [13] are commonly employed to study
flocks and swarms. A second-order Reynolds’ model, in-
formally, describes the net acceleration of a robot or an
agent in the swarm as a combination of accelerations due to
nearest neighbor tracking (cohesion), safe distance-keeping
from other agents (repulsion), collision-avoidance, and goal
seeking. In this paper, we prescribe a first-order model which
embodies the same behavior and include external actuation
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so that Reynolds’ equation takes the following form:

żi(t) =
∑
j∈Ni

(
1− 1

f(rij)

)
(zj− zi)+vg+

∑
p

U(rpi) (1)

where zi ∈ Rn is the the motion coordinate of interest of
the ith agent, vg ∈ Rn is goal-seeking term (velocity), rij ∈
R≥0 denotes the distance between agents i and j, and Ni
is the set of agents in the sensing neighborhood of j. The
function f(·) ∈ K∞(R≥0). The function U(rpi) captures
the influence of external control inputs, where rpi denotes
the distance between the pth point of actuation and the ith

agent. We will specify U(·) on a case-by-case basis.

C. Approximate dynamic programming using DQN

Let z ∈ Rn denote the state of the system and let u ∈
U = {u1, . . . , um}, ui ∈ R and m finite, denote the control
input. Consider the optimal control problem (OCP)

max
v[0:T−1]

T−1∑
k=0

r(z[k], u[k], z[k + 1]),

s.t. z[k + 1] = F (z[k], u[k])

where F (·, ·) is assumed to be known to the control designer
and the reward function r : Rn×U×Rn → R is a determin-
istic function of its arguments. When m is sufficiently small,
approximate dynamic programming via the deep Q network
(DQN) technique can be used to estimate the optimal control
law [14]. The dynamic program to be solved is given by

V (z) = max
u∈U

(r(z, u, z′) + γV (z′)), z′ = F (z, u)

where V is the cost-to-go (or the value function), γ ∈ (0, 1] is
the discount, and, for compactness, we denote z ≡ z[k], u ≡
u[k], z′ ≡ z[k + 1]. We define the Q function, Q : (Rn ×
U) → R as

Q(z, u) = r(z, u, z′) + γV (z′) (2)
=⇒ Q(z, u) = r(z, u, z′) + γmax

v′
Q(z′, v′)

The optimal control law is given by

u∗(z) = arg max
u

Q(z, u)

For computational purposes, we approximate Q using two
identical neural networks parametrized by their weights θ
and µ. We rewrite (2) as:

Qθ(z, u) = r(z, u, z′) + γ max
v′

Qµ(z, u
′) (3)

The weights θ and µ are initialized randomly and adjusted
recursively out a large number of simulations. During each
simulation, or at the end of a prescribed number of simu-
lations, the weights θ are updated using stochastic gradient
descent to minimize the empirical loss function

Lθ =

Ns∑
i=1

(Qθ(z, u)− r(z, u, z′)− γ max
v′

Qµ(z, u
′))2

where Ns denotes the number of samples, each of which is a
combination (z, u, z′). The weights µ are set to θ after every
Nu training episodes.

III. CONTINUUM SWARM MODELS

Aerial swarms are typically 3-dimensional in nature. We
present a simplified case wherein the swarm is assumed to
be 1-dimensional: informally, this allows us to focus on
our essential ideas without getting bogged down by the
dimensionality of the problem.

Definition 2: A 1-d swarm is a 1-dimensional continuum
over X ⊆ R, with ρ(x) ∈ R≥0 denoting the density of the
agents at x ∈ X .

A. Transverse dynamics

The simplest swarm model is one where the density ρ(x)
in Definition 2 is constant for all x ∈ X = [0, 1]. A canonical
example is a string of (uncountably infinite) particles, each
of which is free to vibrate perpendicular to the length of
the string. Information broadcast and consensus can also be
modeled in this framework. Let y(t, x) ∈ R denote the state
of the swarm at coordinate x and time t. We will define the
space in which y lies presently. Let U = {u1, . . . , um, u∅},
ui ∈ [0, 1] for i ∈ {1, . . . ,m} (m finite), denote candidate
locations for applying the control input, where u∅ denotes the
case where no control input is applied (realized, in practice,
by setting the u∅ ≫ 1).

Remark 1: The choice of piecewise constant control in-
puts is motivated by the practical problem [1] where the
pursuer engages the swarm by hopping between different
locations in relation to the swarm while spending a finite,
non-zero amount of time at each location.

We write the following dynamics for the transverse dy-
namics of the state y(t, x):

∂y

∂t
(t, x) =

∫ 1

0

ψ(∥z − x∥)(y(t, z)−y(t, x)) dz

+ U(∥u(t)− x∥), y(0, ·) ∈ H1([0, 1];R) (4)

where u ∈ Pτ ([0, T ];U) and H1 is the space of square
integrable functions over [0, 1] with square integrable first
derivatives. The functions ψ(z) and U(z) are of the form

ψ(q), U(q) = β{ψ,U} exp(−α{ψ,U}q
2), q ∈ [0, 1] (5)

where β{}, α{} > 0 are constants.
Consider the uncontrolled system found by setting U(·) ≡

0 in (4), and assume that it is well-posed. The first result
shows that the average value of y(t, x), x ∈ [0, 1] remains
constant in the absence of external control. This is a well-
known property in systems whose dynamics are governed by
undirected graph Laplacians.

Lemma 1: Consider the governing equation (4) with
U(·) = 0 and the initial conditions y(0, ·) ∈ H1([0, 1];R).
Let w(t) =

∫ 1

0
y(t, z) dz. Then, w(t) ≡ w(0) for all t.

Proof: Let ψ(z, x) = ψ(x, z) = ψ(∥z − x∥) for x, z ∈
[0, 1]. Differentiating w(t), using (4), and applying Fubini’s
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theorem, we get

dw

dt
=

∫ 1

0

∫ 1

0

ψ(z, s)(y(t, z)− y(t, s)) ds dz

=

∫ 1

0

∫ 1

0

ψ(z, s)y(t, z) dz ds−
∫ 1

0

∫ 1

0

ψ(s, z)y(t, s) ds dz

= 0

where we have made use of the fact that ψ(z, s) = ψ(s, z) =
ψ(∥z − s∥). This completes the proof. ■

Before proving the next result, we observe that∫ 1

0

y(t, x)

∫ 1

0

ψ(z, x)(y(t, z)− y(t, x)) dz dx

=

∫ 1

0

∫ 1

0

ψ(z, x)y(t, x)(y(t, z)− y(t, x)) dx dz︸ ︷︷ ︸
T1

= −
∫ 1

0

∫ 1

0

ψ(z, x)(y(t, z)− y(t, x))2 dx dz

−
∫ 1

0

∫ 1

0

ψ(z, x)y(t, z)(y(t, x)− y(t, z)) dx dz︸ ︷︷ ︸
T2

where the addition and subtraction of y(t, z) in T1 is clearly
evident. Notice that the terms T1 and T2 in the equation
above are identical since ψ(z, x) = ψ(x, z). It follows that∫ 1

0

y(t, x)

∫ 1

0

ψ(z, x)y(t, z) dz dx

= −1

2

∫ 1

0

∫ 1

0

ψ(t, z)(y(t, z)− y(t, x))2 dz dx (6)

We are now ready to prove that the system (4) is asymp-
totically stable. The following result is an analogue of the
well-known property of consensus on connected graphs.

Theorem 1: Consider the governing equation (4) with
U(·) = 0 and the initial conditions y(0, ·) ∈ H1([0, 1];R).
The state y(t, ·) converges asymptotically to w =∫ 1

0
y(0, z) dz, a constant.

Proof: From Lemma 1, we know that w(t) =
∫ 1

0
y(t, z) dz

is constant for all t. Let us denote the constant value by w.
We start by defining the Lyapunov function

V (t)=
1

2

∫ 1

0

(y(t, x)− w)2 dt, w =

∫ 1

0

y(0, z) dz

Differentiating V (t), we get

V̇ =

∫ 1

0

(y(t, x)− w)
∂y

∂t
(t, x) dx

Notice that
∫ 1

0
(∂y/∂t) dx = ẇ(t) = 0. It follows that

V̇ =

∫ 1

0

y(t, x)

∫ 1

0

ψ(z, x)(y(t, z)− y(t, x)) dz dx

= −1

2

∫ 1

0

∫ 1

0

ψ(z, x)(y(t, z)− y(t, x))2 dz dx (7)

where the last equality follows from (6). From La Salle’s
invariance principle, and using the fact that y(t, ·) ∈

H1([0, 1];R), it follows that limt→∞ y(t, x) = w for all x.
This completes the proof. ■

Next, we add the control actuators; i.e., we reintroduce the
term U(·) from (4). We start by considering the effect of the
control signal on the average value of the state. Let

w(t) =

∫ 1

0

y(t, x) dx

Then, it follows from (4) that

ẇ(t) =

∫ 1

0

∫ 1

0

ψ(z, x)(y(t, z)− y(t, x)) dz dx

+

∫ 1

0

m+1∑
i=1

U(∥ui − x∥)σi(t) (8)

where σi(t) = 1 if u(t) = ui and 0 otherwise. Recall that
um+1 = u∅. The first term on the right hand side of (8) is
0 because of ψ(z, x) = ψ(x, z). Further, let

gi =

∫ 1

0

U(∥ui − x∥) dx

which depends on the actuator placement. It follows that

ẇ(t) =

m+1∑
i=1

giσi(t) (9)

s.t.
∑
i

σi(t) = 1, σi ∈ Pτ ([0, T ]|{0, 1}) ∀ i

This is the well-studied herding problem wherein the ob-
jective is to shift the centre of mass of the swarm. The
maximizing solution for w is clearly to set σk(t) = 1 for
k = argmax(gi). We consider other, non-trivial objective
functions in Sec. V.

B. Longitudinal motion

Consider the governing equation for a finite swarm de-
scribed by (1). It is clear that it would not generalize trivially
to a continuum due to the presence of the repulsion term
1/f(rij), where f(0) = 0. Instead, we observe that its role
in a linear swarm is to ensure that the agents are equispaced
when the swarm is in equilibrium. The continuum analog of
equispaced agents is uniform linear density.

Furthermore, although the swarm may start in a finite
domain (i.e., without loss of generality, ρ(0, x) > 0 only
if x ∈ [0, 1]), a continuum analog of (1) need not restrict
the agents to [0, 1]. Instead, we assume that the swarm is
contained in [0, 1] through an external influence (see, for
e.g., [15]) which we do not explicitly model here. Thus, we
prescribe that the speed of the agents at x = 0 and x = 1
should be zero. With this understanding, we assume that the
longitudinal motion of a swarm is driven by the difference
between the local, point-wise density ρ(·, x), with x ∈ [0, 1],
and a constant c. The governing equations for the speed an
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agent and the density of the swarm are thus given by

∂ρ

∂t
(t, x) + v(t, x)

∂ρ

∂x
(t, x) + ρ(t, x)

∂v

∂x
(t, x) = 0

∂ρ

∂t
(t, {0, 1}) + ρ(t, {0, 1})∂v

∂x
(t, {0, 1}) = 0 (10)

v(t, x) = h(x)

(∫ 1

0

ϕ(z−x)
(
1− ρ(t, z)

c

)
dz

+U(u(t)− x)

)
where the equation for ρ(t, x) is the well-known continuity
equation from mechanics. The function h(x) ∈ C1([0, 1];R)
is chosen to ensures that v(t, 0) = v(t, 1) = 0 ∀ t and
the swarm remains bounded in [0, 1]. The control input
u ∈ P ([0, T ];U) enters via U : R → R. We assume that
ϕ(−p) = −ϕ(p) and U(p) = −U(−p) for all p ∈ R.

Remark 2: One candidate for h ∈ C1([0, 1];R) which
satisfies the boundary conditions h(0) = h(1) = 0 is

h(x) =


x
ϵ

(
2− x

ϵ

)
0 ≤ x ≤ ϵ

1 ϵ < x ≤ 0.5

h(1− x) 0.5 < x ≤ 1

(11)

where 0 < ϵ≪ 1 is arbitrary.
Remark 3: Equation (10) is the degenerate Fokker-Planck

equation found by setting Brownian motion to zero. We note
that it is nonlinear in ρ due to the fact that v(t, x) is a
linear function of ρ. As a result, well-established results for
the well-posedness and control of systems described by the
Fokker-Planck equation, such as those in [11], [12], cannot
be applied directly to our problem. In this paper, we do not
address the well-posedness problem and leave it as a subject
of future work. We turn to the optimal control problems
under the assumption of well-posedness.

IV. OPTIMAL CONTROL PROBLEM FORMULATION

The counter-swarm optimal control problem (OCP) deals
with the maximization of a given metric, subject to the
constraints imposed by the dynamics of the swarm. Let
s(t) ∈ S denote the state of the swarm, where S is a suitable
Hilbert space. The metrics, in terms of norms (if they are
well-posed), are typically:

1) The mean ⟨s(t)⟩ =
∫ 1

0
s(t, x) dx, which equivalent to

the classic problem of herding the swarm [1].
2) The dissonance metric ∥s(t) − ⟨s(t)⟩∥{·} in terms of

a suitable norm. In herding problems, we seek to min-
imize the dissonance metric (i.e., achieve consensus)
while moving the swarm in a predictable manner. On
the other hand, in problems where the connectivity of
the swarm is to be minimized, we seek to maximize
the dissonance metric.

Let r : S → R denote the metric of interest, and suppose that
we wish to maximize it. Note that r(t) need not be positive
for all t: this allows us to accommodate soft constraints
through non-positive penalties. Thus, we wish to solve the

following OCP:

max
u∈Pτ ([0,T ];U)

∫ T

0

r(s(t)) dt (12)

subject to (4) or (10), as per the system of interest, and we
assume that U is finite.

Since u ∈ Pτ ([0, T ];U), we replace (12) with its discrete-
time version

max
u∈Pτ ([0,T ];U)

(T/τ)∑
k=1

r(q(kτ)) dt (13)

where we have assumed that T/τ is an integer. If T is not
a multiple of τ , we can replace T/τ with its floored value
which is an integer. The state transition s(kτ) 7→ s((k+1)τ)
is modeled as an integration of the system ((4) or (10)) over
the time interval [kτ, (k + 1)τ ].

It is clear that the resulting problem is a combinatorial
optimization problem, albeit with (card(U))(T/τ) solutions.
We use the approach described in Sec. II-C to solve this
problem numerically since a purely analytical solution is
cumbersome to derive in all but the simplest cases.

V. NUMERICAL RESULTS

A. Implementation of DQN
In our implementation of DQN, we approximate the Q

function via a neural network with three hidden layers of
width 24, 12, and 6, respectively. The inputs to the neural
network include the remaining time horizon T − kτ and the
values of the state at 10 equispaced points in the spatial
dimension. The outputs are passed through a softmax to
extract the optimal decision at a given time. We use the Keras
API for TensorFlow 1 to implement the neural network. The
weights are updated via stochastic gradient descent.

In order to implement the system dynamics, we discretize
the PDEs using 100 grid points along the spatial dimension.
The spatial derivatives are computed using finite differenti-
ation. Integration with respect to time is carried out using a
2nd order Runge-Kutta scheme.

B. Transverse dynamics
For transverse dynamics (4), we consider two objective

functions. We set τ = 2 units. Thus, the control inputs
are piecewise constant with “dwell times” of 2 s. Recall
that this dwell time has a physical interpretation of the
time spent by a pursuer in engaging with agents at a given
actuation point. We consider five actuation points located
at {0, 0.25, 0.5, 0.75, 1.0}, so that the number of points
available to the pursuer is 6 including u∅ = 100.

The two objective metrics of interest (see (13)) are
r1(y(t)) = maxx |y(t, x)| and r2(y(t)) = −maxx

(
y(t, x)−

⟨y(t)⟩
)
+ ⟨y(t)⟩. Notice that r2 corresponds to the problem

of herding while ensuring the minimum possible dissonance.
We denote the net reward by

Ji(T ) =

T/τ∑
k=1

ri(kτ), i ∈ {1, 2} (14)

1URL: https://keras.io/about/
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Figure 1 shows the growth of J1(T ) over 1000 training
episodes of T = 20 units each. The corresponding trajectory
of y(t) is depicted via a series of snapshots in Fig. 2, together
with the control inputs. Notice that, in this particular case, the
optimal policy involves the pursuer placing itself x = 0.25
for the entire duration of the pursuit.

Figure 3 shows the growth of J2 during the course of
training over 1000 episodes. Notice the negative values early
in the training phase: these occur because of the high level of
local push compared to the average movement of the swarm,
leading to higher dissonance. The training works to rectify
the dissonance, and the optimal trajectory in Fig. 4 reflects
this learning. We notice that the pursuer moves around on
the x axis as it seeks to push all sections of the swarm more
or less evenly.

Fig. 1: Episodic reward J1 from (14) during the training.

Fig. 2: Snapshots of y at three instants of time: near the
initial time (light blue), midway to terminal time, and at the
terminal time (dark blue). The red dot shows the position
of the actuation - in this case, the position does not change
with time.

Fig. 3: Episodic reward during the training.

Fig. 4: Snapshots of ρ at 10 instants of time, with darker
shades indicating later times. The red dots show the x
coordinate of the actuation. The red dots move up with time
only for the sake of visualization.

C. Longitudinal dynamics

Next, we consider the longitudinal dynamics with the
objective function

J =

(T/τ)∑
k=1

r(ρ(kτ)), r(ρ(kτ)) = max
x

ρ(kτ, x) (15)

The swarm has an equilibrium at ρ(x) = 1 ∀x. Moreover,
(10) ensures that

∫ 1

0
ρ(t, x) dx is constant for all t. Thus,

the objective function in (15) can be interpreted as that of
maximizing the dissonance in the swarm, since a higher value
of ρ in any region of [0, 1] is accompanied by a reduction
elsewhere. This objective is of interest because the higher
density of agents can actually result in a destabilization of
the swarm in practice. This is evident when one considers
Reynolds’ rules in (1) and their general second-order form
[13]: when an agent approaches another agent with excessive
closure, it experiences a strong rebound, which can have
ripple effect all over the swarm.

The growth of the net reward (15) with training is depicted
in Fig. 5, and two sets of snapshots are shown in Fig. 6.
The first plot shows the optimal outcome after 500 training
episodes, while the second shows the optimal trajectories
after 1000 training episodes. In both cases, the optimal
approach for the pursuer involves positioning itself at a
single location. The location changes between the two plots,
and we notice an improvement of approximately 30% when
1000 episodes are employed for training. In both plots, it is
worth noting the minimum value of the density in addition
to the maximum value. In addition to the aforementioned
discussion about the relevance of the maximum value, the
permissible range of minimum values can be bounded below
as a direct measure of the connectivity of the agent graph.
Thus, the second plot of Fig. 6 can be interpreted not only
as showing a high degree of dissonance, but also a greater
chance of loss of connectivity in the swarm.

VI. CONCLUSIONS

In this paper, we presented two classes of counter-swarm
problems. In both cases, the mean field behavior of the
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Fig. 5: Episodic reward during the training for the longitu-
dinal dynamics with the reward function (15).

(a) After 500 episodes

(b) After 1000 episodes

Fig. 6: Snapshots of ρ(t, x) at 10 instants of time, with darker
shades indicating later times, for two different training du-
rations. The red dots show the x coordinate of the actuation
point. The red dots move up with time only for the sake of
visualization.

swarm was modeled using infinite dimensional integro-
differential equation. The two classes represented dynamics
with and without the movement and mixing of agents.
The counter-swarm problems were posed as optimal control
problems, which we solved numerically using a variant of
approximate dynamic programming.

The preliminary work presented in the paper presents
several lines for further development. The well-posedness of
the nonlinear longitudinal dynamics is of immediate interest
to place the results presented here on a theoretically sound
footing. The second objective is that of extending the class
of objective functions to cover the connectivity of the swarm.
Although we mentioned this point briefly in Sec. V, to
the best of our knowledge, there does not exist a formal
equivalent for the connectivity of the graph in the context of

the mean field representation of the swarm.
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