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Abstract— This paper presents a Visual Inertial Odometry
Landmark-based Simultaneous Localisation and Mapping al-
gorithm based on a distributed block coordinate nonlinear
Moving Horizon Estimation scheme. The main advantage of
the proposed method is that the updates on the position of
the landmarks are based on a Bundle Adjustment technique
that can be parallelised over the landmarks. The performance
of the method is demonstrated in simulations in different
environments and with different types of robot trajectory.
Circular and wiggling patterns in the trajectory lead to better
estimation performance than straight ones, confirming what is
expected from recent nonlinear observability theory.

I. INTRODUCTION

Visual Inertial and Visual Inertial Odometry Simultaneous
Localisation and Mapping (VI-SLAM and VIO-SLAM) is
the problem of localising a robot in a unknown environment
while building a map of it using only visual, inertial and
wheel odometry measurements. VI-SLAM has gained a lot
of attention in the recent decades due to the low cost and low
energy consumption of cameras [7] and the generalisation of
Inertial Measurement Unit (IMU). SLAM problems are usu-
ally tackled using either filtering techniques or optimisation-
based techniques. Typical filtering techniques include Ex-
tended Kalman or Information Filters (EKF-EIF) and Particle
Filters (PF) [25]. EKFs are cheap and simple to implement
but suffer from consistency issues due to successive lineari-
sations and from bad scalability with respect to the number
of landmarks considered in the environment [23], [7], [13].
PFs are generally more precise and consistent than EKFs
but substantially more computationally costly. Optimisation-
based localisation and mapping techniques have recently
proved to perform better than filtered-based methods for
medium to large problems and at a reduced cost thanks
to sparsification techniques [11], [10]. However, proven
techniques like Pose SLAM or Graph SLAM are mostly
operated offline, [12], [26], while Bundle Adjustment has
mainly been applied to purely visual settings, [24], [2]. These
methods are usually contained in the broader framework
of Full Information Estimation (FIE) and Moving Horizon
Estimation (MHE) framework, where the trajectory of a
system is recovered by minimising the output error generated
by the actual and predicted measurements, under a dynamical
constraint. MHE is a simplified version of FIE where the
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optimisation is only performed on a sliding time window
instead of starting from the initial time. Several VI-SLAM
algorithms based on this idea have been designed, [21], [9],
[22], [20], [15], [16], [8], [3]. However, the structure of
the resulting optimisation problem does not seem to have
been exploited yet. For example, in order to solve an MHE
problem where the variables are the state of the system and
fixed independent landmarks, one could iteratively fix the
state variables and solve for the landmark variables and vice
versa. This technique is called Block Coordinate Descent
(BCD), see Chapter 2 of [1]. It has been applied to Visual
SLAM for example in [23], PTAM SLAM [17] and ORB-
SLAM [3] sometimes under the denomination of motion-
only problem for state trajectory estimation or structure
only problem for landmark estimation. In these setup, the
structure-only problem is typically high dimensional and
become computationally costly. In this paper, we propose
a distributed BCD method for Moving Horizon Estimation
applied to landmark-based VI-O SLAM that allows one to
parallelise the computations of landmark estimates.

Many works in the field of robotics have showed that
persistently excited path including circular ones are com-
mon sufficient conditions for good estimation using bearing
measurements, [5], [4], [19], [14]. Thus, the performance
and robustness to noise of the proposed method depend on
the trajectory of the robot. It is then demonstrated through
simulations in several scenarios with different levels of exci-
tations: a circular path in a circular corridor, a straight path in
a straight corridor, a ’snaking’ path in a straight corridor. The
rest of the paper is organised as follows: Section II describes
the dynamical and measurements models considered, Section
III presents a batch version of the MHE problem of interest,
Section IV presents its block coordinated version, Section V
summarises the estimation algorithm and Section VI gives
simulation results.

II. DYNAMICAL AND MEASUREMENT MODELS

A. Differential drive model

We consider a mobile robot represented by a 2D position,
x = (x1, x2) ∈ R2 and an orientation θ ∈ R. We assume it
follows the differential drive dynamics such that:

9x1 =
ωrRr + ωlRl

2
cos(θ), 9x2 =

ωrRr + ωlRl

2
sin(θ),

(1)

9θ =
ωrRr − ωlRl

D
,
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where Rr > 0, Rl > 0 and D > 0 are respectively the
radius of the right wheels, the radius of the left wheels and
the distance between the two sets of wheels and ωref =
(ωr, ωl) : R+ → R2 represent the angular velocities of the
right and left wheels. By setting z = (x, θ), we can sum up
(1) as follows:

9z = f(z, ωref ), (2)

where f : R3×R2 → R3. Let z0 ∈ R3 be an initial condition
and t0 ≥ 0 be the reference initial time. In the sequel, for
t ≥ t0, z(t) = (x(t), θ(t)) represents the solution of (2) at
time t starting from z0 with initial time t0 and input ωref .

B. Discretization scheme

In the sequel, we consider measurements obtained at dis-
crete points in time with two different sampling rates. With
this in mind, let ∆odo > 0 and ∆vis > 0, be respectively
the discretization step of odometry and visual measurements.
We assume in the rests of the paper that m = ∆vis

∆odo
∈ N∗.

Thus, for k ≥ 0 and 0 ≤ i ≤ m, we define tk,i such that:

tk,i = t0 + k∆vis + i∆odo. (3)

where tk,N = tk+1,0 for any k ≥ 0. When no ambiguity is
possible, we will denote tk,0 by tk for any k ≥ 0.

C. Odometry and Inertial measurements

We assume that one does not have access to ωref but
only to a noisy discretised version through odometry mea-
surements. It is denoted by ωodo and reads:

ωodo(t) =

+∞∑
k=0

m∑
i=0

ωk,i1{tk,i≤t<tk,i+1}, (4)

where 1 denotes the indicator function, ωk,i = ωref (tk,i) +
dodok,i and (dodok,i )k≥0,0≤i≤m−1 is an i.i.d. sequence of centered
Gsaussian perturbations with covariance Qodo. Thus, for a se-
quence ωk,0:i ,0 ≤ i ≤ m, the discretized dynamics between
tk and tk,i can be written z(tk,i) = fdis,i(z(tk), ωk,0:i) for
some function fdis,i. We also assume that for any k ≥ 0,
inertial measurements are processed and give information on
the displacement of z between tk,0 and tk+1,0 denoted by
uk and defined as follows:

uk = z(tk+1,0)− z(tk,0) + dink . (5)

where dink ∈ R3 is a Gaussian perturbation of covariance Qin

representing the error caused by the integration of inertial
measurements. From (5) and for t ≥ t0, one can define u(t)
similarly to (4):

u(t) =

+∞∑
k=0

uk1{tk,0≤t<tk+1,0}, (6)

D. Landmark-based bearing measurement model

For J ∈ N∗, let ℓ =
`

ℓ(j)
˘

1≤j≤J
∈ (R2)J be a collection

of J landmarks represented by a 2D position. We assume,
that for 1 ≤ j ≤ J and k ≥ 0, if landmark j is seen by
the robot at time tk, a measurement of the direction between

the robot and landmark j in the body frame of the robot is
obtained from visual information. It is denoted by y

(j)
k and

defined formally as follows:

y
(j)
k = a

(j)
k

ˆ

R(−θ(tk))
ℓ(j) − x(tk)

∥ℓ(j) − x(tk)∥
+ v

(j)
k

˙

, (7)

where ∥·∥ denotes the Euclidean norm, R(θ) =
„

cos(θ) − sin(θ)
sin(θ) cos(θ)

ȷ

, v
(j)
k ∈ R2 is a Gaussian perturbation

representing the measurement noise, and a
(j)
k is a data

association parameter such that a
(j)
k = 1 when landmark

j is seen at time tk and a
(j)
k = 0 otherwise. We set

yk =
´

y
(j)
k

¯

1≤j≤J
and vk =

´

v
(j)
k

¯

1≤j≤J
so that (7) can

be written as follows:

yk = Ak(h(z(tk), ℓ) + vk), (8)

where for any k ≥ 0, h =

»

—

–

h(1)

...
h(J)

fi

ffi

fl

with h
(j)
k : R3 × R2 →

R2 for any 1 ≤ j ≤ J , and Ak is the diagonal matrix of
appropriate size with repetitions of binary numbers a

(j)
k on

its diagonal. The covariance matrix of vk is denoted by Rvis.
Beside, we consider the sensor-centric view where the initial
state is assumed known and can be considered as the origin
of the robot frame. The goal of the following is to estimate
the state of (2) at time tk,0 for any k ≥ 0, z(tk,0), and the
position of the collection of landmarks, ℓ knowing the initial
state z0 and time t0. In fact, estimating z at the all the times
tk,i for k ≥ 0 and 1 ≤ i ≤ N−1 woud lead to an intractable
number of variables in the optimisation problems.

III. BATCH MOVING HORIZON ESTIMATION FOR
BEARING-ONLY SLAM

A. Discretized formulation of MHE

Fix N ∈ N∗ be a time horizon. In the sequel, for any
n ≥ 1, we denote by S++

n the set of positive definite
n × n matrices. Besides, for any S ∈ S++

n , ∥·∥S denotes
the norm weighted by S. For any integer k ≥ 0, Moving
Horizon Estimators are designed to forget about the input
and output trajectory before time k−N . In this section, we
are first interested in the discretized MHE Problem in a batch
formulation. Thus, one is jointly looking for a state trajectory
(ζl)k−N≤l≤k and a vector of landmarks p that match the
visual and inertial measurements. Integrating (1) between
tk,0 and tk+1,0 inside an optimisation problem is not compu-
tationally tractable. Thus, the state vector (ζl)k−N≤l≤k are
linked using (5) leading to:

ζl+1 = ζl + ul + dl, l = k −N, . . . , k − 1,

where (dl)k−N≤l≤k−1 are noise variable added to take into
account the presence of disturbations. It is then important
to keep track of the knowledge of the past and weigh it in
the optimisation problem through an arrival cost. Thus, we
assume that a state estimate and a landmark estimate at time
k−N respectively denoted by ẑk−N and ℓ̂k−N are available.
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We also assume that a weighting matrix denoted by Πk−N

is available. Its computation is detailed in section III-B.

min
ζl,dl,p

∥∥∥∥„

ζk−N − ẑk−N

p− ℓ̂k−N

ȷ
∥∥∥∥2
Π−1

k−N

+ ∥yk −Akh(ζk, p)∥2R−1
vis

+
∑k−1

l=k−N∥dl∥2Q−1
in

+∥yl −Alh(ζl, p)∥2R−1
vis

s.t. ζl+1 = ζl + ul + dl, l = k −N, . . . , k − 1,
(Pk,ba)

Note that in Problem (Pk,ba) the resulting dynamics is a
discrete time single integrator whose input are the inertial
measurements.

B. Arrival cost computation

The goal of this section is to detail the computation of Πk

for any k ≥ 0. First, we fix a matrix Π0 ∈ S++
3+2J . Then, for

any integer k ≥ 0, Πk is computed using the equation of
an Extended Kalman Filter by integrating forward the most
recent MHE state and landmark estimate. More precisely, if
we fix some joint estimate ξ̂k = (ẑk, ℓ̂k) ∈ R3+2J and a
covariance matrix Πk ∈ S++

3+2J for some k ≥ 0 then for any
0 ≤ i ≤ m, we denote by ξ+k,i the prediction at tk,i from
system (2) with input ωodo. It reads:

ξ+k,i = ftot(ξ̂k, ωk,0:i), (9)

where ωk,0:i = (ωk,0, . . . , ωk,i) and ftot(z, ℓ, ω) =
„

fdis,i(z, ω)
ℓ

ȷ

. From this, one can compute the prediction

of the covariance matrix up to time tk,i which is denoted by
Π+

k,i. It is defined recursively as follows for any 0 ≤ i ≤
m− 1:

Π+
k,0 = Πk, (10)

Π+
k,i+1 = F (ξ+k,i)Πk,iF

T (ξ+k,i) +G(ξ+k,i)Q
odoGT (ξ+k,i),

(11)

where F (ξ+k,i) = ∇(z,ℓ)ftot(ξ̂k, ωk,0:i) and G(ξ+k,i) =

∇ωftot(ξ̂k, ωk,0:i) and ∇ftot representing the differential of
ftot with respect to the indicated variables. Then, the Kalman
gain Kk+1 and the corrected covariance matrix Πk+1 at
time tk,N = tk+1,0 are computed using a standard linearised
correction step using the visual measurement model (8).

IV. BLOCK COORDINATE MOVING HORIZON ESTIMATION
FOR BEARING-ONLY SLAM

The idea of this section is to present the distributed block
coordinate version of the problems (Pk,ba) where one looks
alternatively for the collection of landmarks for a given
state trajectory estimate and for a state trajectory for given
landmark estimates. In order to decouple state and landmark
variables the matrices Πk are assumed to block diagonal
matrices composed of J + 1 blocks: one 3 × 3 blocks
for state/state correlations only denoted by Πzz,k, and J
2× 2 blocks for one-by-one landmark/landmark correlations
denoted by (Πℓ(j)ℓ(j),k)1≤j≤J . This assumption implies that
the cost in (Pk,ba) is separable with respect to landmarks

for a fixed state trajectory estimate which makes distributed
resolution possible.

A. Distributed landmark estimation for a given trajectory

More precisely, let (ẑl)k−N≤l≤k be some estimates of
(z(tl))k−N≤l≤k−1. By removing constant terms with respect
to p, the landmark estimation problem reads:

min
p

∥∥∥p− ℓ̂k−N

∥∥∥2
Π−1

ℓℓ,k−N

+
∑k

l=k−N∥yl −Alh(ẑl, p)∥2R−1
vis

(Pk,ℓ)
Note that (Pk,ℓ) depends only on the trajectory estimates and
not on any dynamics. Besides, if the visual measurement
are supposed independent, then Rvis is block diagonal with
respect to individual landmarks. Since we assumed that
Πℓℓ,k−N is block diagonal, (Pk,ℓ) can be split and solved
landmark by landmark. For any 1 ≤ j ≤ J , the split problem
reads:

min
p(j)

∥∥∥p(j) − ℓ̂
(j)
k−N

∥∥∥2
Π−1

ℓ(j)ℓ(j),k−N

+
∑k

l=k−N∥y
(j)
l − a

(j)
l h(j)(ẑl, p

(j))∥2
R−1

vis,j

(Pk,ℓ,j)

where Rvis,j is the block of Rvis corresponding to landmark
ℓj . Consequently if the landmark j is seen at time k (i.e.
a
(j)
k = 1) then (Pk,ℓ,j) is then solved by a nonlinear

programming (NLP) solver using only a fixed number of
iterations.

B. State estimation for given landmarks estimates

In this section, for an integer k ≥ 0, we fix a landmark
estimate ℓ̂k. Then, the state trajectory estimation subproblem
coming from (Pk,ba) reads:

min
ζl,dl

∥ζk−N − ẑk−N∥2Π−1
zz,k−N

+ ∥yk −Akh(ζk, ℓ̂k)∥2R−1
vis

+
∑k−1

l=k−N∥dl∥2Q−1
in

+∥yl −Alh(ζl, ℓ̂k)∥2R−1
vis

s.t. ζl+1 = ζl + ul + dl, l = k −N, . . . , k − 1,
(Pk,z)

This problem can also solved approximately by a NLP
solver. Similarly to the batch formulation one obtains an
estimate ξ̂k = (ẑk, ℓ̂k) ∈ R3+2J .

C. Arrival cost computation

The goal of this section is to detail the computation of
a distributed family of the covariance matrices Πzz,k and
(Πℓ(j)ℓ(j),k)j=1,...,J for any k ≥ 0 and ℓ = 1, . . . , J . First,
we fix a matrices Πzz,0 ∈ S++

3 and Πℓℓ,0 ∈ S++
2 for

ℓ = 1, . . . , J . Then, for any k ≥ 0, the matrices Πzz,k and
(Πℓ(j)ℓ(j),k)j=1,...,J are computed using the equations of an
adhoc distributed Extended Kalman Filter. For conciseness,
the matrices Πℓ(j)ℓ(j),k are renamed Πjj,k

1) Block Coordinate Prediction step: Similarly to the
batch version of the EKF from section III-B, we fix some
joint estimate ξ̂k = (ẑk, ℓ̂k) ∈ R3+2J and a covariance
matrices Πzz,k ∈ S++

3 and (Πjj,k)j=1,...,J for some k ≥ 0
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then for any 0 ≤ i ≤ m, we denote by ξ+k,i the prediction at
tk,i from system (2) with input ωodo. It reads:

ξ+k,i = ftot(ξ̂k, ωk,0:i), (12)

where ωk,0:i = (ωk,0, . . . , ωk,i) and ftot(z, ℓ, ω) =
„

fdis,i(z, ω)
ℓ

ȷ

. From this, one can compute the prediction of

the covariance matrices up to time tk,i which are denoted by
Π+

zz,k,i ∈ S++
3 and (Π+

jj,k,i)j=1,...,J . It is defined recursively
as follows for any 0 ≤ i ≤ m, and any j = 1, . . . , J :

Π+
zz,k,0 = Πzz,k, Π+

jj,k,0 = Πjj,k, (13)

Π+
zz,k,i+1 = F (ξ+k,i)Πzz,k,iF

T (ξ+k,i) +G(ξ+k,i)Q
odoGT (ξ+k,i),

(14)

Π+
jj,k,i+1 = Π+

jj,k,i (15)

where F (ξ+k,i) = ∇(z,ℓ)fdis,i(ξ̂k, ωk,0:i) and F (ξ+k,i) =

∇ωfdis,i(ξ̂k, ωk,0:i) and ∇fdis,i representing the differential
of ftot with respect to the indicated variables.

2) Distributed Block Coordinate Correction step: First,
a block coordinate correction step at time tk,N = tk+1,0

is applied using the visual measurements (8). We make an
approximation of the visual observation equation:

yk+1 ≈ Ak+1(h(ẑ
+
k + w+

k , ℓ) + vk+1)

where wk ∼ N (0,Π+
zz,k). Moreover, landmark j is updated

at time k only if it is seen at that time i.e. when a
(j)
k = 1. We

assume w+
k and vk+1 are independent and we compute the

Kalman gain for each landmark which denoted by Kj,k+1

and reads for any j = 1, . . . , J , if a(j)k = 1 then:

Kj,k+1(ξ
+
k,m) = Π+

j,kH
T
j,k+1(ξ

+
k,m) (16)

[Hj,k+1(ξ
+
k,m)Π+

jkH
T
j,k+1(ξ

+
k,m) (17)

+Rvis +Hz,k+1(ξ
+
k,m)Πzz,kH

T
z,k+1(ξ

+
k,m)]−1, (18)

which leads to the following definition of Πjj,k+1:

Πjj,k+1 = Πjj,k −Kj,k+1(ξ
+
k,m)Hj,k+1(ξ

+
k,m)Πjj,k, (19)

where Hj,k+1(ξ
+
k,m) = a

(j)
k+1∇ℓ(j)h

(j)(ξ+k,m). Otherwise if
a
(j)
k = 0 then Πjj,k+1 = Πjj,k.

One now assumes that some updated estimate of the col-
lection of landmarks ℓ̂k+1 has been computed. We make the
following approximation of the visual observation equation

yk+1 ≈ Ak+1(h(zk, ℓ̂k+1 + wℓ,k+1) + vk+1)

where wℓ,k+1 ∼ N (0,Π+
ℓℓ,k). Then, we assume wℓ,k+1 and

vk+1 are independent and we compute the Kalman gain for
the robot’s state which denoted by Kz,k+1 and reads:

Kz,k+1(ξ
+
k,m) = Π+

zz,k,mHT
z,k+1(ξ

+
k,m) (20)

(Hz,k+1(ξ
+
k,m)Π+

zz,k,mHT
j,k+1(ξ

+
k,m) (21)

+Rvis +Hℓ,k+1Πℓℓ,k+1H
T
ℓ,k+1)

−1, (22)

which leads to the following definition of Πjj,k+1:

Πzz,k+1 = Πzz,k −Kz,k+1(ξ
+
k,m)Hz,k+1(ξ

+
k,m)Π+

zz,k,m,

(23)

where Hℓ,k+1(ξ
+
k,m) = Ak+1∇ℓh(ξ

+
k,m).

The assumption that the matrices Πk,ℓℓ are block diagonal
is strong because it means that one neglects the correla-
tions between landmarks. However, the proposed distributed
Kalman covariance update allows one to reintroduce correla-
tion between the landmark and state estimates which seems
to be enough to get a good confidence measure on the state
and landmarks to be used as an arrival cost in the MHE
problems.

V. ALGORITHM

Algorithm 1 Block coordinate Descent in MHE for SLAM

1: Fix ẑ0 = z0 and ξ0 = z0
2: Choose ℓ̂0 and Π0

3: Get y0
4: for k = 1, 2, . . . do
5: Get yk.
6: Compute Πk.
7: if k < N then
8: Get ẑk by integrating (2) from tk−1 to tk with

input ωodo.
9: for j = 1, . . . , J do

10: if a(j)k = 1 then
11: Solve (Pk,ℓ,j) at (ẑ0, . . . , ẑk) by setting

N = k + 1 and get an optimal solution p(j)∗.
12: ℓ̂

(j)
k ← p(j)∗.

13: end if
14: end for
15: else
16: Compute ẑ+k using (2) with input ωodo.
17: for j = 1, . . . , J do
18: if a(j)k = 1 then
19: Solve (Pk,ℓ,j)at (ẑk−N , . . . , ẑk−1, z

+
k−1)

and get an optimal solution p(j)∗.
20: ℓ̂

(j)
k ← p(j)∗.

21: end if
22: end for
23: Solve (Pk,z) at ℓ̂k and get ζ∗k−N , . . . , ζ∗k .
24: ẑk ← ζ∗k .
25: end if
26: end for

The resulting algorithm is summarised in Algorithm 1.
Remark 5.1: The main advantage of Algorithm 1 is that

the landmark update can be parallelised since both the MHE
problem (Pk,ℓ,j) and the Kalman update for the arrival cost
(16)-(19) are distributed over the landmark variables.

Since the landmarks that are not seen at time k are not
updated, loop closure does not allow the filter to correct every
landmark at the same time. However, as shown in Section VI,
several loops ensures that all the map is properly updated.
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(a)

(b)

Fig. 1: Plots of a sample circular trajectory, its estimation
and the corresponding average landmark and state estimation
errors for 50 Monte-Carlo simulations.

A key factor for good performance of such Moving
Horizon Estimation schemes are observability conditions, see
[6], [18]. Because of the nonlinearities in the measurement
and dynamic equations, observability properties depend on
the trajectory of the extended system state/landmark and so
might the estimation error. Thus, the goal of Section VI is
to illustrate the results of the proposed estimation algorithm
for different robot trajectories and different environments.

VI. SIMULATIONS

In this section, we present simulations of a 2D environ-
ments with with 2 configurations of J = 100 landmarks
and 3 types of trajectories, a circular one, a straight one and
one with wiggles. Figure 1a shows a example of circular
trajectory with several loops with landmarks dispatched in a
double ring. The parameters of the robot from (1) have been
chosen as characteristics of a standard Jackal robot knowing:
D = 0.043, Rr = Rl = 0.1. The noise covariance have
been set as follows: Rvis = 0.001I , Qin = 10−4∆visI3,
and Qodo = 0.009I2, where I denotes the identity matrix
of appropriate dimension. The parameters a

(j)
k , representing

data association are assumed to be given without error, for

(a)

(b)

Fig. 2: Plots of a sample straight and a wiggling trajectory
with their estimates in the same environment

any 1 ≤ j ≤ J and any k ≥ 0. Besides, a maximal range
has been implemented on the bearing sensor through the
variables a(j)k . It is of 2m for the circular scenarios and 3.6m
for the two others. Running times have not been included
since code optimisation is not the topic of this paper and the
actual parallelisation process of the distributed scheme has
not been implemented yet. The performance of the proposed
method in this case is demonstrated in Figure 1b where both
the state and mean landmark estimation error are converging
to a small value. Note that the initial state estimation error
is assumed to be zero since the initial position and orien-
tation of the robot is assumed to be known. Observability
theory coming from circumnavigation [5], [4], [19], [14],
[6] suggest that circular patterns should improve estimation
performance. Figure 2a and 2b show an example of a back-
and-forth straight and snaking trajectory in a corridor-like
environment with landmarks on the side only. Figure 3a
and 3b show that, as expected, the wiggling patterns are
helping the estimation process which result in a smaller state
estimation error than in the case of a straight trajectory.

VII. CONCLUSION

In this paper, a block coordinated Moving Horizon Es-
timation algorithm for Visual Inertial Odometry SLAM is
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(a)

(b)

Fig. 3: Plots of the average state and landmark errors in
the case of a straight and wiggling trajectory in the same
environment after 50 Monte-Carlo simulations.

proposed. It is leveraging ideas coming from Bundle Ad-
justement, nonlinear estimation and nonlinear programming
in order to make the estimation process distributed over
the landmarks. The performance of the proposed method is
demonstrated through simulations in several environments,
with several robot trajectories in the presence of noise.
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