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Abstract— Risk sensitivity is a fundamental aspect of biolog-
ical motor control that accounts for both the expectation and
variability of movement cost in the face of uncertainty. However,
most computational models of biological motor control rely on
model-based risk-sensitive optimal control, which requires an
accurate internal representation in the central neural system to
predict the outcomes of motor commands. In reality, the dy-
namics of human-environment interaction is too complex to be
accurately modeled, and noise further complicates system iden-
tification. To address this issue, this paper proposes a novel risk-
sensitive computational mechanism for biological motor control
based on reinforcement learning (RL) and adaptive dynamic
programming (ADP). The proposed ADP-based mechanism
suggests that humans can directly learn an approximation of the
risk-sensitive optimal feedback controller from noisy sensory
data without the need for system identification. Numerical
validation of the proposed mechanism is conducted on the
arm-reaching task under divergent force field. The preliminary
computational results align with the experimental observations
from the past literature of computational neuroscience.

I. INTRODUCTION

The computational mechanism underlying goal-directed
movements has been the subject of extensive study over
the past decades, seeking to explain how and why the
brain selects a particular movement to complete a reaching
task from a large set of possibilities. For instance, reaching
trajectories typically exhibit a roughly straight path with a
bell-shaped velocity profile [1]. Optimal feedback control
is a widely accepted computational model that explains the
behavior of human motor control [2], [3]. It posits that the
central nervous system (CNS) exploits a feedback scheme
to correct task-relevant errors, and that the optimal feedback
control law is computed by minimizing a mixed cost function
dependent on the task error and control command. However,
these proposed optimal control models are risk-neutral and
do not account for the variability of the movement cost.

Risk attitude is a fundamental aspect of human decision-
making, with individuals exhibiting preferences for different
levels of risk. One of the first mathematical models to
quantify the magnitude of risk sensitivity was developed
by Daniel Bernoulli, who hypothesized that humans max-
imize the logarithm of the monetary gain or minimize the
exponential of the cost when making decisions [4]. Building
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on Bernoulli’s work, in [5], Jacobson proposed the risk-
sensitive optimal control framework, which generalizes the
risk-neutral optimal control model by incorporating risk
attitude. Interestingly, the results of the risk-averse optimal
control coincide with that of the mixed H2/H∞ control
and zero-sum differential game [6], [7]. This framework
has been applied to the study of human motor control, and
many studies have shown that human subjects exhibit risk
sensitivity in their motor behaviors [8], [9], [10], [11], [12],
[13].

In the field of human motor control and learning, it is
widely believed that humans first learn an internal model
of the dynamics that simulates the behavior of the motor
system [14]. However, there is currently no experimental or
theoretical evidence to support this view of constructing an
internal model for motor control. Moreover, the complexity
of the environment and the sensory noise make internal
model construction even more challenging. Reinforcement
learning (RL) and adaptive dynamic programming (ADP)
are biologically-inspired learning-based control approaches
that directly minimize the cumulative cost or maximize
the cumulative reward by interacting continuously with the
environment with no need to identify the environment [15],
[16]. Therefore, various computational models have been
developed based on RL and ADP to account for the observed
phenomena of human motor control and learning; see [17],
[18], [19], [20] and related works therein. These models
have demonstrated promising results in explaining the ro-
bustness, adaptivity, and flexibility of human motor control
and learning, and they may provide a viable alternative
to the traditional model-based approach. However, the risk
sensitivity of human subjects is neglected in these RL and
ADP based mechanisms.

In this paper, we propose a new approach to explain how
the CNS learns a risk-sensitive optimal controller in a model-
free manner. We argue that robust RL, specifically robust
value iteration, offers a powerful adaptive optimal control
method that does not require a model of the environment.
First, we demonstrate that value iteration is robust to errors
that may occur during the learning process of solving the
risk-sensitive optimal control problem. We prove that value
iteration can still find a near-optimal solution of the risk-
sensitive optimal control problem as long as the noise at each
learning step is sufficiently small. Building on this robustness
property, we propose a novel learning-based control algo-
rithm to explain the CNS’s learning process for solving the
risk-sensitive optimal control problem in the absence of the
exact model knowledge of human-environment interaction.
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Our numerical simulations show that the proposed learning-
based value iteration algorithm can find the near-optimal risk-
sensitive controller even in the presence of unmeasurable
noises. Furthermore, the numerical simulation results match
the experimental results reported in the past literature of
computational neuroscience [21], [22].

The rest of this paper is organized as follows: Section
II introduces the preliminaries of the risk-sensitive optimal
control, theoretically demonstrates the robustness of value
iteration, and proposes a learning-based value iteration algo-
rithm. In Section III, the numerical simulation of the pro-
posed learning-based value iteration algorithm is conducted
for the arm-reaching task. Finally, some concluding remarks
are given in Section IV.

Notations: Sn denotes the set of n-dimensional, real sym-
metric matrices. In denotes the n-dimensional identity matrix.
∥·∥ denotes the spectral norm of a matrix or Euclidean
norm of a vector. ∥·∥F denotes the Frobenius norm of
a matrix. ∥·∥

∞
denotes the supremum norm of a matrix-

valued function, i.e. ∥∆∥
∞
= sup{∥∆(s)∥F : s ∈ I }, where

I is the domain of ∆(·). For any P ∈ Sn, vecs(P) =
[p1,1,

√
2p1,2, · · · , p2,2,

√
2p2,3, · · · , pn,n]

T .

II. ROBUST REINFORCEMENT LEARNING
A. Risk-Sensitive Optimal Control

Consider the following linear stochastic system character-
izing human movement

dx = (Ax+Bu)d t +
q

∑
k=1

Ckudwk +Ddζ , (1a)

y(t) = Ex(t)+Fu(t), (1b)

where x ∈Rn is the state; u ∈Rm is the control input; y ∈Rr

is the controlled output; wk ∈R (k = 1, · · · ,q) and ζ ∈Rp are
unmeasurable noises that are independent Brownian motion;
A ∈ Rn×n and B ∈ Rn×m are constant matrices associated
with the system dynamics; Ck ∈ Rn×m is the gain matrix of
the control-dependent noise; D ∈ Rn×p is the gain matrix
of the process noise; E ∈ Rr×n and F ∈ Rr×m are constant
matrices satisfying ET F = 0, ET E = Q ≻ 0, and FT F = R ≻
0. The control-dependent noise captures the physiological
observation that the variation of muscle force grows linearly
with its mean [2], [23]. The process noise ζ characterizes
the Gaussian-type noise within the sensory motor system.

Following [5], [8], [9], the risk-sensitive optimal control
problem entails finding a controller u(t) = u(x(t)) for system
(1) without control-dependent noise, that minimizes the
following exponential quadratic cost:

J (x(0),u) = lim
τ→∞

1
τ

2
α

logEexp
(

α

2

∫
τ

0
yT yd t

)
. (2)

Here, α is a constant that describes the intensity of risk-
sensitivity. By taking the Taylor expansion of J (x(0),u)
around α = 0, we have

J (x(0),u) = lim
τ→∞

1
τ

[
E
(∫

τ

0
yT yd t

)
+

α

4
V
(∫

τ

0
yT yd t

)]
+O(α2), (3)

Fig. 1. The risk-sensitive optimal controller is robust to the dynamic
uncertainty with the gain less than or equal to

√
α .

where V stands for the variance. Hence, if α > 0, human
subjects are risk-averse since they minimize the expectation
and variance of the cost. In contrast, α < 0 implies that
human subjects are risk-seeking since they prefer a large
variance of the cost. When α → 0, (2) is equivalent to
the risk-neutral cost studied in [2]. To ensure that the risk-
sensitive optimal control problem is solvable, it is assumed
that α < α∞, where α∞ is the maximum of α such that there
exists a controller under which the cost (2) is finite for all
α < α∞.

According to the risk-sensitive optimal control theory, if
the system matrices are known, as studied in [5], the optimal
controller is

u∗(t) =−K∗x(t), (4)

where K∗ = R−1BT P∗ and P∗ ∈ Sn is the unique positive
definite solution of the generalized algebraic Riccati equation

AT P∗+P∗A+Q−P∗(BR−1BT −αDDT )P∗ = 0. (5)

When α ≥ 0, one important feature of the risk-averse opti-
mal controller is that K∗ is stabilizing in the sense that all the
eigenvalues of A−BK∗ have negative real parts. Furthermore,
as studied in [6] and illustrated in Fig. 1, when system (1a)
is connected with the dynamic uncertainty whose gain is less
than or equal to

√
α (α ≥ 0), the stability of the closed-loop

system is still ensured. Here, dζ

dt is no longer a Gaussian-
type noise as in (1a), but a deterministic disturbance as the
output of the dynamic uncertainty. We conjecture that one of
the reasons why human adopts risk-sensitive optimal control
is to handle the dynamic uncertainty. Dynamic uncertainty
may be caused by the mismatch between the human internal
model and the exact dynamics of the motor system.

B. Robust Value Iteration

Value iteration is fundamental for the development of
learning-based control algorithms. It finds the optimal solu-
tion P∗ by solving the following differential Riccati equation

dP(s)
ds

= AT P(s)+P(s)A+Q−P(s)(BR−1BT −αDDT )P(s)

P(0) = 0. (6)

The following lemma shows that the solution of (6) con-
verges to the optimal solution P∗ as s → ∞.

Lemma 1: The solution of (6) converges to P∗ as s → ∞.
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Proof: See [6, Theorem 9.7] for 0 ≤ α < α∞ and [24,
Remark 21] for α < 0, by considering B̄ = [B,D] and R̄ =
diag(R,α−1Ip).

Equation (6) can be viewed as the exact value iteration
since it assumes that the precise system matrices are attain-
able for solving the differential equation (6). In reality, it is
hard to get such an accurate model, and the update of P(s) is
subject to the errors that may come from the unmeasurable
noises of the system. Considering the influence of the error,
the inexact value iteration is

dP∆(s)
ds

= AT P∆(s)+P∆(s)A+Q

−P∆(s)(BR−1BT −αDDT )P∆(s)+∆(s), P∆(0) = 0.
(7)

where ∆(s) ∈ Sn denotes the error during the learning pro-
cess. Under the influence of the error ∆(s), it is important
to investigate whether value iteration is robust to the error
during the learning process, or in other words, whether (7)
can still converge to a neighbourhood of P∗. The following
theorem provides the solution to this problem.

Theorem 1: For any ε > 0, there exists d(ε)> 0, such that
if ∥∆∥

∞
≤ d(ε), it holds

limsup
s→∞

∥P∆(s)−P∗∥F ≤ ε. (8)

Proof: Let P∗
i (i = 1,2) be the solutions of

AT P∗
i +P∗

i A−P∗
i (BR−1BT −αDDT )P∗

i +diIn +Q = 0, (9)

where d1 = d and d2 =−d. In addition, let P1(0)=P2(0)= 0,
and P1(s) and P2(s) be the solutions of

dPi(s)
ds

= AT Pi(s)+Pi(s)A (10)

−Pi(s)(BR−1BT −αDDT )Pi(s)+diIn +Q, i = 1,2

Since P∗
1 = P∗

2 = P∗ when d = 0, and P∗
1 and P∗

2 are
continuous with respect to d (can be demonstrated by the
celebrated implicit function theorem), there exists d(ε)> 0,

∥P∗
1 −P∗∥F ≤ ε, ∥P∗

2 −P∗∥F ≤ ε. (11)

According to the monotonicity of P∆(s) with respect to
∆(s) [25, Theorem 3.1], if −d(ε)In ⪯ ∆(s) ⪯ d(ε)In for
all s ≥ 0, we have P2(s) ⪯ P∆(s) ⪯ P1(s). In addition, by
Lemma 1, lims→∞ P1(s) = P∗

1 and lims→∞ P2(s) = P∗
2 . Hence,

if ∥∆∥
∞
≤ d(ε), we have

0 ⪯ limsup
s→∞

(P∆(s)−P∗
2 )⪯ P∗

1 −P∗
2 . (12)

Taking the trace of (12) and considering Tr(P) ≤
√

n∥P∥F
yield

limsup
s→∞

Tr(P∆(s)−P∗
2 )≤

√
n∥P∗

1 −P∗
2 ∥F . (13)

Plugging (11) into (13), and considering the trace bound in
[26, Lemma 1] and ∥P∥F ≤ Tr(P), we have

limsup
s→∞

∥P∆(s)−P∗
2 ∥F ≤ 2

√
nε. (14)

Again, using the triangle inequality, it follows from (14) that

limsup
s→∞

∥P∆(s)−P∗∥F ≤ (2
√

n+1)ε. (15)

Hence, the theorem is proved by resetting ε as ε

2
√

n+1 .

C. Learning-Based Value Iteration

The value iteration algorithm in the previous subsection
relies on the system matrices. When system matrices (A,B)
are not attainable, and the noises (∑q

k=1 Ckudwk and Ddζ

in (1)) are not measurable, it is hypothesized that the CNS
utilizes the input-state trajectory data of (1a) to learn the
risk-sensitive optimal controller.

To begin with, along the trajectories of system (1a) under
the exploratory control input u and by Itô’s lemma [27,
Lemma 3.2], for any X ∈ Sn, we have

d(xT Xx) = xT (AT X +XA)xd t +2uT BT Xxd t +2xT XDdζ

+2xT X
q

∑
k=1

Ckudwk +
q

∑
k=1

uTCT
k XCkud t +Tr(DT XD)d t.

(16)

Integrating (16) from t j to t j+1 with t j+1 > t j yields

xT (t j+1)Xx(t j+1)− xT (t j)Xx(t j) =
∫ t j+1

t j

zT (t)θ(X)z(t)d t

+2
∫ t j+1

t j

xT X
q

∑
k=1

Ckudwk +2
∫ t j+1

t j

xT XDdζ , (17)

where

z = [xT ,uT ,1]T , (18)

and

θ(X) =

AT X +XA XB 0n×1
BT X ∑

p
k=1 CT

k XCk 0m×1
01×n 01×m Tr(DT XD)


=

θxx(X) θxu(X) 0n×1
θ T

xu(X) θuu(X) 0m×1
01×n 01×m θζ ζ (X)

 .

(19)

Taking the expectation of (17) and considering xT Xx =
vecs(xxT )T vecs(X), we have

(x̄ j+1 − x̄ j)
T vecs(X) = z̄T

j vecs(θ(X)), (20)

where

x̄ j = E
[
vecs(x(t j)xT (t j))

]
,

z̄ j = E
[∫ t j+1

t j

vecs(z(t)zT (t))d t
]
.

(21)

Repeating (20) for t1 < t2 < · · ·< tM and stacking them into
a vector form, we have

ΦM vecs(θ(X)) = ΨM vecs(X), (22)

where

ΦM = [z̄1, z̄2, · · · , z̄M−1]
T ,

ΨM = [x̄2 − x̄1, x̄3 − x̄2, · · · , x̄M − x̄M−1]
T .

(23)

The following assumption is made on the data-dependent
matrix ΦM .

Assumption 1: ΦM is full column rank.
Remark 1: Assumption 1 is reminiscent of the classical

persistent excitation condition in adaptive control to guaran-
tee the uniqueness of the linear regression solution of (22).
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Similar assumptions can be found in the literature of RL
and ADP [15], [28], [29]. One can fulfill the assumption by
means of adding exploratory noise to the control input u.

Under Assumption 1, θ(X) can be computed by the data-
dependent matrices ΦM and ΨM in the absence of the system
matrices (A,B), that is

vecs(θ(X)) = Φ
†
MΨM vecs(X). (24)

Plugging (24) into (6) with X replaced by P(s) yields

dP(s)
ds

= θxx(P(s))+Q

−θxu(P(s))R−1
θ

T
xu(P(s))+αP(s)DDT P(s)

(25)

It is noticed that in (25), θ(P(s)) is computed by (24) in
a model-free manner and the system matrices (A,B) are no
longer required.

In (21) and (23), it is hard to compute the data-dependent
matrices ΦM and ΨM directly due to the computation of the
expectation. Next, we use in total L trajectories to approx-
imate the expectation. Particularly, L trajectories within the
interval [t1, tM] are collected from system (1) with the same
initial condition and control input. Let the superscript l de-
note the lth input-state trajectory. Then, the approximations
of x̄ j and z̄ j are

ˆ̄x j =
1
L

L

∑
l=1

vecs(xl(t j)xl,T (t j)),

ˆ̄z j =
1
L

L

∑
l=1

∫ t j+1

t j

vecs(zl(t)zl,T (t))d t.

(26)

Consequently, the approximations of ΦM and ΨM in (23) are

Φ̂M,L = [ ˆ̄z1, ˆ̄z2, · · · , ˆ̄zM−1]
T ,

Ψ̂M,L = [ ˆ̄x2 − ˆ̄x1, ˆ̄x3 − ˆ̄x2, · · · , ˆ̄xM − ˆ̄xM−1]
T .

(27)

By the Strong Law of Large Numbers, ΦM and ΨM are well
approximated by Φ̂M,L and Ψ̂M,L when L is sufficiently large.
In other words, the following relation holds almost surely

lim
L→∞

Φ̂M,L = ΦM, lim
L→∞

Ψ̂M,L = ΨM. (28)

For any X ∈ Sn, the approximation of θ(X) in (24) is

vecs(θ̂(X)) = Φ̂
†
M,LΨ̂M,L vecs(X). (29)

The learning-based value iteration is finally represented as

d P̂(s)
ds

= θ̂xx(P̂(s))+Q

− θ̂xu(P̂(s))R−1
θ̂

T
xu(P̂(s))+αP̂(s)DDT P̂(s).

(30)

The detailed algorithm is shown in Algorithm 1. The fol-
lowing main theorem guarantees the convergence of the
algorithm to the near-optimal risk-sensitive optimal control.

Theorem 2: For any ε > 0, there exist s f > 0 and L∗ > 0,
such that for all L > L∗∥∥K̂(s f )−K∗∥∥

F ≤ ε, (31)

where K̂(s f ) = R−1θ̂ T
xu(P̂(s f )).

Algorithm 1 Learning-based Value Iteration
1: Select the parameters M and L.
2: Select the driving input u(t) to explore system (1a) and

collect the input-state data u(t),x(t), t ∈ [t1, tM].
3: Select the terminal time s f of (30).
4: Construct data matrices Φ̂M,L and Ψ̂M,L by (27).
5: Solve (30) on the interval [0,s f ] and get θ̂(P̂(s f )).
6: Get K̂(s f ) = R−1θ̂ T

xu(P̂(s f )).

III. NUMERICAL STUDIES FOR ARM REACHING
MOVEMENT

A. Model of Arm Reaching

The arm-reaching tasks studied in [21], [22] are used to
validate Algorithm 1, where human subjects are asked to
finish the point-to-point movement on a horizontal plane.
The aim is to reproduce the similar numerical results as the
experimental results reported in [21], [22]. We consider the
two-joint arm movement [30], of which the dynamics is

d p = vd t, (32a)
mdv = (a−bv+ f )d t +D1 dζ1, (32b)
τ da = (u−a)d t +C1udw1 +C2udw2 +D2 dζ2, (32c)

where p = [px, py]
T , v = [vx,vy]

T , and a = [ax,ay]
T are the

two-dimensional position, velocity, and actuator state of the
hand. f = [ fx, fy]

T is the external force generated from
the given force fields. u = [ux,uy]

T is the motor command.
w1,w2 ∈ R and ζ1,ζ2 ∈ R2 are standard Brownian motions.
The parameters m, τ and b are the same as [19].

C1 =

[
c1 0
c2 0

]
, C2 =

[
0 c2
0 c1

]
, (33)

where c1 = 0.0075 and c2 = 0.0025. D1 = 0.13I2 and D2 =
0.005I2. The state-space representation of system (32) is

dx = (Ax+G f +Bu)d t +B(C1udw1 +C2udw2)+Ddζ ,
(34)

where A, B, D and G can be computed from (32). α = 0.25.
The weighting matrices of the cost (2) are the same as [19].
The external force f in (32) is generated from two force
fields, including null field (NF) and divergent force field (DF)
[22], [31]. For NF, f = 0. The DF is

f =
[

β 0
0 0

][
px
0

]
,

where β = 230.77 is sufficiently large such that the system
with the external force is unstable.

B. Sensorimotor Control in Divergent Force Field

In the experiments of [22], [31], the human subject pre-
forms a series of point-to-point arm-reaching movements in
a horizontal plane. The starting point of the hand is 0.25m
away from the target point which is marked as a red dot
in Fig. 2. For each trial, it is considered successful if the
human subject reaches the target within 0.6 ± 0.1s. The
human subject first practices in NF until she can successfully
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complete the task several times. Then, DF is activated
without notifying the human subject. The subject practices
in DF until successfully reaching the target. After a short
break, the subject is asked to perform several arm-reaching
tasks in NF. These trials after the break are called after
effects to confirm that the human subject has adapted to the
force field. In the experiments of [22], [31], when initially
exposed to DF, the hand trajectory is drastically distorted.
After practicing several trials in DF, the human subject can
reach the target along a relatively straight line.

First, Algorithm 1 is implemented for the dynamic model
(34) in NF. After practicing enough trials and collecting the
input-state data, Algorithm 1 starts to find the approximate
risk-sensitive optimal control gain. Next, the scenario where
the human subject is initially exposed to DF is simulated.
Since the human subject is not notified when DF is activated,
the human subject still uses the same control gain as in NF.
After several trials, the human subject realizes that the force
field is changed and starts to learn a new control gain in DF.

The trajectories, velocity and endpoint force profiles are
shown in Figures 2 and 3. After practicing in NF, the
subject can successfully reach the target along a relatively
straight line. However, when the force field is changed to DF
without notifying the subject, the hand of the subject touches
the border of the horizontal plane, and unstable behavior
happens. After the learning process by Algorithm 1 in DF,
the human subject can successfully reach the target along a
relatively straight line again. Finally, the after-effect trials are
conducted. Compared with the initial trials in NF, the after-
effect trajectories are straighter. This is because the human
subject still uses the control gain learned in DF with a higher
stiffness along the x-direction.

In Fig. 4, we see that the learned control gain K̂(s)
approaches the optimal control gain as the iteration proceeds.
Finally, the relative error of

∥∥K̂DF(s f )−K∗
DF

∥∥
F/∥K∗

DF∥F is
0.8%, which indicates that the human subject can still find a
near-optimal control gain even using noisy sensory data. By
comparing the numerical results in Figures 2 and 3 with the
experimental results in [22], [31], one can find that Algorithm
1 can reproduce the human motor control and learning in
reality. Consequently, the risk-sensitive computational mech-
anism in Algorithm 1 provides a new perspective to explain
human motor control and learning.

IV. CONCLUSION

In this paper, based on robust RL, we have proposed a
novel computational mechanism to model the risk-sensitive
optimality of human behavior in motor learning, control
and adaptation. The proposed computational mechanism
suggests that the CNS can still find an approximation of
the risk-sensitive optimal controller, despite the errors in the
learning process caused by unmeasurable sensory noise. We
have conducted the simulation of the point-to-point reaching
movements using the proposed computational mechanism.
The simulated results of the hand trajectory, velocity, and
acceleration profiles are compatible with the experimental
results reported in [22], [31]. Hence, we argue that the CNS

Fig. 2. Simulated movement trajectory generated by Algorithm 1. A.
Five movement trajectories of the subject after learning in the NF. B. Five
movement trajectories of the subject when it is initially exposed to the
DF without notification. C. Five movement trajectories of the subject after
learning in the DF. D. Five after-effect trials in the DF.

may apply the same mechanism as the robust RL to find the
risk-sensitive optimal controller directly from data.
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