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Robust Safe Reinforcement Learning under Adversarial Disturbances

Zeyang Li, Chuxiong Hu, Shengbo Eben Li, Jia Cheng, Yunan Wang

Abstract— Safety is a primary concern when applying re-
inforcement learning to real-world control tasks, especially in
the presence of external disturbances. However, existing safe
reinforcement learning algorithms rarely account for external
disturbances, limiting their applicability and robustness in
practice. To address this challenge, this paper proposes a robust
safe reinforcement learning framework that tackles worst-case
disturbances. First, this paper presents a policy iteration scheme
to solve for the robust invariant set, i.e., a subset of the
safe set, where persistent safety is only possible for states
within. The key idea is to establish a two-player zero-sum
game by leveraging the safety value function in Hamilton-
Jacobi reachability analysis, in which the protagonist (i.e.,
control inputs) aims to maintain safety and the adversary
(i.e., external disturbances) tries to break down safety. This
paper proves that the proposed policy iteration algorithm
converges monotonically to the maximal robust invariant set.
Second, this paper integrates the proposed policy iteration
scheme into a constrained reinforcement learning algorithm
that simultaneously synthesizes the robust invariant set and
uses it for constrained policy optimization. This algorithm
tackles both optimality and safety, i.e., learning a policy that
attains high rewards while maintaining safety under worst-
case disturbances. Experiments on classic control tasks show
that the proposed method achieves zero constraint violation
with learned worst-case adversarial disturbances, while other
baseline algorithms violate the safety constraints substantially.
Our proposed method also attains comparable performance as
the baselines even in the absence of the adversary.

I. INTRODUCTION

Reinforcement learning (RL) [1] has achieved remarkable
success in various fields, such as games [2], robotics [3], and
autonomous driving [4]. RL aims at finding an optimal policy
that maximizes the expected cumulative rewards. However,
many real-world control tasks require not only maximization
of rewards but also strict satisfaction of safety constraints,
as violating these constraints can have catastrophic conse-
quences [5], [6]. To tackle this problem, safe RL has emerged
as a research area that aims at learning a safe optimal policy
with zero constraint violation [7], [8].

There are mainly two categories of safety formulation in
existing safe RL methods. The first one deals with safety
in the framework of constrained Markov decision process
(CMDP) [9], where an auxiliary cost signal indicates the
state-action pairs that violate the safety constraint. The
objective is to find a policy maximizing rewards under the
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condition that the cost value is below a certain threshold.
Algorithms for solving CMDPs include Lagrangian meth-
ods [10], [11], [12], penalty methods [13] and projection
methods [14]. However, they cannot achieve zero constraint
violation since the cost value is defined in expectation, and
the potential danger at one state is averaged to the whole
trajectory. The second category developed more recently,
aims to ensure that the agent satisfies safety constraints at
every state, and is referred to as state-wise safe RL [15]. This
line of work adopts the rigorous definition and theoretical
guarantee of safety in safe control research [5], [6], in
which a key insight is that persistent safety can only be
achieved within a subset of the safe set, termed invariant
set [16], [17]. Outside this set, the safety constraints will
be violated inevitably in the future even though they are
temporarily satisfied, regardless of what actions the agent
takes. Algorithms belonging to state-wise safe RL adopt
energy functions such as control barrier function [6], [18] and
safety index [19], [20] to ensure persistent safety and identify
invariant sets, or utilize Hamilton-Jacobi reachability analysis
[21], [22] which provides the theoretical maximal invariant
set. These methods typically synthesize the invariant set and
use it to conduct constrained policy optimization, achieving
zero violation test results in several benchmark environments.
However, simulators used for safe RL training are in-
evitably imperfect approximations for real-world systems.
There can always be uncertainties, such as model errors,
sensory noises and environmental perturbations, which may
lead to severe violations of safety constraints when trans-
ferring policies from simulators to real-world control tasks
[23]. These uncertainties can be viewed as extra disturbances
in the system [24]. For example, higher frictions at test time
might be modeled as extra forces at contact points. Therefore,
robustness against external disturbances is a crucial require-
ment for applying safe RL to physical systems. Nevertheless,
most existing methods do not account for such robustness.
To address this challenge, this paper proposes a safe
reinforcement learning framework that learns an optimal safe
policy under worst-case disturbances. This research follows
the second category of safe RL, i.e., ensuring state-wise
safety. Just like the common cases without disturbances,
persistent safety under worst-case disturbances can only be
achieved in a subset of the safe set, named robust invariant
set [17], [25] which is smaller than the standard invariant
set due to the presence of disturbances. To attain optimal
performance as well as ensure safety, the maximal robust
invariant set must be identified. We propose a policy iteration
scheme that converges monotonically to the maximal robust
invariant set. The key idea is to establish a two-player



zero-sum game by leveraging the safety value function in
Hamilton-Jacobi reachability analysis [21], in which the
protagonist (i.e., control inputs) aims to maintain safety and
the adversary (i.e., external disturbances) tries to break down
safety. However, this policy iteration scheme only obtains the
safest policy that seeks to stay far away from the boundary
of the safe set. We further integrate it into a constrained rein-
forcement learning algorithm that simultaneously synthesizes
the robust invariant set and uses it for constrained policy
optimization. This algorithm attains one policy that satisfies
both safety and optimality.

Our contributions are summarized as follows.

« We propose a policy iteration scheme for synthesizing

the maximal robust invariant set. Robust invariant sets
are represented by the safety value functions inspired by
Hamilton-Jacobi reachability analysis, and a two-player
zero-sum game is established. The self-consistency con-
ditions of safety value functions is proved. Furthermore,
we prove that the proposed policy iteration converges to
the maximal robust invariant set monotonically, as well
as the safest policy that seeks the highest safety value.
We propose a constrained reinforcement learning algo-
rithm that learns an optimal safe policy under worst-case
disturbances. This algorithm simultaneously synthesizes
the robust invariant set and uses it for constrained
policy optimization which is solved by the Lagrangian
multiplier method.
Experiments on classic control tasks show that our
method achieves zero constraint violation with learned
worst-case adversarial disturbances while baseline algo-
rithms violate the safety constraints substantially. Our
method also attains comparable performance as the
baselines even in the absence of the adversary.

II. PRELIMINARIES
A. Hamilton-Jacobi Reachability Analysis

Hamilton-Jacobi reachability analysis is a formal verifica-
tion method for ensuring safety of general continuous non-
linear systems [21], [26]. It also includes formal treatment of
external disturbances. Suppose the system dynamics is given
by

xe L ueU,ac A, (1)

in which . denotes the state space, % denotes the input
space, </ denotes disturbance space. The state flow map
under the given control policy 7 : . — % and disturbance
policy u :.¥ — o/ is defined as

@) =3+ [ F5(0). 760 1O @)

The safety constraint for the system is /i(x) > 0. The key
of Hamilton-Jacobi reachability analysis is to define a safety
value function:

x:f('x’u7a)7

vy = i in (h(P
i (x,1) = maxmin min {h (s, (x,7))}

which corresponds to the worst constraint value in the time
horizon [¢,T] starting at current state x, under the best
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possible control inputs and worst-case disturbances. The
safety value function satisfies the following partial differ-
ential equation (PDE) [21]:

h : h
—— +maxmin —
ot uEwU acd oxT

*
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and the boundary condition is given by V,*(x,T) = h(x).
B. State-wise Safe RL

State-wise safe RL [15] aims to ensure that the learned
control policy satisfies the safety constraints on every state
it visits. The problem is formulated as

max £ {
T

St X1 = f (%, ) ,up = w(xt),
h(x)>0,6=0,1,2,..., 00.

oo

Zy’r(xt,ul)
t=0

&)

Note that the system in (5) is discrete-time, which is different
from the setting in Hamilton-Jacobi reachability analysis.
It is important to constrain the system state inside the
invariant set for state-wise safe RL. Some works adopt
energy functions such as control barrier function [6], [18]
and safety index [19], [20] to ensure persistent safety and
identify invariant sets. Others utilize Hamilton-Jacobi reach-
ability analysis [22], which provides the theoretical maximal
invariant set.

III. POLICY ITERATION FOR ROBUST INVARIANT SET

Despite the rigorous theoretical formulation of Hamilton-
Jacobi reachability analysis, the computational complexity
scales exponentially with respect to system dimension, re-
ferred to as the curse of dimensionality [26]. To overcome
this challenge, recent works utilize RL techniques to approx-
imate the safety value function. Fisac et al. propose a time-
discounted modification of Hamilton-Jacobi reachability and
solve it using RL algorithms [27]. Yu et al. propose a
reachability constrained reinforcement learning algorithm
that jointly synthesizes the optimal safe control policy and
the invariant set [22]. However, these works assume that there
is no disturbance.

This paper proposes a policy iteration scheme that con-
verges monotonically to the maximal robust invariant set,
i.e., states that allow for persistent safety under worst-case
disturbances. The key idea is to utilize the safety value
function (3). Note that Hamilton-Jacobi PDE (4) is for
continuous-time systems with finite horizon 7. To adapt it
for infinite horizon RL on discrete-time systems, adjustments
need to be made.

Consider a discrete system as

xe€ L ucU,acd, (6)

in which . denotes the state space, % denotes the action
space of control inputs, &/ denotes the action space of
external disturbances. The control input u follows policy
.Y — % (called protagonist) and disturbance a follows

Xt+1 :f(xtvutaal)a



policy u : . — o7 (called adversary). We define the safe set
and safety value functions as follows.

Definition 1 (safe set): The safe set S;, is defined as the
zero-superlevel set of the constraint function A(x), i.e.,

Sn={x[h(x) = 0}. )

Definition 2 (safety value functions): Let {x? o } denote
the state trajectory when the system is driven by a protagonist
policy @ and an adversary policy u.

The safety value function for a protagonist policy 7 and

an adversary policy u is defined as
Virt (o) = min {1 (57 | x0 =)} ®)

The safety value function for a protagonist policy 7 is defined

as
Vi (x) = minmin {i (x/* [ xo =x) } . 9
i (@) = minmin {7 (67" | 20 =) } ©)
The optimal safety value function is defined as
Vi (x) = maxminmin { & (x/"* | xp =x) } . (10)

n() pu() teN

The safety value functions quantify the riskiness of vi-
olating the safety constraints. Vh”’” (x) denotes the lowest
constraint value (the most dangerous scenario) in the long
term, when the system is driven by specified protagonist 7
and adversary p. It varies if either the protagonist 7 or the
adversary p changes. V;*(x) denotes the lowest constraint
value when the system is driven by specified protagonist 7
and its worst-case adversary. It evaluates the safety-keeping
ability of the policy 7 and varies if the policy @ changes.
Vy¥(x) denotes the best safety value we can get where we
choose the policy maximizing the constraint value (thus
minimizing the constraint violation) against the worst-case
adversary.

One can easily deduce that the maximal robust invariant
set is the zero-superlevel set of the optimal safety value func-
tion V;*. States out of this set will violate the safety constraint
in the future inevitably under worst-case disturbances (see
Figure 1 for illustration). We formally define robust invariant
sets in the following definition.

Fig. 1. Illustration of robust invariant sets. Purple region: state space. Blue
region: safe set. Green region: robust invariant set. Persistent safety is only
possible for states inside the robust invariant set. States outside the robust
invariant set will inevitably violate the safety constraints under worst-case
disturbances, even though they are temporarily safe.

336

Definition 3 (robust invariant sets): The robust invariant
set of a given policy 7 is the zero-superlevel set of its safety
value:

(1)

The maximal robust invariant set is the zero-superlevel set
of the optimal safety value:

Sy ={x|Vy(x) = 0}.

ST = {x| V() 2 0}.

12)

We have S* C §* C S, for any 7.

Remark 1 (clarification): The invariant sets (standard or
robust) in this article are actually controlled invariant sets.
For states inside a robust controlled invariant set, there exists
a control policy that keeps the system safe under any distur-
bances. We omit the term controlled for simplicity. Xue et
al. propose RL approaches (value iteration, policy iteration)
for estimating the robust invariant sets of perturbed discrete-
time systems [28]. The systems they consider only have
disturbances and there are no control inputs. The systems in
this article are more general, containing both control inputs
and external disturbances, which compete against each other.

Utilizing dynamic programming, we show that the safety
value functions satisfy the following self-consistency condi-
tions.

Theorem 1 (self-consistency conditions): Suppose x' is
the successive state of x. The following self-consistency
conditions hold for safety value functions, i.e.,

Vo (x) = min {h(x), V" (+) }, (13)
Vi*(x) = min {h(x),an;i;; (v (xf)}} L as
V¥ (x) = min {h(x),géa}; ZI;LI; {vif (+) }} (15)

The proof of theorems and propositions is provided in
Appendix.

Note that x’ in (13) satisfies x' = f(x, T(x), 1 (x)), x' in (14)
is dependent on the disturbance a, and x’ in (15) is dependent
on both the control input # and disturbance a.

Unlike the common Bellman equation or self-consistency
condition in RL, self-consistency conditions for safety value
functions in Theorem 1 are not contraction mappings. We
introduce contraction properties by modifying the original
formulation with a discount factor v,.

Definition 4 (safety self-consistency operators): Suppose
0 < 7, < 1. The safety self-consistency operators are defined
as

[T (V)] () = (1= 1)h(x) + yymin {h(x), Vi (¥) }, (16)

75 (03] ) = (1= 1)h(e) + pmin { )iV (4) }.

(17)
T30V = (1= )hGx) + 3min { 0, maxomin Vs ()
(18)

Note that a specified V,, can be viewed as a vector in
the Euclidean space R, The outputs of the safety self-
consistency operators are also vectors and the expressions



in Definition 4 are element-wise. We show in the following
theorem that the three safety self-consistency operators are
all monotone contractions, just like the Bellman operator
in standard RL. This lays the foundation for applying RL
techniques such as policy iteration.

Theorem 2 (monotone contraction): Let T denote any of
M TF T,

1) Given any Vh,% S R"yj', we have

[T —r@|_<mlvi-nl_. a9

2) Suppose V;(x) > V;(x) holds for any x € .#. Then we

have B
TV)) > [T)](), Vees.  (20)

The fixed points of the proposed self-consistency operators
serve as approximations for their original values in Definition
2. The following proposition shows that these fixed points
converges to the optimal ones as 7, goes to 1.

Proposition 1: Let T denote any of Th’w ,IF, Ty, and Vhd
denote the fixed point of operator T, i.e., T(Vhd )= V}f’ . Let
V}, denote the corresponding original safety value function in
Definition 2. Then we have limy, 1 V¢ (x) = Vj(x).

From now on, we assume that a 7, sufficiently close to 1
is chosen. Since the self-consistency operators are monotone
contractions, we can utilize policy iteration techniques in RL
to compute their fixed points, i.e., perform policy evaluation
and policy improvement alternatively. The pseudo-code is
shown in Algorithm 1. Note that the proposed policy iteration
is more like the policy iteration in robust RL (see [29], [30]).

Algorithm 1: Policy iteration for robust invariant sets

Input: initial policy mp.
for each iteration k do
(policy evaluation)
Solve for V,* such that V,* = T," (V™).
(policy improvement)
Mey1 = argmax { T (V%) }.
T

end

The following theorem shows that the proposed policy
iteration scheme converges monotonically to the optimal
safety value (thus identifying the maximal robust invariant
set).

Theorem 3 (monotone convergence of policy iteration):
The sequence {Vh”"} generated by Algorithm 1 converges
monotonically to the fixed point V;* of Tj,, i.e., T;,(V,") = V.

Algorithm 1 is developed for the tabular case, i.e., state
and action spaces with finite elements. In continuous state
and action spaces, we can develop a deep RL version for
the proposed policy iteration scheme, in which the policies
and safety values are approximated with neural networks.
From now on, we denote the protagonist policy maintain-
ing safety as m,, to distinguish it from the policy 7 that
tackles both safety and optimality in Section IV. We utilize
the standard actor-critic framework with state-action value
functions. We have the state-action safety value function

On(x,u,a), which satisfies Qj(x, m,(x), (t(x)) = V,(x). The
self-consistency conditions and operators also apply to Qy,
just like the common RL cases. We denote the parameterized
safety value function as Qy,(x,u,a; y), the parameterized pro-
tagonist policy as 7, (x;¢) and the parameterized adversary
policy as u(x; ). For a set Z of collected samples, the loss
function for Qp(x,u,a; y) is

LQh (II/) = ]E(x,u,a,h,x/)w_@ { (Qh ()C, u,a; W) - le)z} 5 21
where
On = (1—1)h(x)

. / / / . (22)
+ Ymin {h(x),0n (', T (x";0),u(x'; B); W) } .
The loss function for 7, (x;¢) is
Ly, (9) = —Exeg{On (x,m(x:0), u(x: B): )} (23)
The loss function for p(x; ) is
Ly(B) = Exug {On (v, m(x:0), u(x: B)iw)}. (24

Algorithm 2 provides the pseudo-code of the actor-critic
algorithm for robust invariant sets.

Algorithm 2: Actor-critic algorithm for robust invari-
ant sets
Input: network parameters v, ¢ and f3, target
network parameter ¥ < ¢, learning rate 1,
target smoothing coefficient 7, replay buffer
D 2.
for each iteration do
for each system step do
Sample control input u; ~ 7, (x5 0);
Sample disturbance a, ~ t(x:;f3);
Observe next state x;41, constraint value /;;
Store transition 2 < 2U{(x;,us,ar, by, Xi41) }-

end

for each gradient step do
Sample a batch of data from Z;

Update safety value function
¥y —nVyLg,(¥);
Update protagonist policy
¢ 90— nV¢Lﬂh (‘P),
Update adversary policy 8 < 8 —nVgL,(B);
Update target network ¥ < Ty + (1 —17)y.

end
end

IV. JOINT SYNTHESIS OF OPTIMAL SAFE POLICY AND
MAXIMAL ROBUST INVARIANT SET

The maximal robust invariant set can be solved with
the proposed policy iteration scheme (Algorithm 1 and 2).
However, the policy we obtain always seeks the highest
constraint values, i.e., stays away from the safety boundary
as far as possible. In the safe RL scenario, the goal is to
find a policy that maximizes rewards and maintains safety
at the same time. So how do we pursue reward optimality

337



in the condition of safety is guaranteed? The key insight
is that to maintain safety, we do not need to choose inputs
such that u = argmax,Qj(x,u,a). Instead, we only need to
choose inputs u satisfying Qy(x,u,a) > 0, i.e., the state-
action safety value function identifies the admissible inputs
range at each state for maintaining safety (staying inside
the robust invariant set). Motivated by this fact, we propose
a constrained RL algorithm that simultaneously synthesizes
the robust invariant set and uses it to constrain the optimal
policy. This algorithm converges to both the maximal robust
invariant set and the optimal safe policy, i.e., one policy that
tackles both safety and optimality. Note that the optimality
here is with respect to reward maximization. The policy
iteration scheme in Section III converges to the optimal
protagonist policy and the maximal robust invariant set,
in which the optimality is with respect to constraint value
maximization.

We combine the proposed policy iteration scheme for
robust invariant set with soft-actor critic (SAC) [31], a well-
known model-free off-policy RL algorithm. SAC concur-
rently learns a policy and two state-action value functions,
which we denote as 7(x;0), Q(x,u,a; ®;) and Q(x,u,a; ).
Note that 7(x;0) is different from 7, (x;¢). The loss func-
tions for Qy,(x,u,a; y), m,(x;9), and p(x; B) are the same as
in Section III. The loss function for Q-functions is

LQ ((D,) = E(L,u.a,r,x’)w@ { (Q(xvuva; wi) - Q)z} ) (i = 1,2)
(25)
where
Q =r(x,u,a)
(26)

+y(_ in Q(x',u', u(x'; B); @) — alog%(u’Ix’;G)) :
J=1

in which u’ ~ 7(-|x’;0), @; denotes the corresponding target
network and o denotes the temperature. The loss function
of the temperature ¢ is

L(a) =E,g{—alogn(ulx;0) — ai}, (27)

where u ~ 7(-|x;0) and 5 is the target entropy. The loss
function of the policy is

L1(0) = Brvs { atogul230) ~ min 001405 B)i) .

’ (28)
where u ~ 7(-|x;0). To ensure safety under worst-case
disturbances, we must constrain the policy 7 such that its
outputs satisfy the requirement of state-action safety value
function:

Qh(x7uv,u(X;ﬁ);W) Z 07 (29)

We utilize the Lagrange multiplier method to solve this
constrained policy optimization problem. The Lagrangian is
formulated as

3(97)‘>:Lﬂ(e)_Z'EXE_@{Qh(xauuu(X;ﬁ);l//)}’ (30)

in which u ~ 7(-|x; 0). We update policy 7(x;0) and multi-
plier A using dual ascent for the dual problem:

minmax.Z(0,1).
6 A>0

u~m(-|x;0).

€2y
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The pseudo-code of the overall algorithm is summarized in
Algorithm 3.

Algorithm 3: Soft actor-critic with robust invariant
set (SAC-RIS)

Input: network parameters v, ¢, B, ), @, 0, target
network parameters W < V¥, @) < Oy,
@, < @, Lagrange multiplier A, temperature
a, learning rate 1, target smoothing
coefficient 7, replay buffer 7 « @.
for each iteration do
for each system step do
Sample control input u; ~ 7(x:;0);
Sample disturbance a, ~ l(x:; f);
Observe next state x;,, reward r;, constraint
value h;;
Store transition
D — DU{(x¢,us a0, 11,y %041) }

end

for each gradient step do
Sample a batch of data from Z;

Update safety value function

V< y—nVyLg, (V);
Update value functions

; < 0; — MV Lo(w) for i € {1,2};
Update policy 6 < 0 —nVy.Z(6,1);
Update protagonist policy

0 — 0 —1VoLa,(9):
Update adversary policy B < 8 —nVgLu(B);
Update temperature o @ —nNVgL(at);
Update target networks ¥ < 1y + (1 — 1)y,

@; + to;+ (1 —1)@; for i € {1,2};
Update multiplier A + A +nV;.£(0,1).

end
end

V. EXPERIMENTS
A. Learning the maximal robust invariant set

We test the proposed policy iteration scheme on the double
integrator with state constraints, whose invariant sets have
analytic expressions, to examine whether the learned robust
invariant set matches the ground truth. The double integrator
has the following dynamics:

I+l

=l

0 1
where u; € [—1,1] and a; € [-0.5,0.5]. The safety constraints
are |x| <2 and |v| < 2. The constraint function is A(x,v) =
min{x+2,2 —x,v+2,2—v}. The policies and safety value
function are parameterized with multilayer perceptrons.

We solve the safety value functions for two cases: with
or without disturbances. The results are shown in Figure 2.
The invariant sets are zero-superlevel sets of the safety value
functions. We can see that the learned invariant sets (denoted
by pink lines) match well with the true invariant sets (denoted

0
0.005

Xt
Vi

Xt4+1

Vit } (ur +ayr), (32)



by black lines), which validates the effectiveness of our
algorithm. Besides, we can see that the robust invariant set is
smaller than the standard invariant set due to the presence of
disturbances. To ensure safety under external disturbances, it
is crucial to solve for the robust invariant set and constrain
the system state to stay inside it.

Fig. 2. Heat maps and zero contours of learned safety value functions.
The grey lines are boundaries of safe sets. The pink lines are boundaries
of learned invariant sets. The black lines are boundaries of true (maximal)
invariant sets for the double integrator system.

B. Learning the optimal safe policy under worst-case dis-
turbances

We test our algorithm SAC-RIS and other baselines on
two safety-critical control tasks.

Cart-pole is a task based on MuJoCo [32], as shown in
Figure 3(a). The objective is to move the cart to a target
position as quickly as possible. The system state includes
position x and velocity v of the cart, angle 6 and angular
velocity @ of the pole. The control inputs u € [—1,1] CR
and external disturbances a € [—0.5,0.5] C R are horizontal
forces applied on the cart. The safety constraints are |0] <
0.2, i.e., keeping the pole nearly upright. The constraint
function is 7(6) = min{6 +0.2,0.2—0}.

Quadrotor is a 2D quadrotor trajectory tracking task in
safe-control-gym [33], as shown in Figure 3(b). The goal
is to track the circle trajectory as accurately as possible.
The system state includes the horizontal position x, vertical
position z, the pitch angle 6 and their time derivatives. The
control inputs u € [~1,1]* C R? and external disturbances a €
[—0.5,0.5]? C R? are motor thrusts applied on the quadrotor.
The safety constraints are z—0.5 >0 and 1.5—-z >0, ie.,
maintaining its vertical position z between [—0.5,1.5]. The
constraint function is 4(z) = min{z—0.5,1.5—z}.

We adopt two baseline safe RL algorithms for comparison.
SAC Lagrangian (SAC-L) follows the CMDP formulation
and takes a weighted sum of the value and the cost value as
the objective of policy optimization [34]. Reachable Actor-
Critic (RAC) utilizes Hamilton-Jacobi reachability analysis
to characterize the invariant set and uses it for constrained
policy optimization [22]. The neural networks are multilayer
perceptrons. The shared hyperparameters of all three algo-
rithms are the same. We use two metrics for evaluation:
episode return and episode constraint violation, reflecting the
optimality and safety of the policy, respectively.

(b) Quadrotor

(a) Cart-pole

Fig. 3. Tllustration of two safety-critical control tasks, taken from [33].

We evaluate all algorithms under two scenarios. In the first
scenario, the policies are tested with the learned adversarial
policy of our algorithm SAC-RIS, which represents the
worst-case disturbances. The training curves are shown in
Figure 4. As demonstrated by the second row, SAC-L and
RAC violate the safety constraint substantially under worst
external disturbances. Their episode returns are also affected,
especially in Cart-pole, since the consequence of violating
the constraints is catastrophic, i.e., the pole falls down. Our
algorithm SAC-RIS learns policies that achieve both high
performance and zero violation of safety constraints. This
justifies the design of our algorithm and the effectiveness of
synthesizing robust invariant sets.

Fig. 4. Training curves on two safety-critical control tasks. The policies
are tested with the learned adversarial policy from our algorithm SAC-RIS.
The first row corresponds to episode return and the second row corresponds
to episode constraint violation. The solid lines correspond to the mean and
the shaded regions correspond to 95% confidence interval over five seeds.

In the second scenario, the policies are tested without
any disturbances. The training curves are shown in Figure
5. Although the policies of SAC-RIS are trained under the
presence of adversarial disturbances, they generalize well to
the no-disturbance case. The policies of SAC-RIS achieve

339



comparable performance as the baselines, as well as zero
constraint violation.

Fig. 5. Training curves on two safety-critical control tasks. The policies
are tested without disturbances.

Remark 2 (limitation): As shown in Figure 4 and 5, the
constraint violations in training are considerable. Therefore,
our proposed algorithm is not suitable for direct online
deployment. The learning process needs to be carried out
in simulators. Once the training is completed, the policy is
ready to be implemented online.

VI. CONCLUSION

In this paper, a safe reinforcement learning framework
has been proposed to learn an optimal safe policy under
worst-case disturbances. We have proposed a policy iteration
scheme that converges monotonically to the maximal robust
invariant set. We have designed a constrained reinforcement
learning algorithm that simultaneously synthesizes the robust
invariant set and uses it for constrained policy optimization.
Experiments on classic control tasks have validated the
effectiveness of the proposed scheme.
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APPENDIX

A. Proof of Theorem 1

We only prove (13), while the proof for (14) and (15) is
similar. From the definition of the safety value function, we
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have
Vit (x) = rznzl(l)] {h(x | x0=2x)}

—min{h(x),gP{h(xf’“ | X0 —X)}}
—min{h(x),rtrg{l{h(xf’“ | x1 —X’)}}
|

(33)

= min {h(x),m>i51 {h (x| xo=x)}
=

= min {A(x), V" (x')}.

B. Proof of Theorem 2

We only prove the monotone contraction for 7, while the
proof for 7,7 and T,"* is similar. We have

(T3 (Vi) (x) = [T (Vi) (x)

—hmin { (2

,max min V;, (x')

UEU acol (34)
— Y, min< h inV, (¥') %.
)
We have
——
gyhmaxmax’Vh(f(x,u,a))—Vh(f(x,u,a))’ (35)
UEU acd
<Y Vh—‘N/hHoo-

The first inequality in (35) follows from the relationship as

maxmin f(x,y) — maxming(x,y)
X y X y

(36)
S m;le’nan |f(xay) 7g(xay)| .
The monotonicity of 7; follows from the monotonicity of
the max and min operations contained in 7j,.
C. Proof of Proposition 1
The proof is similar to that of the Proposition 1 in [27].

D. Proof of Theorem 3

We will prove the following relationship:

V< T (V) <V <y (37)

First, using the definition of 7; and policy improvement, we
have

Ti(V) =T (V%) > TR (V) =V (38)
Since V,* < T,*!(V;*), using the monotonicity and contrac-
tion of Th”"+1 , we have
i T
Vhﬂk < Th(VhﬂA) — Th k+1 (Vhﬂk) < (

h
Since Y}z(VhEkH) > Th”k+| (V”k+|

h ):

tonicity and contraction of 7j, we have

Vi = (T)= (V) > oo > Vet

T
T k+1

)= (V%) =V, (39)

T
Vh

, using the mono-

(40)

Therefore, (37) holds. The sequence {Vh”"} is monotone and
bounded, so it converges. After convergence, we have Vh”" =
T,(V*) = V,**!, which indicates that the convergence point
is the fixed point of 7j,.
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