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Abstract— Swarms of Unmanned Combat Aerial Vehicles
(UCAVs) are efficient in various tasks. However, they evolve
in hostile environments with risks of destruction during their
flight. To mitigate this risk, it is known that cooperative
behaviour can be used to enhance the protection within the
swarm. The goal of this paper is to design efficient algorithms
to guide the overall swarm to a given target while minimizing
the risk of destruction of the member of the swarm. First, a
new model, based on a controlled Markov chain, is derived to
capture this cooperative swarm effect on the destruction threat
of each member of the swarm. Then, an algorithm combining
path planning to guide the overall swarm and local individual
control to optimize the formation is suggested to help a swarm
to reach a target before the destruction of all UCAVs. We
evaluate our approach using numerical experiments.

I. INTRODUCTION

Swarms of unmanned aerial vehicles (UAVs) have been
studied for several years as they have a wide range of
applications, such as search and rescue [1], structural and
materials analysis [2], among others. They are particularly
useful for military operations as they can complete complex
tasks and are highly adaptable to changes in the environment.
Moreover, in military operations, members of the swarm
evolve in a hostile environment that will hinder the successful
completion of the task. Working in hostile environments
brings several challenges such as handling physical obsta-
cles [3], communication jamming [4] or the destruction by
ground-based air defense [5].

As a swarm, Unmanned Combat Autonomous Vehicles
(UCAVs) can help each other throughout the mission with
cooperative behaviours that increase their chances of success.
In the case of a swarm at risk of destruction, defense radar
saturation can be an efficient protection strategy. Indeed, it
is difficult to differentiate the members of a swarm if they
fly in tight formations (see references in [6], section 2.C).

In previous works, proposed solutions either aim to op-
timize the swarm formation or find the optimal swarm
trajectories in hostile environments. We aim to solve both
problems at the same time.

Our paper introduces a new model, approach, and al-
gorithm for the design of controls of UCAVs in hostile
environments and at risk of destruction. Our contribution is
threefold:
Controlled Markov chain model: Our first contribution is
a model based on a discrete time-controlled Markov chain
with continuous and discrete states for UCAVs swarm control
under attacks. A novelty of our model is that the probability
of destruction of a UCAV depends not only on its position
but also on the positions of other members of the swarm.

Trajectory design: We define a reference trajectory to guide
the whole swarm. The reference trajectory is based on the
optimization of a single trajectory that is further used to
control the trajectories of the members of the swarm. The
optimisation problem is a non-linear and nonconvex one.
Adaptive swarm formation: we derive a general approach
for adaptive optimization of swarm formation where at every
time instant, alive UCAVs will adjust their speed to update
their formation to minimize a given safety criterion of the
swarm.

The remainder of this paper is organized as follows. In the
upcoming section, we present background and related work.
Then, Section II introduces the proposed model, Section III
contains the design of the guide trajectory and our adaptive
control algorithms are derived in section IV. Section V
reports the results of our experiments and Section VI con-
cludes.

A. Related works

There exists a lot of work on the control of a single UAV
evolving in hostile environments. In [5], the authors studied
stealth problems to avoid the destruction of one UCAV from
radar-guided missiles. In a more general case, with static
obstacles and threat zones, a path planning algorithm for one
UAV using Mixed Integer Programming (MILP) is proposed
in [7]. In [3], the problem of online path planning in a
partially unknown environment is addressed with a multi-
step algorithm to overcome static threats such as radars or
obstacles, and dynamic threats unknown to the UCAV. More-
over, optimal closed-loop controls to reach a target under
various constraints have been extensively studied. In [8],
classic control optimization algorithms are used to intercept a
target with the optimal angle. Reinforcement Learning (RL)
algorithms are also particularly efficient in this case as shown
in [9] and [10]. However, all these references do not tackle
the control of multiple agents. One popular UCAV swarm
control problem is cooperative homing. Cooperative homing
aims to synchronize several missiles to track and reach a
target at the same time. In this case, the difficulty is to
overcome the imperfect communication within the swarm
and the imperfect observation of the target, which calls for
multi-agent solutions. Solutions are usually found in the
form of guidance law which can be deduced from traditional
optimisation techniques like in papers [11]- [12] or from
machine learning techniques [13].

Autonomous swarms can be difficult to manage, and the
optimization of swarm formation is of interest. In [14], we
see an example of flocking control with collision avoidance.
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In reference [15], we see such a control applied to escape
attacks on the swarm by avoiding a moving enemy. In
reference [16], we see another interesting example of swarm
control to reach a destination in a hostile environment. This
paper suggests a combination of path planning with several
control laws that will optimize the swarm formation along
the way. However, the goal of this paper the formation is
to keep a robust communication topology and there is no
impact of the formation on the risk of destruction.

When looking to reach multiple targets in a hostile en-
vironment using a UCAV swarm, a well-studied problem
is target allocation. Like in [17] and [18], the proposed
solution is often to solve a path planning problem on each
target for the swarm members and to choose the right target
allocation in a second time. In [19], multi-agent RL is used
to find an optimal policy that solves simultaneously the path
planning and allocation problem. However, in these papers,
the trajectories are computed at an individual level without
taking into account the influence of the swarm.

In brief, it is always assumed that the risk of destruction
for each swarm member is independent and not impacted
by the rest of the swarm. However, this is not the case in
most attack threat scenarios as the presence of other members
can either interfere with the information collected by the
attacker on the trajectory or have an impact on the strategy
of this attacker. An example of such an effect used as an
illustration in this paper is how close neighbors can play on
the radar resolution to obstruct and confuse surface-to-air
guided weapons. In this article, we want to integrate to our
model these swarm interference on the destruction risk, in
order to exploit them in our optimal control.

II. MODEL

In this paper, we control a swarm of n UCAVs in a 2
dimension space and aim to reach a target zone Z ⊂ R2.
The members of the swarm run the risk of being destroyed
throughout their mission.

A. State and action spaces

1) Swarm states: For i ∈ J1, nK and t ∈ N, we denote
by Xi(t) ∈ R2 the position of UCAV i at instant t and
the associated vector of the swarm the vector X(t) =
[Xi(t)]i∈J1,nK.

For i ∈ J1, nK, we also define the random variable Di(t) ∈
{0, 1} which indicates whether or not UCAV i is destroyed at
time t. More precisely, Di(t) = 1 when UCAV i is destroyed
and Di(t) = 0 when it is not. We call destruction state the
vector D(t) = [Di(t)]i∈J1,nK.

2) Swarm actions: For i ∈ J1, nK, we define Vi(t) ∈
[−Vmax, Vmax]

2 the controlled speed of UCAV i at time
t, bounded by Vmax > 0. We call V(t) = [Vi(t)]i∈J1,nK the
action taken by the swarm at time t. We will denote the
overall action space V = [−Vmax, Vmax]

2n.

B. Dynamic

We first study the evolution of the destruction state of the
swarm. For i ∈ J1, nK, we know that if UCAV i is destroyed,

it will stay in this state until the end, i.e. for t ∈ N, PpDi(t+
1) = 1 | Di(t) = 1q = 1. In the case where it is still
functional at time t, we suppose that the probability of being
destroyed between instants t and t+1 is known and depends
on the position and destruction state of the swarm. As such,
for i ∈ J1, nK and states x ∈ R2n and d ∈ {0, 1}n with
di = 0, we introduce the destruction rate function λi : R2 ×
{0, 1} → R+ such that we get survival probability of UCAV
i:

PpDi(t+ 1) = 0 | D(t) = d,X(t) = xq = exp(−λipx,dq)

More precisely, we could write this destruction rate as
λ(xi, di,x−i,d−i) with (xi, di) the destruction and position
of UCAV i and (x−i,d−i) the positions and destruction
states of all other members respectively. We will discuss at
the end of the section why such an assumption is reasonable.

From these expressions, we can deduce for any t ∈ N,
the probability q(d′ | x,d) = PpD(t + 1) = d′ | D(t) =
d,X(t) = xq to transition to destruction state d′ ∈ {0, 1}n
knowing states (x,d) ∈ R2n×{0, 1}n through the equation:

q(d′ | x,d) =∏
i

P
´

Di(t+ 1) = d′i | D(t) = d,X(t) = x
¯

(1)

The speed control is the discrete derivative of the position,
so for t ∈ N, X(t+ 1)−X(t) = V(t).

To summarize, we have the following equations describing
the evolution of the different states at time t ∈ N:{

X(t+ 1) = X(t) +V(t),

D(t+ 1) ∼ q(·|X(t) +V(t),D(t)).

C. Control model

In the framework described below, the control of the
swarm is characterized by the choice of an action V(t) for
each instant t. The choice of this action V(t) = π(x,d)
will be based on the current observed states of the swarm
x ∈ R2n.

For each time-step t ∈ N:
1) We observe the positions X(t) and destruction

state D(t) of the swarm;
2) Once the states are known, we choose the swarm

speed V(t) ∈ R2 according to the chosen control
such that V(t) = π(X(t),D(t));

3) The swarm positions are adapted with X(t+1) =
X(t) +V(t);

4) The next destruction state is sampled with the
destruction rate according to X(t+ 1) and D(t):
D(t+ 1) ∼ q(X(t+ 1),D(t)).

III. TRAJECTORY PLANNING

The first part of our approach aims to find a trajectory that
guides the overall swarm to ensure a minimal safety on the
overall path. In this paper, we choose our guide trajectory
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to be the safest path for a single UCAV to reach the target,
starting from an initial position x0 ∈ R2. This choice will be
explained at the end of the section.

In this problem, we suppose that the UCAV must reach
the target before a horizon tf ∈ N. As such, our path
is defined by a deterministic succession of speed actions
v = {v(t)}t∈J0,tf K and for t > tf , we will consider that the
UCAV stops moving with actions v(t) = 0. As we only have
one UCAV we use the simplified notation for destruction
rate: λ(x) = λ(x, 0, 0, 1).

A. Path evaluation of a single UCAV
For a given initial position X(r)(0) ∈ R2 and a given

succession of chosen speeds V (r) := {V (r)(t)}t∈N, the
evolution of the guide trajectory is given by:

X(r)(t+ 1) = X(r)(t) + V (r)(t).

For t ∈ N we have transition probability:

P(D(t+ 1) = 0 | D(t) = 0) = exp(−λ(X(r)(t+ 1))).

As such, for a given V (r) and t ∈ N, and considering
that P(D(0) = 0) = 1 we can compute the closed-form
expression for the probability to survive at time t:

P(D(t) = 0) =

t∏
t′=1

P(D(t′ + 1) = 0 | D(t′) = 0)

=

t∏
t′=1

exp(−λ(X(r)(t′)).

from the guide trajectory, we can calculate the hitting time
τ(V(r)) ∈ N ∪ {+∞} at which we reach the target, given
by:

τ(V (r)) = sup{t ∈ N ∪ {+∞} | X(r)(t) /∈ Z}. (2)

The deterministic trajectory gives us simple expression of
the metric P(D(τ(V(r)) = 0):

P(D(τ(V (r)) = 0) = exp(−
τ(V (r))∑
t′=0

−1λ(X(r)(t′)))

To determine the guide trajectory, we solve the optimiza-
tion problem:

min
V (r)

exp
´

−
τ(V (r))−1∑

t′=0

λ(X(r)(t′))
¯

+ γd(X(r)(tf ))

subject to:

X(r)(t+ 1) = X(r)(t) + V (r)(t), (3)
V (r)(t) ∈ V, ∀t ∈ N. (4)

with γ > 0. We denote by V ∗ the argmin of the optimization
problem and X∗ the associated trajectory.

To solve this problem, we use a simple projected gradient
algorithm (see section 3.3.2 in [20]). Note that the problem
is in general non-convex and therefore the projected gradient
algorithm will only converge to a local minimum. One can
find the convergence rate in proposition 3.3 p. 213 in [20].

B. Discussion

Choosing the optimal path for a single UCAV as a guide
trajectory is just one of many options, but it has the advantage
of low computational complexity. Regarding the validity
of such a choice, we know that in the studied problem,
the destruction rate is composed of an environment risk
induced by the position of the UCAV to the radars and a
local swarm effect based on the swarm formation and the
position of neighbours. We have chosen to deal with these
two components separately, that is to say, to focus on the
individual position of each member first, and to optimize
their relative position in the formation optimization in a
second time. This is why we chose our guide trajectory to
be the optimal path of a single drone. Although we know
each drone member will not follow the trajectory exactly,
we know that UCAVs in an optimal swarm formation will
be close together as we focus on the saturation effect of the
swarm on the radars.

IV. ADAPTIVE FORMATION ALGORITHMS

A. Overall approach

In this section, we derive algorithms that optimize the
safety of a swarm formation while following a predetermined
trajectory. We first give an overall structure of these algo-
rithms and will detail their differences later.

Let X∗ = {X∗(t)}t∈N be the guide trajectory for our
swarm. At each instant, the associated position X∗(t) in this
guide trajectory helps to constrain the actions of our swarm
to ensure minimal safety for the path of each swarm member.
We also add dynamic constraints by bounding the speed and
acceleration for the taken actions. We will name the con-
straint space G(X(t),D, X∗(t)) ⊂ V and the corresponding
projection operator Γ, so that Γ(V(t),X(t),D, X∗(t)) is the
projection of action V(t) given X,D(t) and X∗(t) at time
t ∈ N.

In the constraint space given by the trajectory, we optimize
the swarm actions to minimize a cost c(X(t),D,V(t))
dependent on the current state and taken action. Here the
cost should be easy to calculate and have a low complexity
in terms of swarm size n so that the optimization can be
done efficiently with a projected gradient descent at each
time step. We have the following overall algorithm:

For each time-step t = 0, . . . , tf − 1:
1) We observe the positions X(t) and destruction

state D(t) of the swarm, as well as the guiding
trajectory position X∗(t);

2) Initialize V0(t) = 0
3) For each iteration l = 0, . . . , lf − 1 until conver-

gence:
a) Calculate c(X(t),D(t),Vl(t))
b) Vl+1(t)← Vl(t)−∇c(X(t),D(t),Vl(t))
c) Vl+1(t)← Γ(Vl+1(t),X(t),D(t), X∗(t))

4) We take optimal action Vlf (t).

5450



Note at every time-step, the previous algorithm is a pro-
jected gradient algorithm on an optimisation problem which
is in general non-convex. Therefore the projected gradient
algorithm will only converge to a local minimum.

B. Suggested approaches

1) Planned leader trajectory with protectors: In this first
approach, we choose member i as the ”leader” of the swarm
that will follow the guide trajectory X∗. The actions of the
rest of the swarm will focus on creating the best formation
possible to protect this leader. We choose as constraint space:

G(X(t),D(t), X∗(t)) = {v ∈ Vn;

∥ṽi −Vi(t− 1)∥22 < amax;∀i ∈ J1, nK;
vi = X∗(t)−Xi(t)},

(5)

and for all states (x,d) and action v, we use the cost
function:

c(x,d,v) = λi(x+ v,d).

If the leader drone is destroyed, we can choose another
leader and continue the algorithm.

To summarize, at every instant t we solve optimization
problem:

minimize
v∈V

λi(X(t) + v,D(t))

subject to ∥vj − Vi(t− 1)∥22 < amax, ∀j ∈ J1, nK,
vi = X∗(t)−Xi(t).

(6)
2) Constraint trajectory: For this case, we want the

distance of the members to the trajectory X∗ to be smaller
than ρ > 0 and to minimize the average number of detected
members. We use the following constraint space and cost.
The constraint space is equal to:

G(X(t),D(t), X∗(t)) = {v ∈ V;
∥vi − Vi(t− 1)∥22 < amax,∀i ∈ J1, nK;

∥Xi(t) + vi −X∗(t)∥22 < ρ,∀i ∈ J1, nK, }

and for state (x,d) and action v, the cost function is given
by:

c(x,d,v) =

n∑
i=1

(1− di)λi(x+ v,d)

To summarize, at every instant t, we solve optimization
problem:

minimize
v∈V

n∑
i=1

λi(X(t) + v,D(t))

subject to ∥vi − Vi(t− 1)∥22 < amax, ∀i ∈ J1, nK,
∥Xi(t) + vi −X∗(t)∥22 < ρ ∀i ∈ J1, nK.

(7)

V. NUMERICAL ANALYSIS

A. Example scenarios

In this section, we analyse the performance and efficiency
of the proposed algorithms on two example scenarios with
different destruction rates. For both scenarios, We have a
number of 5 swarm members that aim to reach a target zone
Z , a closed ball of radius 0.5. They are attacked by ground
air missiles guided by 2 radars. Target, radars, and initial
positions of the swarm are placed as seen in figure 1. Hyper-
parameters of the simulations are available in table V-A.
Please note that they are not realistic and that our scenarios
only have an illustrative purpose.

Scenario I: The first destruction rate model we use is
based on the saturation of a radar with a low resolution
when living swarm members are closed together. We want
the destruction rate value to decrease as the distance to the
radars increases. We also want a model where the presence
of other members has no impact if they are far away from
each other, but decreases the destruction rate to 0 if we
have a high density of swarm members surrounding it. Let
α1, α2, α3 > 0 be constants and k ∈ N the number of
radars at positions {xR

l }l∈J1,kK. We suggest the following
expression for destruction rate of member i ∈ J1, nK for
swarm states x ∈ R2n and d ∈ {0, 1}n:

λi(x,d) =

k∑
l=1

α1

´

1 + α2

∑
j(1− dj)h(xi, xj)

¯−1

∥xi − xR
l ∥

2

2

,(8)

h(xi, xj) =
1

1 + α3∥xi − xj∥22
. (9)

Here the density around UCAV i is modeled by term∑
j(1 − dj)h(xi, xj), which will only be impacted by the

close presence of functional neighbors.
Scenario II: For the second scenario, we want to model the

destruction risk induced by the collision between members.
This is more realistic than the first scenario. We add a
collision term to our previous destruction rate that becomes
high when two members are too close to each other. With
β1, β2 > 0 some constants, we get the expression for this
second destruction rate:

λi(x,d) =

k∑
l=1

α1

´

1 + α2

∑
j(1− dj)h(xi, xj)

¯−1

∥xi − xR
l ∥

2

2

+

n∑
j=1

ˆ

β1

∥xi − xj∥2

˙β2

.

B. Simulations

In both cases, we will study the performances of the
”leader protection” algorithm and the ”swarm constraint”
algorithm.

We will compare them with a naive algorithm consisting
of ignoring the swarm effect and planning the optimal single
UCAV trajectory for each member independently as in Fig.
4. As the collision effect is absent in the case of a single
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Fig. 1. Example simulation for leader protection algorithm Fig. 2. Example simulation for constrained trajectory algorithm

Fig. 3. Example simulation for leader protection algorithm with collision
risk

Fig. 4. Guide trajectories for each member used in naive algorithm

drone, the obtained guide trajectories are the same in both
scenarios and so will be the control of the swarm by the
naive approach.

To analyse the performance of each algorithm, we use
a Monte-Carlo algorithm to estimate the performances of
the three algorithms in the scenario I. We will make 50
simulations for each case. We show in Fig. 1 and in Fig.2
the simulation of the leader protection and the constrained
trajectory respectively in the first scenario. We see that
the swarm quickly reaches the optimal protection formation
which is for everyone to track the leader position. As this
formation does not change when members are destroyed, the
death of two UCAV during the simulation does not disturb

the other members and both algorithms are efficient. For
the naive algorithm, as the initial positions of the swarm
members are close, the guiding trajectories that they follow
keep them near to each other but they are far from an
optimal formation. We can see in table II that our algorithms
perform much better as the optimal formation provides a
better protection effect in this scenario.

The performances in the second scenario have a lower
success rate as the task is more difficult. In Fig. 3, we can
see that when the collision is possible, the optimal swarm
formation is disrupted when the destruction state changes.
However, the swarm can respond quickly and keep a high
protection of the leader.
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TABLE I
HYPER-PARAMETERS USED IN SIMULATIONS

Parameter Value
Scenario parameters

n 5
Vmax 2
Amax 0.5
tf 10
δt 0.33

Destruction rate
α1 4
α2 3
α3 4
β1 0.2
β2 6

Parameter Value
Guide trajectory optim.
learning rate 0.05
epoch nb. 6000

Formation optim.
learning rate 0.05
iteration nb. 2000
ρ 0.05

TABLE II
MONTE-CARLO RESULTS FOR SCENARIO I

Algorithm Success prob.
Naive 0.32
Constrained trajectory 0.64
Leader protection 0.68

VI. CONCLUSION

In this paper, we introduced a new model for controlling
UCAV swarms under threat of destruction. This model can
capture the influence of the swarm formation on the risk
of every member of being destroyed. In this model, the
optimal control to reach a static target is too complex to
compute due to the high number of dimension in the state
and action spaces. To overcome this, we suggest a two-step
algorithm based on a global guide trajectory optimization
before the beginning of the scenario and then on updating
the formation at each time step by solving an optimization
problem. This algorithm gives satisfactory results in the case
of a tight initial formation and has the advantage of a low
computational cost. Further works can include different ways
to guide the swarm like a guide policy.
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