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Abstract— In this paper we propose a consensus model using
fractional calculus, which is an emerging topic in multi-agent
modeling. Fractional models have infinite memory and can
be understood as a relatively simple extension of traditional
calculus. We propose a model structure motivating it by psy-
chological research. For such model we also provide a stability
analysis allowing results on possibilities of consensus arising in
the modelled group of agents. To achieve this, we use fractional
difference equations, which illustrate our considerations for
agent groups of increasing complexity.

I. INTRODUCTION

The shaping of attitudes and opinions in societies and
groups is a topic of constant interest, practically from the
dawn of time. How people vote, what they support, who do
they like, who do they hate - these questions are investigated
both by researchers and by users of such knowledge. What
is missing, are sufficient mathematical tools that would
allow us to quantise such changes and possibly predict the
dynamically changing attitudes. The focus of this paper is
the discussion of possible modeling tools joining psychol-
ogy, consensus modeling and fractional calculus that would
allow better investigation on opinion–shaping phenomena.
Consensus modeling in psychology typically refers to the
process of reaching agreement or consensus among experts
or participants in a study regarding certain psychological
phenomena, theories, or assessments. It can involve various
techniques and methodologies, such as expert panels, or
group discussions, to arrive at a shared understanding or
judgment. Using the idea of models with fractional order
we introduce inside the group pf agents a kind of memory
in decisions. The most important goal in opinion dynamics is
to find a model with which recognise and potentially predict
the tendency of a group of individuals into the direction of
common opinion. When a group of a team, a committee
or consumers, called generally agents, takes with time the
same or very close similar opinion or way of behaviours we
can say that consensus is reached by the group. We assume
that each agent/expert in the group has his/her own opinion.
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However, each agent is willing to cooperate and possibly
change his/her opinion. They can have meetings, discussions,
some interactions between them. Such kinds of interactions
between agents are described by the interconnection topology
of the system (system of agents). The consensus reaching
in multi–agent systems is under investigation for around
two decades. There are classical models, introduced by
Krause in [1] or sometimes referred to as the Hegselmann–
Krause model in [2]. The various kind of topological type
consensus models were widely studied for leaderless or
leader-following models for integer-order multiagent systems
in continuous-time or discrete-time cases. Important theoretic
results include models on isolated time scales [3], flocking
phenomena [4], [5] and control methods [6]. Examples of
consensus modelling in multi–agent systems include vehicle
formations [7], [8] and fixed and switching networks [9].

Recently, fractional calculus in both continuous-time and
discrete-time cases gained considerable development as an
interesting extension multi-agent modeling methodology.
Works among the others include, earlier introductory works
of the authors [10], and multiple applications by other au-
thors, see for example [11], [12]. The main difference of frac-
tional models from integer order ones is the infinite memory
horizon of the models. Fractional differential and difference
equation solutions are not generated by semigroups and
because of that cannot ignore the long memory effects. Such
effects are however obviously present in modelling of human
opinions, as these opinions depend of humans’ experiences.

The main contribution of this paper is the development
of new interdisciplinary model for attitude dynamics and
study of its certain properties in continuous and discrete
time domains. We use the model with commensurate order, it
means the same for each agent. As the order is a parameter
that can be interpreted as a memory inside a process, we
assume that each agent has the same parameter memory.
What value of the order we should use, in fact it is not
decided. We straggle with more theoretical investigations,
without using any exact data-set. To analyse what can happen
inside the model when we use different orders. We use
the knowledge from psychology to determine the parametric
structure of the model. Such model is formulated as a system
of nonlinear fractional difference equations which can be
used to study the behaviour of individual agents. We also
formulate the model of opinion differences, which along with
the use of stability theory allows determination of whether
consensus among the agents in the system is possible. Our
results are illustrated with numerical examples of agent
networks of increasing complexity.

The paper is organised as follows. Firstly, we introduce
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fractional calculus preliminaries, that are used for model
construction and subsequent analysis which are followed by
the concepts of modeling attitude and opinion changes in
psychology. Then we present our model, along with the jus-
tification of its structure and parameters. Then we illustrate
how the model represents attitude dynamics with the use of
simulations and providing psychological context. Paper ends
with some plans for future research, especially addressing
experimental validation and parameter identifiability.

Fractional calculus is a potent methodology for modelling
of advanced and complex processes. It has been applied to
many scientific and engineering fields and verified to be
a powerful tool in modeling most physical processes with
memory effect, which cannot be well described by integer–
order equations. For a comprehensive review of theory and
applications of fractional calculus, we refer the reader to
monographs by Hilfer [13], Kaczorek [14], Ostalczyk [15]
or Podlubny [16].

Let (hN)c := {c, c + h, c + 2h, ...} and Nc := {c, c +
1, c + 2, ...}, where c ∈ R and h > 0. Let us recall
the generalised binomial

(
α
k

)
= α(α−1)...(α−k+1)

k! , where
α ∈ R. Let a(α) : N0 → R be the sequence of coefficients
defined as follows: a(α)(k) := (−1)k

(
α
k

)
. In numerical

calculations more efficient method of computing the values
of defined sequence is the following recurrence a(α)(0) :=

1 , a(α)(k + 1) :=
(

1− α+1
k+1

)
a(α)(k) , k ∈ N0 . Using

this sequence the following difference operator is defined.
Definition 1: [see [15], [17]] Let α ∈ R. The Grünwald–

Letnikov difference operator ∆α
h of order α for a function

x : (hN)0 → R is defined by

(∆α
hx) (t) := h−α

k∑
i=0

a(α)(i)x(t− ih) , (1)

where i ∈ N0, t = kh ∈ (hN)0, α ∈ R and h > 0.
Observe that the Grünwald–Letnikov difference operator
can be extended to vector functions in the componentwise
manner, then one can study the fractional order difference
systems.

The following difference linear system is considered in
direction of stability notions:

(∆α
hx) (t+ h) = Ax(t) , (2)

where A ∈ Rn×n, α ∈ (0, 1], h > 0 and x : (hN)0 → Rn
is the state. The only equilibrium point of linear systems
with the Grünwald-Letnikov difference is the trivial solution
x ≡ 0.

Let x(k) := (x1(kh), x2(kh), . . . , xn(kh))
T ∈ Rn. The

fractional order difference system (2) is called stable if, for
each ε > 0, there exists δ = δ (ε) > 0 such that ‖x(0)‖ < δ
implies ‖x(k)‖ < ε, for all k ∈ N0 and it is asymptotically
stable if it is stable and limk→+∞ x(k) = 0.

Let Spec(A) be the set of eigenvalues of matrix A.
Proposition 1 (see [18]): If the following conditions are

satisfied
(i) for all i = 1, . . . , n

arg λi ∈
[
α
π

2
, 2π − απ

2

]
, (3)

(ii) for all i = 1, . . . , n

|λi| < |wi| , (4)

where arg λi and |λi| are respectively the main argu-
ment and modulus of λi ∈ Spec(A) and

|wi| =
(

2

h

∣∣∣∣sin arg λi − απ2
2− α

∣∣∣∣)α , (5)

then system (2), with α ∈ (0, 1], is asymptotically stable.
Corollary 2: For the scalar system (2) with A = λ < 0

we have that it is asymptotically stable if |λ| <
(
2
h

)α
.

Remark 1: There is a possibility to have asymptotical
stability in case if λ = 0 ∈ Spec(A), when zero is the
single eigenvalue of A, however exact conditions for such
case are an open problem.

II. ATTITUDE AND OPINION CHANGE

Research on attitude and opinion change has a long history
in psychology. Usually two frameworks of dynamics in
opinion change are describe [20]. First, most common, is
based on cause - effect assumptions. Usually researchers,
during well-controlled experiments, are manipulating one or
more variables and examine its impact on the dependent
variable (e.g. opinion) in time. Within this methodology the
role of a number of variables, which may affects people’s
opinions and attitudes were discovered and described.

It is well known effect that process of attitude change
sometimes may appear as a result of discussion and logic
consideration of opinions expressed during discussion (e.g.
[21], [22], [23], [24]), but in most cases the mechanism
of attitude change lays in persuasion. In this terms, opin-
ion change is not a result of logical reasoning, weighing
arguments etc., but stems from unconscious, intuitive and
irrational heuristics and cognitive biases. E.g. a well-known
literature on cognitive effort shows that not the content of the
message is important in attitude change, but variables like
being in good mood [25], fast speech [26]; inducing fear in
message [27], clear intentions [28], the difference between
two opinions [29], order of presentation [30] and much more
(for a review: [31]).

Two of the most important variables in opinion change
are persuasiveness of sender (source) and susceptibility to
persuasion of a recipient of the message (audience). It is
well known effect that the possibility to change one’s opinion
depends on attributes of a source like physical attractiveness
(e.g. [32], [33], [34]), his/her expertise [35], gender (e.g.
[36]), aggressiveness [37], trustworthiness [34], power [38],
majority status [39] and more. On the other hand the sus-
ceptibility to persuasion of recipient (called persuadability or
suggestibility) plays an important role too. People who are
less intelligent [40], have lower self-esteem [41], lower need
for cognition [42], lower dogmatism [43], younger [44] are
more likely to change their opinions and attitudes.

Due to the newest psychological theories (called dual
process models, like elaboration likelihood model; [45], [46])
attitudes change could be caused not by one, but at least
by two different processes at the same time. Within this
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framework any variable (like previous mentioned persuasive-
ness or suggestibility) could operate differently in different
situations. Hence, it is possible that in some cases the high
attractiveness of a sender could encourage thinking and leads
to opinion change or activating peripheral routes of cognitive
processing and did not leads to opinion change, but even
to opinion polarization. So the effect of persuasiveness and
susceptibility to persuasion on opinion change is not clear
and depends on different circumstances and variables.

One of the most important is strength of the opinion
or personal engagement in opinion. A lot of experiments
proved that the more important the opinion is for a recipient
of message (namely, for his/her identity), the less likely
he/she will change it [31], [47]. And the stronger the opinion
the more resistant it is to change [48]. But the pattern is
not as clear. For example, Petty, Cacioppo, and Goldman
in [29] showed that, when the issue was important, the
expressiveness of a source of a message plays almost no role
in opinion change. But when the issue was unimportant, the
opinion change was stronger when the persuasiveness of a
source was higher. On the other hand, Kameda et. al. [49]
showed that opinions in important topic were influenced most
strongly by “cognitively central” group members, whose
initial beliefs about the discussion topic overlapped the most
with other members. Also there are some evidence suggests
that “minors can change the opinion of many”, only when
the issue is important for them, the group is coherent and
consequent despite the persuasiveness of units (for review
see: [50]). To sum up it may be said that at least three
important variables plays and important role in opinion
change: widely understood persuasiveness, susceptibility to
suggestion and importance of the opinion for self, but the
relationship between them is not clear.

In the next section we will present the proposed model
representing this relationship. We consider the discrete time
domain. We also explain the model construction and discuss
its behaviour.

III. FRACTIONAL MODEL OF OPINION DYNAMICS

In our research we investigate consensus model structures,
that could be used in possibly general environment of agents.
The desired model had the need of agent individualisation,
possibility of structure changing, and easy addition of addi-
tional group members.

Moreover, our main goal was to include in the model
psychologically justified parameters such as opinion weight,
susceptibility, persuasibility and persons internal consistency.
This model was created as all the consensus models are i.e.
in a sense that each agents opinion is defined by their relation
to those of other agents. In our model each agent is described
by his own fractional difference equation such as:

(∆α
hxi) (t+ h) = si

∑
j 6=i

pj(xj(t)− xi(t))e−wi(xi(t)−xj(t))
2

i ∈ {1, . . . , N} ,
(6)

where

• xj(t) is the value/level of the opinion of j-th agent at
time/step t;

• N is a number of agents in the system;
• si is the agent’s susceptibility. Here we interpret it as a

coefficient determining how interactions can influence
the agent. If si is equal to 0, agent is completely
resistant to others opinions, this coefficient is potentially
unbounded;

• wi is the agent’s personal opinion weight, this is the
source of systems main nonlinearity. The interpretation
is as follows, if wi is 0, then agents does not have much
confidence in their opinion, that is why interaction with
anybody can sway them towards their point of view. If
wi is large, then only opinions close to agent’s own can
influence them;

• pi is the persuasibility, this coefficient represents how
agent is good at convincing others. Agents with high
persuasibility will convince others faster to their point
of view;

• α is the model order, which corresponds to the internal
consistency of the model, in general it can be different
for each agent. If α = 1, then we have the traditional
differential equation. However, if order α is reduced
below one, then fractional dynamics introduces influ-
ence of agent’s history. In particular fractional model
can represent agent’s individual opinion evolution, even
if at a moment removed from other interactions.

Note that a discrete form of the system (6) allows for
both simulating solutions and applying the results presented
earlier to investigate model behavior.

Most important aspect of system modelling is the investi-
gation of stability. The investigation of behaviour of zero
equilibrium of original system is not very interesting, as
it corresponds to people with general neutral opinion. This
also limits investigation to the case that everyone becomes
neutral to the issue. More interesting is the investigation
of differences between opinions. That is why we focus on
consensus in the model in the following section.

IV. CONSENSUS IN THE ATTITUDE DYNAMICS MODEL

In this section we assume for simplicity, that all orders are
equal to α. In order to investigate consensus in the model
we need to define new variables. Let us define ηi,j(t) :=
xi(t) − xj(t), 1 ≤ j < i ≤ N . Then we get a new state
vector

η = (η2,1, η3,1, η3,2, η4,1, η4,2, η4,3,

. . . , ηN,1, ηN,2, . . . , ηN,N−1)
T
,

(7)

where η ∈ R0.5N(N−1). Then, we get the following equation:

(∆α
hη) (t+ h) = f(η(t)) , (8)

where the vector f is a function of ηi,j .
Remark 2: Construction of f can be easily explained

using the following example. Let us consider η2,1 = x2−x1,
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it can be easily seen that

(∆α
hx1) (t+ h) = s1

∑
j 6=1

pj(xj(t)− x1(t))e−w1(x1(t)−xj(t))
2

= s1

(∑
j>1

pjηj,1(t)e−w1(ηj,1(t))
2
)

(9)
and similarly

(∆α
hx2) (t+ h) = s2

(
− p1η2,1(t)e−w2(η2,1(t))

2

+

+
∑
j>2

pjηj,2(t)e−w2(ηj,2(t))
2
) (10)

in consequence

(∆α
hη2,1)(t+ h) =

= (∆α
hx2) (t+ h)− (∆α

hx1) (t+ h) =

= − (s2p1e−w2(η2,1(t))
2

+ s1p2e−w1(η2,1(t))
2

)η2,1(t)+

+ s2
∑
j>2

pjηj,2(t)e−w2(ηj,2(t))
2

+

− s1
∑
j>2

pjηj,1(t)e−w1(ηj,1(t))
2

= f1(η(t)) .

(11)
In general one gets

(∆α
hxk) (t+ h) = sk

(
−
∑
j<k

pjηk,j(t)e
−wk(ηk,j(t))

2

+

+
∑
j>k

pjηj,k(t)e−wk(ηj,k(t))
2
)
.

(12)
Then for k ≥ 2 and ` = 1, 2, . . . , k − 1 one gets

(∆α
hηk,`)(t+ h) =

= (∆α
hxk) (t+ h)− (∆α

hx`) (t+ h) =

= − (skp`e
−wk(ηk,`(t))

2

+ s`pke−w`(ηk,`(t))
2

)ηk,`(t)+

+ sk
∑
j>k

pjηj,k(t)e−wk(ηj,k(t))2+

− sk
∑

j 6=`,j<k

pjηk,j(t)e
−wk(ηk,j(t))

2

+

+ s`
∑
j<`

pjη`,j(t)e
−w`(η`,j(t))

2

− s`
∑

j 6=k,j>`

pjηj,`(t)e
−w`(ηj,`(t))

2

= fι(η(t)) ,

(13)
where ι := k(k−1)

2 − k + `+ 1.
As it can be seen, analysis of those functions might be
complicated, it can be however easily seen that zero is
the equilibrium point of the system. This equilibrium is
important at it corresponds to the consensus between the
agents - i.e. common opinions among them.

Let us linearize system (8) at η∗ = 0 ∈ R0.5N(N−1). Then
we get the following system:

(∆α
hη) (t+ h) = Mη(t) , (14)

where M := f ′(0).

Let m ∈ N. In order to see how the matrix M looks like
we introduce the following matrices:

Pm =


p1 p2 . . . pm
p1 p2 . . . pm
...

...
. . .

...
p1 p2 . . . pm

 ∈ Rm×m,

1m :=
(
1 . . . 1

)T ∈ Rm×1,

0m :=
(
0 . . . 0

)T ∈ Rm×1,

pm :=
(
p1 . . . pm

)
∈ R1×m,

Sm := diag (s1, s2, . . . , sm) is the diagonal matrix of di-
mension m×m, and

Dm :=− smPm−1 − pmSm−1

=


−smp1 − s1pm . . . −smpm−1
−smp1 . . . −smpm−1

...
. . .

...
−smp1 . . . −smpm−1
−smp1 . . . −smpm−1 − sm−1pm

 .

Note that Dm ∈ R(m−1)×(m−1). Let Sn, An and Mn be
matrices defined respectively in recursive way as follows:
S2 :=

(
−s1 s2

)
∈ R1×2,

Sn :=

(
Sn−1 00.5(n−2)(n−1)
−Sn−1 sn1n−1

)
∈ R0.5n(n−1)×n ,

for n ≥ 3, A2 :=
(
−s1p2 s2p1

)T ∈ R2×1,

An :=

(
An−1 −pnSn−1

0T0.5(n−1)(n−2) snpn−1

)
∈ Rn×0.5n(n−1) ,

(15)
for n ≥ 3 and

M2 := −s1p2 − s2p1 (16a)

Mn :=

(
Mn−1 pnSn−1
An−1 Dn

)
, n ≥ 3 , (16b)

where Mn ∈ R0.5n(n−1)×0.5n(n−1).
Observe that for N agents we get M = MN , where MN

is defined in the recursive way by (16).
Particularly, for N = 2 agents we have only one difference

η = x2− x1 and M = M2 = −s1p2− s2p1 Then linearized
systems are only one-dimensional: (∆α

hη) (t+h) = −(s2p1+
s1p2)η(t).

Moreover, for N = 3 one gets

M = M3 =

 M2 −s1p3 s2p3
−s1p2 −s1p3 − s3p1 −s3p2
s2p1 −s3p1 −s3p2 − s2p3

 ,

while for N = 4 we get

M = M4 =

(
M3 p4S3
A3 D4

)
,

where

p4S3 =

−s1p4 s2p4 0
−s1p4 0 s3p4

0 −s2p4 s3p4

 ,
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A3 =

−s1p2 −s1p3 0
s2p1 0 −s2p3

0 s3p1 s3p2


and

D4 =

 −s1p4 − s4p1 −s4p2 −s4p3
−s4p1 −s4p2 − s2p4 −s4p3
−s4p1 −s4p2 −s4p3 − s3p4

 .

Moreover, for N = 5:

M = M5 =

(
M4 p5S4
A4 D5

)
,

where

p5S5 =


−s1p5 s2p5 0 0
−s1p5 0 s3p5 0

0 −s2p5 s3p5 0
−s1p5 0 0 s4p5

0 −s2p5 0 s4p5
0 0 −s3p5 s4p5

 ,

A4 =


−s1p2 −s1p3 0 −s1p4 0 0
s2p1 0 −s2p3 0 −s2p4 0

0 s3p1 s3p2 0 0 −s3p4
0 0 0 s4p1 s4p2 s4p3


and

D5 =


d1 −s5p2 −s5p3 −s5p4
−s5p1 d2 −s5p3 −s5p4
−s5p1 −s5p2 d3 −s5p4
−s5p1 −s5p2 −s5p3 d4


for di := −s5pi − sip5, i = 1, 2, 3, 4.

Note that in [19] the relations between the asymptotic
stability of nonlinear fractional order difference systems
and their linearizations are presented. In [19] we consider
systems where one of the Caputo-type, Riemann-Liouville-
type or Grünwald-Letnikov-type difference operators (de-
noted by Υα

h in [19]) is used on the left hand side of
the system. Then (Υα

hη)(t) = (∆α
hη)(t + h). Additionally,

the Mittag-Leffler function Eα,β(M,k) used in the paper
[25] (now [19]) can be expressed as follows Eα,β(M,k) =∑∞
i=0(−1)k−i

(−iα−β
k−i

)
M i. Therefore the results presented in

[19] can be used for systems with the Grünwald-Letnikov-
type operators and the following lemma gives the relations
between asymptotic stability of systems (8) and (14):

Lemma 3: Assume that f(η) −Mη = o(‖η‖) uniformly
as ‖η‖ → 0. If the linear system (14) is asymptotically stable
and there exist k0 ∈ N0, mβ ≥ 1 and q ∈ (0, 1) such that
‖
∑∞
i=0(−1)k−i

(−iα−β
k−i

)
M i‖ ≤ mβq

k for k ≥ k0, then the
zero solutions of the nonlinear system (8) is asymptotically
stable.

Let us now present the behaviour of the considered mod-
els.

Proposition 4: Let xi for i ∈ {1, . . . , N} evaluate accord-
ing to system (6) for α ∈ (0, 1]. If for each λ ∈ Spec(M)
conditions (i) and (ii) from Proposition 1 hold, then system
(8) is asymptotically stable, i.e. |xi(kh)−xj(kh)| → 0 with
k →∞, for ηi,j(0) small enough.

Proof: The fact that for each λ ∈ Spec(M) conditions
(i) and (ii) from Proposition 1 hold for α ∈ (0, 1] is
equivalent to asymptotic stability of system (∆α

hη) (t+qh) =
Mη(t) by Proposition 1. Then for ηi,j(0) small enough
η(t)→ 0 with t→∞ and consequently the thesis holds.

Corollary 5: For the scalar system (∆α
hη) (t + h) =

−(s2p1+s1p2)η(t) we have that it is asymptotically stable if
s2p1 + s1p2 <

(
2
h

)α
. And then, initially nonlinear discrete-

time is locally asymptotically stable.
Corollary 6: For N = 3 agents we receive the

following system of differences between opinions:(∆α
hη2,1) (t+ h)

(∆α
hη3,1) (t+ h)

(∆α
hη3,2) (t+ h)

 = M3η(t). The matrix of

the system has only real eigenvalues, one of
them is equal zero. Hence, the system is stable if
s1(p2 + p3) + s2(p1 + p3) + s3(p1 + p3) <

(
2
h

)α
. And then,

initially nonlinear discrete–time is locally stable.

V. NUMERICAL SIMULATIONS

We consider now particular examples with different situa-
tions between agents in systems, consisting of progressively
more complex group of agents and discuss their behaviour
using psychological observations.There are presented and
described examples, where act two, three, five or fifty agents.
All simulations were conducted in Maple using discrete
fractional differences presented in the preliminaries.

Example 1: Let us consider firstly the group of two agents
with parameters presented inside the equations

(∆α
hx1) (t) = 20 · 0.3(x2(t)− x1(t))e−0.3(x2(t)−x1(t))

2

(∆α
hx2) (t) = 0.7(x1(t)− x2(t))e−0.7(x1(t)−x2(t))

2

with initial values x1(0) = 1, x2(0) = 5. Observe that we
have s1p2 + s2p1 = 6.7 < (200)α, for α > ln 6.7

ln 200 ≈ 0.359.
Hence, for orders big enough system reaches consensus
based on Corollary 5. Description of the situation presented
by by plots in Figure 1 is the following
• Agent 2 is more susceptible. Agent 1 is more persuasi-

ble.
• First reaction of Agent 1 is to withdraw from his posi-

tion to more neutral stance. It is caused by confrontation
with Agent 2, whose opinion is radically different and
at the same time much more important.

• It can be interpreted as a defensive reaction to usu-
ally more emotionally invested disputant. Typically less
invested person initially becomes disinterested in the
subject.

• However after the initial turmoil agents start to discuss
the issue that interests them. That allows getting a
consensus.

Example 2: Now we consider the group of N = 3 agents
and behaviour represented by system (6) with vector param-
eters p := [20, 1, 20], w = [0.8, 0.1, 0.1], s = [0.8, 0.1, 0.1]
and initial values of opinions: x1(0) = 1, x2(0) = 5,
x3(0) = 8. Observe that we have s1p2+s1p3+s2p1+s2p3+
s3p1 + s3p2 = 22.9 < (200)α, for α > ln 22.9

ln 200 ≈ 0.591.
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Fig. 1. System with two agents presented in Example 1. Differing suscep-
tibilities cause differences in ways of approaching consensus. x1(0) = 1,
x2(0) = 5, h = 0.01, α = 0.9, T = 100 steps.

Hence, for orders big enough system reaches consensus
based on Corollary 6.

Description of the situation presented by by plots in Figure
2 is the following
• Agent 1 has a relatively neutral opinion on the discussed

issue. However, his opinion is very important to him.
He is however most susceptible of the group.

• Agents 2 and 3 have much more radical opinion on the
issue. However both of them are not very invested in
their opinions (weight of 0.1). Agent 3 is much more
persuasive person than Agent 2.

• Agent 1 meeting two radicals decides to withdraw to
almost fully neutral position.

• Agents 2 and 3 observing his behaviour start to alter
their stance towards more neutral position.

• When Agents 2 and 3 come position that is more ac-
ceptable to Agent 1 he starts moving towards consensus.

• Difference in relative changes of opinion is explainable
by the fact, that opinion of Agent 1 was much more
important for him.

Fig. 2. System with three agents presented in Example 2. We observe
behaviour consistent with Corollary 6. x1(0) = 1, x2(0) = 5, x3(0) = 8,
h = 0.01, α = 0.9, p := [20, 1, 20], w = [0.8, 0.1, 0.1], s =
[0.8, 0.1, 0.1], T = 200 steps .

Example 3: Population of agents from Example 2
was supplemented by two more. Behaviour of agents
is represented by system (6) with vector parameters
p := [20, 1, 20, 5, 60], w = [0.8, 0.1, 0.1, 0.9, 0.9], s =
[0.8, 0.1, 0.1, 0.8, 0.9] and initial values of opinions: x(0) =
[1, 5, 8, 10, 15]. It is interesting that we can observe reaching
the consensus in time period T = 1000 steps only for narrow
interval of order. In numerical simulations, done in Maple,
we found that then α ∈ (0.84; 0.91). For greater order, but
less than 1, the time of reaching the consensus for all agents

need more steps. However, for α = 1 there is no consensus
in the systems, see Figure 4, similarly, but with different kind
of divergency for order smaller than 0.84.

Description of the situation presented by by plots in Figure
3 is the following
• Agent 4 is more radical, however he is not persuasible

and is rather susceptible. His opinion is very important
to him.

• Agent 5 is most radical of the group, and is at least 3
times as persuasible as the rest of the group. He is also
most susceptible. His opinion is very important to him.

• As before we can see, that presence of a radical causes
others to move towards more neutral stances.

• High persuasibility of Agent 5 allows him to obtain
common opinion with agents 3 and 4 rather quickly
and soon after that with agent 2.

• Agent 1 keeps his opinion close to full neutrality.
• Over time however, high susceptibility of this new group

leader (Agent 5) causes him to become more neutral. It
is an influence of rather persuasible Agent 1.

• Effect of Agent 1 can be understood as influence of his
consistency. It is well known in psychology (see [51])
that consistent minority can influence majority.

Fig. 3. System with five agents from Example 3. Only certain orders
of α ∈ (0.84; 0.91) allow reaching consensus. x(0) = [1, 5, 8, 10, 15],
h = 0.01, α = 0.9, p := [20, 1, 20, 5, 60], w = [0.8, 0.1, 0.1, 0.9, 0.9],
s = [0.8, 0.1, 0.1, 0.8, 0.9], T = 1000 steps.

Fig. 4. System with five agents from Example 3. Integer order model does
not reach consensus. x(0) = [1, 5, 8, 10, 15], h = 0.01, α = 1, p :=
[20, 1, 20, 5, 60], w = [0.8, 0.1, 0.1, 0.9, 0.9], s = [0.8, 0.1, 0.1, 0.8, 0.9],
T = 1000 steps.

Example 4: We introduce now to the system the 6th agent
with opposite value of opinion with minus at the beginning
and different values of parameters: p6, w6, s6. We can
observe that with the same values for the previous five agents
and new vector parameters p := [20, 1, 20, 5, 60, 20], w =
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[0.8, 0.1, 0.1, 0.9, 0.9, 0.1], s = [0.8, 0.1, 0.1, 0.8, 0.9, 0.1]
and initial values of opinions: x(0) = [1, 5, 8, 10, 15,−5]
for order α = 0.9 consensus is still reached, see Figure 5.
Moreover, the condition for local stability is not fulfilled in
this case.

Fig. 5. Six agent system from Example 4. Despite not fulfilling lin-
earized condition for stability the consensus is still reached. x(0) =
[1, 5, 8, 10, 15,−5], h = 0.01, α = 0.9, p := [20, 1, 20, 5, 60, 20], w =
[0.8, 0.1, 0.1, 0.9, 0.9, 0.1], s = [0.8, 0.1, 0.1, 0.8, 0.9, 0.1], T = 1000
steps.

However, for the order α = 1 we do not have consensus
for both with five or with six agents (Fig. 6). There are two
clusters of opinions, similarly like in Figure 4.

Fig. 6. Six agent system from Example 4. Integer order model ex-
hibits clustering. x(0) = [1, 5, 8, 10, 15,−5], h = 0.01, α = 1,
p := [20, 1, 20, 5, 60, 20], w = [0.8, 0.1, 0.1, 0.9, 0.9, 0.1], s =
[0.8, 0.1, 0.1, 0.8, 0.9, 0.1], T = 1000 steps.

As it can be observed in all above examples behaviour of
agents is actually consistent with people’s behaviour that can
be observed in psychological context. We can also observe
that the fractional order seems justified as integer order cases
in Examples 3 and 4 show hard to explain behaviour.

There is some evidence suggesting, that our model is
empirically valid. For example research on interrogative
suggestibility [52], social influence [53] and false confessions
[54] show, that people who are more prone to suggestions,
changes their opinion according to opinion of more pursuable
person, and magnitude of this change is depended on sus-
ceptibility. This supports our Example 1. On the other hand
[55] in two well-designed experiments showed that in group
of three persons the influence of confident agents might
drastically change one’s opinion in repeated interactions. Par-
ticipants who took part in discussion changed their opinion
to achieve consensus with more confident persons (namely,
people who has very high personal opinion weight). Similar
expert’s effects were shown by Moussaid et. al [56]: persons
with high confidence (personal opinion weight) changed

opinion of participants with low confidence. It seems that
participants tried to adjust their opinions to opinion of more
confident interlocutor, despite individual characteristics of
interlocutor (eg. susceptibility). This experiments partially
supports our Example 2.

VI. CONCLUSIONS

The future step is to provide an experimental validation
of the proposed model. At the moment we intend to per-
form two type of experiments including actual subjects.
We will investigate binary interactions between people in
large groups. Because of such limitation, the identification of
parameters should be easier, and on the other hand realisation
of multiple pairs will result in proper statistical distribution.
Second type of experiments will include large group of
people interacting with each other in a closed room using
monitoring to map the interactions along with their durations.
Both before and after the experiment the participants will be
surveyed in order to determine their initial and post interac-
tion attitudes. Second significant area of further investigation
are the mathematical properties of the model. Analysis of
nonlinear systems of fractional differential equations is an
emerging topic, which requires careful analysis. One of the
methods that can be used is the fractional analog of Lyapunov
theory.
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