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Abstract— The risk-neutral LQR controller is optimal for
stochastic linear dynamical systems. However, the classical
optimal controller performs inefficiently in the presence of
low-probability yet statistically significant (risky) events. The
present research focuses on infinite-horizon risk-constrained
linear quadratic regulators in a mean-field setting. We address
the risk constraint by bounding the cumulative one-stage
variance of the state penalty of all players. It is shown that
the optimal controller is affine in the state of each player
with an additive term that controls the risk constraint. In
addition, we propose a solution independent of the number
of players. Finally, simulations are presented to verify the
theoretical findings.

I. INTRODUCTION

The performance evaluation of dynamical systems in
the optimal control framework has long been studied in
the literature [1]–[3]. Specifically, in the linear quadratic
regulator (LQR) with noisy inputs, the focus is on
minimizing the expected cumulative time-average quadratic
cost, also known as a risk-neutral setting [4]. However,
such a risk-neutral framework often exhibits unsatisfactory
performance in real-world control systems. For instance,
there exists a rich body of research to address risk in different
areas, including robotics [5], [6], financial systems [7], [8],
power grids [9], [10], and multi-agent networks [12], [13].
Moreover, neglecting the effect of low-probability severe
external events may lead to catastrophic consequences in
dynamic systems, like crashing in a flock of UAVs or an
autonomous vehicle hitting other vehicles and pedestrians.

There has been an increasing interest in the research
community recently in the risk assessment of dynamical
systems by deriving closed-form solutions for a single-agent
setting [11], [16], [17]. Specifically, by solving a set of
Riccati and fixed-point equations, one can obtain an affine
form of the policy to meet the system’s constraints. However,
in the control of a large number of agents, such a method
may not provide sufficient efficacy.

This research considers the problem of exchangeable
agents (players) in a mean-field setting. In such a setting, all
agents have similar dynamics, and the players’ states evolve
as a linear function of their previous states and the overall
average state. Using the results in mean-field theory, we show
that the required Riccati equation (whose size increases with
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the number of players) can be decomposed into two Riccati
equations with the same dimension as the agents’ states.
Furthermore, we propose a primal-dual algorithm to solve
the problem iteratively.

The rest of the paper is organized as follows. In Section II,
we present some preliminaries and formulate the problem.
The solution to the optimization problem is derived in
Section III, followed by simulations to validate the results in
Section IV. Finally, some concluding remarks and directions
for future research are given in Section V.

II. PROBLEM FORMULATION

Throughout the paper, R, R>0 and N represent the sets of
real, positive real and natural numbers, respectively. Given
any n ∈ N, Nn, and In×n denote the finite set {1, . . . , n},
and the n×n identity matrix, respectively. ∥·∥ is the spectral
norm of a matrix, Tr(·) is the trace of a matrix, τmin(·) is
the minimum singular value of a matrix, ρ(·) is the spectral
radius of a matrix, and diag(Λ1,Λ2) is the block diagonal
matrix [Λ1 0; 0 Λ2], and diag(Λ)ki=1 denotes a bloack-
diagonal matrix with k times repetition of the matrix Λ. For
vectors x, y and z, vec(x, y, z) = [x⊺, y⊺, z⊺]⊺ is a column
vector, x1:t denotes the vector (x1, ..., xt) and the operator
⊗ denotes the Kronecker product between two matrices of
appropriate size. Also, the rectified linear function is denoted
by the operator [x]+ = max{0, x}.

A. General Form of the Problem

Given n ∈ N players, let xi
t ∈ Rdx , ui

t ∈ Rdu and
wi

t ∈ Rdx denote, respectively, the state, action and local
noise of player i ∈ Nn at time t ∈ N, where dx, du ∈ N.
Define the mean-state of the players as x̄t :=

1
n

∑n
i=1 x

i
t. The

initial states {x1
0, . . . , x

n
0} are random with finite covariance

matrices. The evolution of the state of any player i ∈ Nn at
time t ∈ N is given by:

xi
t+1 = Axi

t +Bui
t + Āx̄t + B̄ūt + wi

t, (1)

where {wi
t}∞t=0 is an independent and identically distributed

(i.i.d.) zero-mean noise process with a finite covariance
matrix.

The per-step cost of all players at time t ∈ N is given by:

ct = (x̄t)
⊺Q̄x̄t + (ūt)

⊺R̄ūt +
1

n

n∑
i=1

(xi
t)

⊺Qxi
t + (ui

t)
⊺Rui

t,

(2)
where Q, Q̄, R, and R̄ are symmetric matrices with
appropriate dimensions.

Definition 1. Let hi
t = {xi

0, u
i
0, ..., x

i
t−1, u

i
t−1, x

i
t} denote

the history trajectory of player i ∈ Nn. Then, the per-step
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risk factor for the ith player is defined as

dit =
(
(xi

t)
⊺Qxi

t − E
[
(xi

t)
⊺Qxi

t|hi
t

])2

.

Assumption 1. It is assumed hereafter that the pair (A,B)
is stabilizable, the pair (A,Q

1
2 ) is detectable, and matrices

Q and R are positive semi-definite and positive definite,
respectively.

Assumption 2. The local noises w1
t , ..., w

n
t have the same

distribution.

Assumption 3. The noise wi
t for every player i ∈ Nn has a

finite fourth-order moment, i.e., E∥wi
t∥4 < ∞.

In this paper, we consider the infinite-horizon risk-
constrained LQR for a team of cooperative players to
minimize a common cost. Also, it is desired to constrain
the cumulative per-step risk of all players. This leads to the
following constrained optimization problem

minimize J = lim sup
T→∞

1

T
E

[ T∑
t=0

ct

]
(3a)

s.t. (1) and ∀i ∈ Nn, (3b)

Jc =
1

n

n∑
i=1

lim sup
T→∞

1

T
E

[ T∑
t=0

dit

]
≤ Γ, (3c)

where Γ > 0 is a predefined risk tolerance of the user.

Remark 1. From [14], [15], when player i ∈ Nn at any
time t ∈ N observes its local state xi

t and the mean state x̄t,
i.e. {xi

1:t, x̄1:t}, an information structure called deep state
sharing (DSS) is considered.

Definition 2. Let the control input of player i ∈ Nn at time
t be denoted by ui

t = ϕi
t(x

i
1:t, x̄1:t). Define Φi := {ϕi

t}∞t=1

and Φn := {Φ1, . . . ,Φn} as the control strategy of player
i and that of all players, respectively.

We now present the main problem of this article.

Problem 1. Consider the risk-constrained mean-field LQR
problem in (3). Given the system dynamics (1), find an
optimal control strategy Φ∗ such that for any arbitrary
control law Φ, the cost function (3a) under the constraints
(3b) and (3c) satisfies the following inequality

J(Φ∗) ≤ J(Φ).

III. MAIN RESULTS

In this section, we propose a step by step solution to the
optimization problem (3).

A. Problem Reformulation

Define a new transformed state x̃i
t = xi

t − x̄t for player
i ∈ Nn. Define also the mean control input of all players
as ūt := 1

n

∑n
i=1 u

i
t, and the transformed control input of

player i ∈ Nn as ũi
t = ui

t − ūt. It follows from [15] that

x̃i
t+1 = Ax̃i

t +Bũi
t + w̃i

t

x̄t+1 = Ax̄t + Būt + w̄t,
(4)

where A = A + Ā, B = B + B̄, w̄t := 1
n

∑n
i=1 w

i
t and

w̃i
t = wi

t − w̄t.
Next, define the first and second-order moments (mean and

covariance) of each player’s local noise as m1 = E[wi
t] and

M2 = E[(wi
t −mi

1)(w
i
t −mi

1)
⊺], respectively. Furthermore,

let the next two higher order moments of the local noise be
defined as

M3 = E[(wi
t −mi

1)(w
i
t −mi

1)
⊺Q(wi

t −mi
1)],

M4 = E[(wi
t −mi

1)
⊺Q(wi

t −mi
1)− Tr(M2Q)]2.

Also, for future reference, define m1 = E[w̃i
t] and M1 =

E[(w̃i
t − M1)(w̃

i
t − m1)

⊺].

Lemma 1. The risk-constrained optimization problem in (3)
can be reformulated as

minimize J = lim sup
T→∞

1

T
E

[ T∑
t=0

cit

]
s.t. (4) and, ∀i ∈ Nn,

J̃c = Jc̄ +

n∑
i=1

J̃ i
c ≤ Λ

(5)

where

J i
c̃ = lim

T→∞

1

T
E

[ T∑
t=0

4

n
(x̃i

t)
⊺QM2Qx̃i

t

]
,

Jc̄ = lim sup
T→∞

1

T
E

[ T∑
t=0

4(x̄t)
⊺QM2Qx̄t + 4(x̄t)

⊺QM3

]
,

and Λ = Γ−m4 + Tr(M2Q)2.

Proof. Using the results in [16], the constraint in (3c) can
be reformulated as

Jc =
1

n

n∑
i=1

lim sup
T→∞

1

T
E

T∑
t=0

4(xi
t)

⊺QM2Qxi
t + 4(xi

t)
⊺QM3.

The proof follows immediately by rewriting the above
equation as xi

t = x̃i
t + x̄t, and on noting that

∑n
i=1 x̃

i
t =

0. ■

B. Primal-Dual Approach

To solve the constrained optimization problem (5), we use
λ ≥ 0 as the Lagrange multiplier. The Lagrangian can then
be expressed as

L(Φ, λ) = J + λ(J̃c − Λ). (6)

Definition 3. Define matrices Qc = 4
nQM2Q, Qc̄ =

4QM2Q, Rc =
1
nR, Qλ = 1

nQ+λQc, Qλ̄ = Q+ Q̄+λQc̄,
and Sλ = 4λQM3.

Lemma 2. The Lagrangian in (6) can be reformulated as

L(Φ, λ) = L̄+

n∑
i=1

Li,
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where

Li = lim sup
T→∞

1

T
E

[
(x̃i

t)
⊺(Qλ)x̃

i
t + (ũi

t)
⊺ 1

n
Rũi

t

]
,

L̄ = lim sup
T→∞

1

T
E

[
x̄⊺
t (Qλ̄)x̄t + Sλx̄t + ū⊺

t (R+ R̄)ūt

]
.

Proof. The result follows directly from Lemma 1, the
definition of the per-step cost in (2), and on noting that∑n

i=1 x̃
i
t = 0 and

∑n
i=1 ũ

i
t = 0. ■

To solve for the optimal value of the Lagrangian L∗ in
(6), we find the general form of the policies for a constant
multiplier.

Theorem 1. For a fixed multiplier λ, the optimal policy for
each player is affine, such that

ui
t = −θ(λ)xi

t − (θ̄(λ)− θ(λ))x̄t + τ(λ) + τ̄(λ), (7)

in which

θ = −(R+B⊺PB)−1B⊺PA,

θ̄ = −(R+ B⊺PB)−1B⊺PA,

and

τ = −1

2
(R+B⊺PB)−1B⊺(2Pm1 + g),

τ̄ = −1

2
(R+ B⊺PB)−1B⊺(2Pm1 + g),

where P , P , g and g are obtained by solving the following
recursive equations

P = Qλ +A⊺PA−A⊺PB(R+B⊺PB)−1B⊺PA,

P = Qλ̄ +A⊺PA−A⊺PB(R+ B⊺PB)−1B⊺PA,

g⊺ = (2m⊺
1P + g⊺)(A−Bθ),

g⊺ = (2m⊺
1P + g⊺)(A− Bθ̄) + 4λ(QM3)

⊺.

Proof. Define the generalized state and action of all agents
in an augmented form as xt = [vec(x̃i

t)
n
i=1, x̄t] and ut =

[vec(ũi
t)

n
i=1, ūt], respectively. Then, it follows that

xt+1 = Axt +But,

where

A = diag(diag(A)ni=1, Ā), B = diag(diag(B)ni=1, B̄).

Define the finite-horizon Lagrangian as the value function
VT and note that the results in Theorem 2 of [16] imply that
the Lagrangian has a quadratic form as

VT = x⊺
tPxt + gxt + zt.

Instead of solving for the optimal policy in the larger state-
space of xt, from Lemma 2, the value function can also be
decomposed into a set of smaller value functions such that

VT = V̄T +

n∑
i=1

Ṽ i
T .

Since the Lagrangians L̄ and L̃i have complete square
forms, the minimization can be carried out over the
smaller state space of x̃i

t and x̄t. Therefore, by employing

dynamic programming, we have the following two recursive
optimality equations

Ṽ i
T = min

ũt

(
(x̃i

t)
⊺Qλx̃

i
t +

1

n
(ũi

t)
⊺Rũi

t + V̄ i
T+1

)
,

V̄T = min
ūt

(x̄⊺
tQλ̄x̄t + ū⊺

t (R+ R̄)ūt + V̄T+1).

The proof follows by taking the derivative with respect to ũi
t

and ūt and using backward dynamic programming. ■

Remark 2 (Strong Duality). Using the results established
in Theorem 2 of [17] and [18], there exists an optimal
multiplier λ∗ such that the policy

ui
t = −θ(λ∗)xi

t − (θ̄(λ∗)− θ(λ∗))x̄t + τ(λ∗) + τ̄(λ∗)

is the optimal solution to (5).

C. Solution of the Dual Problem with Subgradients

Since there is no optimality gap in the optimization
problem (3), we can alternatively solve the following dual
problem

max
λ≥0

D(λ) = max
λ≥0

min
u

L(u, λ)

which is also concave in λ. Let d denote the subgradient.
Then, from the results in [19], [20], the subgradient of D(λ)
can be expressed as

d = J̃c(θ, θ̄, λ)− Λ.

The following theorem provides the explicit form of the
constraints for deriving the subgradient vector.

Theorem 2. Consider the stabilizing control input given by
(7). Then,

J i
c̃ = Tr

[
Pc̃

(
M2 + (Bτ + m1)(Bτ + m1)

⊺
)]

+ g⊺c̃ (Bτ + m1),

Jc̄ = Tr
[
Pc̄(Bτ̄ +m1)(Bτ̄ +m1)

⊺

]
+ g⊺c̄ (Bτ̄ +m1),

where Pc̄ and Pc are the positive definite solutions of the
following Lyapunov equations

Pc̃ =
4

n
QM2Q+ (A−Bθ)⊺Pc̃(A−Bθ),

Pc̄ = 4QM2Q+ (A− Bθ̄)⊺Pc̄(A− Bθ̄),

where

g⊺c̃ = 2
{
(Bτ + m1)

⊺Pc̃(A−Bθ)
}(

I −A+Bθ
)−1

,

g⊺c̄ = 2
{
(Bτ̄ +m1)

⊺Pc̄(A− Bθ̄) + 2M⊺
3 Q

}(
I −A+ Bθ̄

)−1
.

Proof. Define the relative value functions

V i
c̃ = E

[ ∞∑
t=0

4

n
(x̃i

t)
⊺QM2Qx̃i

t − J i
c̃

]
,

Vc̄ = E

[ ∞∑
t=0

4(x̄t)
⊺QM2Qx̄t + 4(x̄t)

⊺QM3 − Jc̄

]
.

Using backward dynamic programming, it can be shown
that such value functions have a quadratic form, i.e. V i

c̃ =
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(x̃i
t)

⊺Pc̃x̃
i
t+g⊺c̃ x̃

i
t+ zc̃ and V i

c̄ = x̄⊺
t Pc̄x̄t+g⊺c̄ x̄t+ zc̄. Using

the Bellman equation for V i
c̃ one has

V i
c̃ = (x̃i

t)
⊺Pc̃x̃

i
t + g⊺c̃ x̃

i
t + zc̃ =

4

n
(x̃i

t)
⊺QM2Qx̃i

t

− J i
c̃ + E[g⊺c̃

(
(A−Bθ)x̃i

t +Bτ + w̃i
t

)
] + zc̃

+ E[(A−Bθ)x̃i
t +Bτ + w̃i

t]
⊺Pc̃[(A−Bθ)x̃i

t +Bτ + w̃i
t]

= (x̃i
t)

⊺

[
4

n
QM2Q+ (A−Bθ)⊺Pc̃(A−Bθ)

]
(x̃i

t)[
2(Bτ +m1)

⊺Pc̃(A−Bθ) + g⊺c̃ (A−Bθ)

]
(x̃i

t)

− J i
c̃ + zc̃ + g⊺c̃ (Bτ + m1)+

Tr
[
Pc̃(M2 + (Bτ + m1)(M2 + (Bτ + m1)

⊺

]
,

Then, it follows that

J i
c̃ = Tr

[
Pc̃(M2+(Bτ+m1)(M2+(Bτ+m1)

⊺

]
+g⊺c̃ (Bτ+m1).

Using a similar argument, Vc̄ can be written as

Vc̄ = x̄⊺
t Pc̄x̄t + g⊺c̄ x̄t = 4x̄⊺

tQM2Qx̄t + 4M⊺
3 Qx̄t

− Jc̄ + E[g⊺c̄
(
(A− Bθ̄)x̄t + Bτ + w̄t

)
] + zc̄

+ E[(A− Bθ̄)x̄t + Bτ + w̄t]
⊺Pc̄[(A− Bθ̄))x̄t + Bτ + w̄t]

= x̄⊺
t

[
QM2Q+ (A− Bθ̄)⊺Pc̃(A− Bθ̄)

]
x̄t[

2(Bτ +m1)
⊺Pc̃(A− Bθ̄) + 4M⊺

3 Q+ g⊺c̄ (A− Bθ̄)
]
x̄t

+ Tr
[
Pc̄(Bτ +m1)(Bτ +m1)

⊺

]
+ g⊺c̃ (Bτ +m1)− Jc̄ + zc̄,

which yields

Jc̄ = Tr
[
Pc̄(Bτ̄ +m1)(Bτ̄ +m1)

⊺

]
+ g⊺c̄ (Bτ̄ +m1).

■

From Theorem 2, we can compute J̃c = Jc̄+
∑n

i=1 J
i
c̃ and

then find the subgradients accordingly. Algorithm 1 describes
the proposed primal-dual method to solve the optimization
problem in (3).

Algorithm 1 Primal-Dual Algorithm for Risk-Constrained
Mean-field LQR
Input: Initial λ0, step size η

1: Iteration counter k
2: for k = 1, 2, ... do
3: Obtain ut = argmin L(ut,λk) from Theorem 1
4: Compute dk from Theorem 2
5: Update the multiplier λk+1 = [λk + ηk.dk]+
6: end for

Remark 3. Since the policy in (7) is stabilizable, the
subgradients’ and multipliers’ vectors have upper bounds
[11].

Remark 4. Since the subgradients and multipliers are upper

bounded, using an argument analogous to that in Theorem 3
in [17], Algorithm 1 converges to the optimal policy after
sufficient iterations.

IV. SIMULATIONS

We validate the proposed method using numerical
simulations on a low-inertia microgrid (MG) system.
Consider the load frequency problem (LFC) with risk
constraints on the agents’ frequency and mean state. The
MGs exchange information with each other through the mean
state of the system.

Consider microgrids in n areas. Let ∆Ptie,i and ∆fi denote
the power inflow and the frequency deviation corresponding
to the ith microgrid. We assume that this power flow
is proportional to the discrepancy between the frequency
deviation of each area and the mean frequency deviation of
all areas, i.e.

∆Ptie,i =

∫
Ktie,i(∆fi −∆f̄)dt

In addition, the control signal of the ith area is the sum of
two terms given below

∆utot,i = ∆Pf,i +∆PC,i,

where ∆Pf,i = − 1
Ri

∆fi, and ∆PC,i denotes the automatic
generation control (AGC). These two controls specify the
output power of the microgrid at the ith area denoted by
∆PG,i. The other state variable is the area control error
(ACE) denoted by zi := β∆fi +∆Ptie,i with the bias factor
βi = Di +

1
Ri

.
The overall state of each microgrid is

xi = [∆fi,∆PG,i,∆Ptie,i,

∫
zi]

⊺.

The dynamics of the system is

xi
t+1 = Axi

t + Āx̄t +Bui
t,

where

A =


− 1

Tp

Kp

Tp
−Kp

Tp
0

− Kt

RTt
− 1

Tt
0 0

0 0 0 1
β 0 1 0



TABLE I
SIMULATION PARAMETERS FROM [21]

Damping Factor D 16.66 MW/Hz
Speed Droop R 1.2×10−3 Hz/MW

Turbine Static Gain Kt 1 MW/MW
Turbine Time Constant Tt 0.3 s

Area Static Gain Kp 0.06 Hz/MW
Area Time Constant Tp 24 s
Tie-line Coefficient Ktie 850 MW/Hz
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Fig. 1. Constraint violation with iterations for the microgrid problem

Ā =


0 0 0 0
0 0 0 0

Ktie 0 0 0
β 0 0 0



B =


0
0
Kt

Tt

0


We use the parameters in Table I from [21]. Also, we

select Q = diag(800, 80, 80, 4000), R = 5, Λ = 100 and
η = 0.05. Fig. 1 shows the constraint violation, where
it is observed that as the number of iterations grows, the
constraint violation tends to zero. In other words, the control
law resulting from the algorithm minimizes the common
cost function of players while not violating the system’s
constraint.Fig. 2 illustrates the variation of the first state,
i.e. ∆fi, with high-amplitude disturbances at different time
instants. We compare the performance of the proposed
method with that of the risk-neutral control approach. It is
observed that our method results in less state fluctuations
and smaller overshoot in the presence of high-amplitude
disturbances, confirming the results developed in Theorems 1
and 2.

V. CONCLUSIONS

We proposed a computationally-efficient method to tackle
the problem of risk-constrained control of mean-field linear
quadratic systems. The method only requires the solution of
two Riccati equations and is independent of the number of
players. This is a feature that is essential in controlling a
multi-agent system of large size. The application of policy
gradient methods as an alternative approach and considering
individual constraints for the players are two interesting
topics for the extension of the current research.

Fig. 2. Comparison of system state using the risk-neutral controller and
the proposed one
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