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Abstract—We consider a cooperative Linear Quadratic Gaus-
sian (LQG) control system, in which an individual user owns
a local plant whose control inputs are provided by a server.
In the cooperation, the user takes the plant states as private
information and desires to maximize the privacy preservation
while ensuring that the server still provides a certain level of
control performance. Moreover, the user requires a privacy
scheme that is used locally and is unknown to the server, so
that it can create a deviation in the server’s knowledge of
the states from the true value. To achieve this, we propose
two privacy schemes localized at the user side, which inject
perturbations in the innovation data sent to the server. For both
schemes, firstly, we analyze the privacy preservation quality
provided by the scheme and the performance loss in the LQG
control caused by it. Secondly, based on the trade-off between
them, we propose an optimization problem. Thirdly, we propose
a recovery procedure by which the control performance is
recovered to the optimal one, i.e., the privacy preservation
is achieved without any performance loss in control. Finally,
simulations are provided, and we give discussions on the two
schemes based on the simulation results.

Index Terms—cooperative networked control system, LQG
control, privacy preservation, cooperation privacy.

I. INTRODUCTION

Networked control is the current trend for industrial au-
tomation and has ever-increasing applications in a wide range
of areas, such as smart grids, process control, automated high-
way systems, and unmanned aerial vehicles [1]. Its flexibility
allows the system to be run cooperatively by multiple parties,
and we name this type of system as a cooperative networked
control system [2]. A user-server system is an example of
a cooperative networked control system, where one party
called the user employs another party called the server to
provide service to work cooperatively, as shown in Fig. 1.
The cooperative networked control systems are expected to
have broader applications in the real world, as cooperation is
a natural trend of social development.

Fig. 1. The user-server system.
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However, while this cooperative manner brings efficiency
advantages, it may also bring the privacy issue. To achieve
cooperation, the user is required to share local information
that might be considered private to the server. Meanwhile, the
server may also have to be taken as “semi-honest”: although
it completes the task of cooperation honestly, it may also
attempt to infer private information and transfer it to the third
parties, causing a risk of privacy breach for the user [3].
Consequently, in order to use the cooperative systems safely,
we need to address this privacy issue.

A. Related Studies

The study of privacy was initially considered in the
database field [4] and was further studied by the control
field [5], [6]. Several different research frameworks on pri-
vacy were proposed based on different understandings of
privacy. The three main frameworks are differential privacy,
information-theoretic approach, and homomorphic encryp-
tion.

Le Ny et al. [5] first applied the concept of differential pri-
vacy to the field of control. Subsequently, increasing studies
on differential privacy are emerging in the field of control
[7]–[10]. Wang et al. [9] studied the initial-value privacy
problems of linear dynamical systems based on differential
privacy. They defined differential initial-value privacy and
intrinsic initial-value privacy as metrics of privacy risk.
Hawkins and Hale [10] studied the privacy preservation
problem in a multi-agent system, where agents add privacy
noise to their states before sharing them with other agents.

The information-theoretic approach is the second important
framework for privacy preservation, where the quantities
based on the information entropy are utilized as privacy
metrics. In the existing studies, directional information [11],
Kullback-Leibler divergence [12], mutual information [13],
etc., have been applied as privacy metrics, and associated
problems are further considered.

Unlike the previous two frameworks, where the privacy is
usually protected by adding noise, homomorphic encryption
provides a completely different methodology. By finding
suitable encryption operators or algorithms that ensure the
homomorphic nature of the data before and after the en-
cryption operation, it enables the server to do the required
computation while keeping unknown with the true data.
Fully homomorphic encryption [14], partially homomorphic
encryption [15], labeled homomorphic encryption [16], and
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other homomorphic encryption methods [17] have also been
investigated.

Among these three privacy frameworks mentioned above,
privacy research in the control field often considers the trade-
off between privacy and performance. In this paper, we not
only make a parallel analysis but also consider how to achieve
good privacy preservation without performance loss.

B. The Study of This Paper
We study the privacy preservation problem in a cooperative

LQG control system, in which a user employs a server to
calculate the optimal LQG control input for the local plant.
We aim at designing localized privacy schemes to protect the
privacy of the user, which is not open to the server.

The study in this paper is novel. Firstly, different from
most existing studies, which mainly considered open-loop
systems [5], [18], we consider a closed-loop system, which is
more difficult to analyze. Secondly, in most existing studies,
the proposed privacy scheme is set at the server [19], [20],
which does not completely alleviate the user’s concern about
privacy. The proposed privacy schemes in this paper are
designed only at the user side, which better meets the user’s
requirements.

The main contributions of this paper are summarized as
follows.

1) We propose two novel localized privacy-preserving
schemes in a cooperative LQG control system, which
makes the server’s knowledge of the privacy informa-
tion deviate from the true one.

2) For the proposed schemes, we analyze the perfor-
mances of privacy preservation and LQG control.
Based on the trade-off between them, we further pro-
pose an optimization problem.

3) We propose a procedure to recover the perfect optimal
control inputs for the user based on the ones provided
by the server, under which the privacy is preserved
without performance loss in control.

The remainder of the paper is organized as follows. Section
II proposes the localized design for privacy preservation in
the considered system. Section III and Section IV present
the main results. Section V presents a simulation example.
At last, Section VI concludes the paper.

Notations: Z+ is the set of non-negative integers and k ∈ Z+

is the time index. R is the set of real numbers. Rn is the n-
dimensional Euclidean space. Sn+ (and Sn++) is the set of
n by n positive semi-definite matrices (and positive definite
matrices); when X ∈ Sn+ (and Sn++), it is written as X ≥ 0
(and X > 0). X ≥ Y if X − Y ∈ Sn+. E(·) is the
expectation of a random variable and E(·|·) is the conditional
expectation. tr(·) is the trace of a matrix.

II. PROBLEM SETUP

In this section, we present the cooperation model for the
user and the server in a basic cooperative LQG control
system. Within this basic structure, we propose a localized
privacy scheme. Finally, we present the feasible problems to
study.

A. Basic Structure of the Cooperative LQG Control System

Fig. 2. The basic structure of the cooperative LQG control system.

The basic structure of the LQG cooperative control system
consists of a user and a server, which is illustrated in Fig.
2. The user owns a plant whose states are monitored by a
sensor, which is a linear time-invariant system. The system
state and measurement equations are given as follows:

xk+1 = Axk +Buk + wk, (1)
yk = Cxk + vk, (2)

where xk ∈ Rn is the state of the plant, uk ∈ Rm is the
control input at each time k, and yk ∈ Rm is the measurement
of xk at time k. The user cannot directly obtain the actual
state xk of the system and only yk is accessible. The
random variables wk and vk are the mutually independent
Gaussian white noise with distribution N (0, Q)(Q ≥ 0) and
N (0, R)(R > 0), respectively. We also assume that (A,

√
Q)

is stabilizable and (C,A) is detectable.
Because of computational capability limitations, the user

employs a remote server to compute the optimal LQG control
inputs for its plant. The considered quadratic objective for the
LQG control is denoted as O0:T and is defined as follows:

O0:T ≜ E[

T−1∑
k=0

(x′
kWkxk + u′

kUuk) + x′
TWTxT ], (3)

where W and U are weight matrices satisfying W ≥ 0 and
U > 0.

To achieve the cooperation, the user needs to provide the
server with the following information:

• system matrices A,B, and C;
• noise convariances Q and R;
• weight matrices W and U ;
• the initial condition N (x0,Σ0).

The server works as an estimator and a controller for the
user. It first computes the a prior and a posterior estimates
x̂k|k−1 and x̂k|k of the plant’s state xk, which are defined as
follows:

x̂k|k−1 ≜ E[xk|yk−1],

x̂k|k ≜ E[xk|yk].
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Meanwhile, let Pk|k−1 and Pk|k be the estimation error
covariance matrices associated with x̂k|k−1 and x̂k|k, respec-
tively:

Pk|k−1 ≜ E[(xk − x̂k|k−1)(xk − x̂k|k−1)
′|yk−1],

Pk|k ≜ E[(xk − x̂k|k)(xk − x̂k|k)
′|yk].

The estimates and the associated error covariances are com-
puted by Kalman filtering. The server first does the time
update as follows:

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1, (4)
Pk|k−1 = APk−1|k−1A

′ +Q, (5)

and it sends x̂k|k−1 back to the user. The user provides the
innovation ξk to the server, which is defined as

ξk = yk − Cx̂k|k−1. (6)

The server then proceeds the measurement update as follows:

Kk = Pk|k−1C
′(CPk|k−1C

′ +R)−1. (7)
x̂k|k = x̂k|k−1 +Kkξk, (8)
Pk|k = (I −KkC)Pk|k−1. (9)

Based on x̂k|k, the server computes the optimal LQG control
input uk:

ST = W, (10)
Sk = A′Sk+1A+W

−A′Sk+1B(B′Sk+1B + U)−1B′Sk+1A, (11)
Lk = −(B′Sk+1B + U)−1B′Sk+1A, (12)
uk = Lkx̂k|k, (13)

and sends it back to the user.

B. Local Design of Privacy Scheme

In a basic cooperative LQG control system, the server
obtains accurate estimates of the plant’s states. However, the
user takes the state information as its privacy and wants the
server’s estimate to deviate from the true one. Therefore, to
meet the privacy preservation needs, the user intends to use
a localized privacy scheme that is unknown to the server to
distort the server’s estimate.

Fig. 3. The structure under the privacy scheme.

We propose a localized privacy scheme in which the user
adds a perturbation to the innovation ξk before sending it to
the server, where the obtained signal is denoted as ϕk:

ϕk = ξk + δk. (14)

The noise δk is i.i.d. and follows the Gaussian distribution
N (0,∆). This scheme is supposed to make the server’s
estimate deviate from the true state estimate of the plant.

C. Problem Statement

The proposed privacy scheme increases the privacy preser-
vation quality for the user, which is denoted as Qprivacy.
Meanwhile, it causes a loss in the LQG performance, which
is denoted as QLoss. In this paper, we consider to work on
the following problems:

1) The analysis of the privacy preservation quality
Qprivacy provided by the privacy scheme and the
control performance loss QLoss caused by it.

2) The optimization problem based on the trade-off be-
tween the privacy preservation quality and performance
loss:

max tr(Qprivacy)

s.t. QLoss ≤ α,

where α > 0 represents a given performance level.
3) The recovery of the perfect optimal control u∗

k for the
user, which ensures the privacy preservation quality
without performance loss.

III. PERFORMANCE ANALYSIS OF PRIVACY AND LQG
CONTROL

In this section, we first define the metrics for privacy
preservation and the control performance loss, based on
which we analyze the proposed localized privacy scheme.
We propose an optimization problem to analyze the trade-off
between privacy preservation quality and performance loss.
Furthermore, we recover the perfect optimal control for the
user.

We use the superscript pub to represent associated quan-
tities of the server under the privacy scheme. The user
computes the innovation as

ξdrtk = yk − Cx̂pub
k|k−1, (15)

where the superscript drt indicates that the user computes
the innovation directly based on the prior estimate x̂pub

k|k−1
sent back by the server. The localized privacy scheme is

ϕdrt
k = ξdrtk + δk. (16)

Consequently, the estimation process on the server is changed
to

x̂pub
k|k−1 = Ax̂pub

k−1|k−1 +Bupub
k−1, (17)

P pub
k|k−1 = AP pub

k−1|k−1A
′ +Q, (18)

Kpub
k = P pub

k|k−1C
′(CP pub

k|k−1C
′ +R)−1, (19)

x̂pub
k|k = x̂pub

k|k−1 +Kpub
k ϕdrt

k , (20)

P pub
k|k = (I −Kpub

k C)P pub
k|k−1. (21)
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The control input is calculated as follows:

upub
k = Lkx̂

pub
k|k . (22)

Remark 1. It can be seen from (10)-(12) that the calculation
of Lk is only related to the parameters of the plant. Therefore,
regardless of the presence of a privacy scheme, the control
gain Lk at time k remains the same.

Remark 2. Similarly to Remark 1, parameters P pub
k|k−1, Kpub

k ,
and P pub

k|k are identical to Pk|k−1, Kk, and Pk|k according to
(18)(19)(21). In the following discussion, we use the notation
without superscripts to represent them.

A. Privacy Analysis

We define the estimate based on the measurement yk
without privacy scheme as the optimal estimate and represent
it with the superscript opt. As the plant is determined by upub

k ,
it holds that

x̂opt
k|k−1 = Ax̂opt

k−1|k−1 +Bupub
k−1,

x̂opt
k|k = x̂opt

k|k−1 +Kk(yk − Cx̂opt
k|k−1).

The added noise makes the server’s posterior estimate
x̂pub
k|k deviate from the optimal estimate x̂opt

k|k. Naturally, this
deviation caused by the privacy scheme can be utilized to
measure the quality of privacy preservation at each time k
and is denoted as Qk

privacy:

Qk
privacy ≜ E[(x̂pub

k|k − x̂opt
k|k)(x̂

pub
k|k − x̂opt

k|k)
′]. (23)

We also take the average of Qk
privacy as the privacy metric

over the duration of time T , denoted as follows:

Qprivacy ≜
1

T

T−1∑
k=0

Qk
privacy. (24)

Theorem 1. Under the localized privacy scheme ϕdrt
k =

ξdrtk + δk, it holds that

Q0
privacy = 0,

Qk
privacy = (I −KkC)AQk−1

privacyA
′(I −KkC)′

+Kk∆K ′
k. (25)

Proof. In appendix. ■

B. LQG Control Performance Analysis

Firstly, we define the estimate without any privacy scheme,
i.e., under the basic cooperative LQG control system, as the
perfect optimal estimate, and denote it by the superscript ∗.
In this case, the user’s plant is determined by u∗

k and it holds
that

x̂∗
k|k−1 = Ax̂∗

k−1|k−1 +Bu∗
k−1,

x̂∗
k|k = x̂∗

k|k−1 +Kk(yk − Cx̂∗
k|k−1).

Remark 3. It should be noted that there is a difference
between the optimal estimate and the perfect optimal esti-
mate, where the optimal estimate is based on the innovation
sequence that has been corrupted by noise, while the perfect
optimal estimate is based on the optimal innovation sequence.

Secondly, the quadratic objective in the basic cooperative
LQG control system is given as

O∗
0:T = E[(x∗

0)
′S0x

∗
0] +

T−1∑
k=0

tr(Sk+1Q) +

T−1∑
k=0

tr(ΦkPk),

where

Φk = A′Sk+1B(B′Sk+1B + U)−1B′Sk+1A.

Under the proposed privacy scheme, the performance loss
is defined as QLoss:

QLoss = O0:T −O∗
0:T . (26)

Theorem 2. Under the localized privacy scheme ϕdrt
k =

ξdrtk + δk, the LQG performance is

O0:T = E(x′
0S0x0) +

T−1∑
k=0

tr(Sk+1Q) +

T−1∑
k=0

tr(ΦkPk)

+

T−1∑
k=0

tr(ΦkQk
privacy),

Φk = A′Sk+1B(B′Sk+1B + U)−1B′Sk+1A.

Proof. In appendix. ■

Since x0 = x∗
0, the performance loss QLoss caused by the

privacy scheme is

QLoss =

T−1∑
k=0

tr(ΦkQk
privacy). (27)

C. Optimization Problem

Based on the above analysis, the following optimization
problem is proposed to study the trade-off between pri-
vacy preservation and control performance: to maximize the
privacy metric Qprivacy when the performance loss QLoss

is required to be under a given level α. The problem is
formulated as follows.

Problem 1.

max
Σδ,Qk

privacy

tr(Qprivacy)

s.t. QLoss ≤ α,

Qk
privacy = (I−KkC)AQk−1

privacyA
′(I−KkC)′

+KkΣδK
′
k,

k = 1, 2, ..., T.

The problem is a linear programming one and can be
solved efficiently by numerical methods.

D. Recovery of Perfect Optimal Control

The implementation of the privacy scheme leads to that
the actual state sequence X = {x0, x1, ..., xk} of the plant
is different from the perfect optimal state sequence X ∗ =
{x∗

0, x
∗
1, ..., x

∗
k}. In this subsection, we propose a method that

is able to recover the perfect optimal control input u∗
k for the

user, such that the state sequence X is identical to X ∗, i.e.,
the performance loss in LQG control is eliminated.

3489



To achieve the recovery of the perfect optimal control u∗
k,

the user requires the server to further provide the Kalman gain
Kpub

k and the LQG control gain Lk. In addition, we require
the user to have certain computation and storage capability.

Theorem 3. Under the localized privacy scheme ϕdrt
k =

ξdrtk +δk, the perfect optimal control u∗
k can be recovered as

follows:

d∗k|k−1 = (A+BLk−1)d
∗
k−1|k−1,

d∗k|k = (I −Kpub
k C)d∗k|k−1 +Kpub

k δk,

u∗
k = upub

k − Lkd
∗
k|k,

where the recursion starts with d∗0|0 = 0.

Proof. Let

d∗k|k−1 = x̂pub
k|k−1 − x̂∗

k|k−1,

d∗k|k = x̂pub
k|k − x̂∗

k|k.

Since initial condition follows x̂pub
0|0 = x̂∗

0|0 = x0, we have
d∗0|0 = 0. By the straightforward calculation, we have

d∗k|k−1 = (Ax̂pub
k−1|k−1 +Bupub

k−1)− (Ax̂∗
k−1|k−1 +Bu∗

k−1)

= (A+BLk−1)d
∗
k−1|k−1,

d∗k|k = [x̂pub
k|k−1 +Kk(zk − Cx̂pub

k|k−1)]

−[x̂∗
k|k−1 +Kk(yk − Cx̂∗

k|k−1)]

= (I −Kpub
k C)d∗k|k−1 +Kpub

k δk.

Therefore, we can recover the perfect optimal control input
as follows:

u∗
k = Lkx̂

∗
k|k

= Lk(x̂
pub
k|k − d∗k|k)

= upub
k − Lkd

∗
k|k.

■

The procedures included in Theorem 3 are presented as
follows.

Procedure 1 Recovery of the Perfect Optimal Control u∗
k

Initial condition: d∗0|0 = 0.
The server:
1) send Kpub

k back to the user after the estimation process is
completed;
2) send Lk and upub

k back to the user after the control input
calculation is completed;
The user:
3) recover the perfect optimal control input for the user based
on Theorem 3.

By Procedure 1, we have QLoss = 0, since the control in-
put is recovered to the perfect optimal scenario. Accordingly,
the privacy performance is given as follows.

Theorem 4. Under the localized privacy scheme ϕdrt
k =

ξdrtk +δk with the control recovery method stated in Theorem
3, it holds that

Q0
privacy = 0,

Qk
privacy = (I −KkC)(A+BLk−1)Qk−1

privacy

(A+BLk−1)
′(I −KkC)′ +Kk∆K ′

k. (28)

Proof. According to Theorem 3, we can further have

d∗k|k = (I −KkC)(A+BLk−1)d
∗
k−1|k−1.

In the scenario of recovering the perfect optimal control
input, it holds that x̂opt

k|k = x̂∗
k|k. The remaining proof is

similar to that of Theorem 1. ■

IV. PRIVACY PRESERVATION BY PERTURBATION ON
TRUE INNOVATION

In this section, we propose another localized privacy
scheme that adds perturbation to the true innovation of the
system. This scheme requires the user to recover the optimal
prior estimate x̂opt

k|k−1, which needs the server to provide
additional information Kpub

k . The structure is shown in Fig.
4.

Fig. 4. The structure under privacy scheme ϕindrt
k = ξindrt

k + δk .

A. Privacy Scheme

We use the superscript indrt to denote innovation in the
true innovation scheme, which means that the innovation is
calculated indirectly. In this case, the innovation is

ξindrtk = yk − Cx̂opt
k|k−1,

and the privacy scheme is designed as

ϕindrt
k = ξindrtk + δk.

The estimation procedure at the server is updated to

x̂pub
k|k−1 = Ax̂pub

k−1|k−1 +Bupub
k−1,

x̂pub
k|k = x̂pub

k|k−1 +Kkϕ
indrt
k .

The recovery procedure of x̂opt
k|k at the user is presented as

follows.
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Theorem 5. Under the localized privacy scheme ϕindrt
k =

ξindrtk + δk, the optimal prior estimate x̂opt
k|k−1 can be recov-

ered as follows:

doptk|k−1 = Adoptk−1|k−1,

doptk|k = doptk|k−1 +Kpub
k δk,

x̂opt
k|k−1 = x̂pub

k|k−1 − doptk|k−1,

where the recursion starts with dopt0|0 = 0.

Proof. Let

doptk|k−1 = x̂pub
k|k−1 − x̂opt

k|k−1,

doptk|k = x̂pub
k|k − x̂opt

k|k.

Since the initial condition follows x̂pub
0|0 = x̂opt

0|0 = x0, we
have dopt0|0 = 0. By the straightforward calculation, we have

doptk|k−1 = (Ax̂pub
k−1|k−1 +Bupub

k−1)− (Ax̂opt
k−1|k−1 +Bupub

k−1)

= Adoptk−1|k−1,

doptk|k = [x̂pub
k|k−1 +Kk(zk − Cx̂pub

k|k−1)]

−[x̂opt
k|k−1 +Kk(yk − Cx̂opt

k|k−1)]

= doptk|k−1 +Kpub
k δk.

Therefore, we can recover the optimal prior estimate.

x̂opt
k|k−1 = x̂pub

k|k−1 − doptk|k−1.

■

In this scenario, the privacy performance is given as
follows.

Theorem 6. Under the localized privacy scheme ϕindrt
k =

ξindrtk + δk, it holds that

Q0
privacy = 0,

Qk
privacy = AQk−1

privacyA
′ +Kk∆K ′

k. (29)

Proof. The proof is similar to that of Theorem 1. ■

The analysis on the LQG control performance is identical
to Theorem 2. Hence, the performance loss QLoss can be
further obtained:

QLoss =

T−1∑
k=0

tr(ΦkQk
privacy). (30)

In order to balance privacy preservation quality and per-
formance loss, we have the following optimization problem:

Problem 2.

max
Σδ,Qk

privacy

tr(Qprivacy)

s.t. QLoss ≤ α,

Qk
privacy = AQk−1

privacyA
′ +Kk∆K ′

k,

k = 1, 2, ..., T.

It is also a linear programming problem and can be solved
efficiently by numerical methods.

B. Perfect Optimal Control Recovery

Similarly, we can also recover the perfect optimal control
input for the user in this privacy scheme.

Corollary 1. Under the localized privacy scheme ϕindrt
k =

ξindrtk + δk with the recovery of the perfect optimal control,
the optimal prior estimate x̂opt

k|k−1 can be recovered as
follows:

doptk|k−1 = (A+BLk−1)d
opt
k−1|k−1,

doptk|k = doptk|k−1 +Kpub
k δk,

x̂opt
k|k−1 = x̂pub

k|k−1 − doptk|k−1.

Proof. The proof is similar to that of Theorem 5. ■

Corollary 2. Under the localized privacy scheme ϕindrt
k =

ξindrtk + δk, the perfect optimal control u∗
k can be recovered

as follows:

d∗k|k−1 = (A+BLk−1)d
∗
k−1|k−1,

d∗k|k = d∗k|k−1 +Kpub
k δk,

u∗
k = upub

k − Lkd
∗
k|k.

Proof. The proof is similar to that of Theorem 3. ■

The procedures included in Corollary 1 and 2 are presented
as follows.

Procedure 2 Recovery of the Optimal Prior Estimate x̂opt
k|k−1

and the Perfect Optimal Control u∗
k

Initial condition: dopt0|0 = 0, d∗0|0 = 0.
The server:
1) send x̂pub

k|k−1, Kpub
k , and Lk back to the user after the prior

estimation process is completed;
The user:
2) recover the optimal prior estimate based on Corollary 1;
3) calculate the true innovation, add the perturbation, and
provide it to the server;
The server:
4) send upub

k back to the user after the control input calcula-
tion is completed;
The user:
5) recover the perfect optimal control input for the user based
on Corollary 2.

By Procedure 2, we have QLoss = 0, since the control in-
put is recovered to the perfect optimal scenario. Accordingly,
the privacy performance is given as follows.

Theorem 7. Under the localized privacy scheme ϕindrt
k =

ξindrtk + δk with the control recovery method stated in
Corollary 2, it holds that

Q0
privacy = 0,

Qk
privacy = (A+BLk−1)Qk−1

privacy(A+BLk−1)
′

+Kk∆Kk. (31)

Proof. The proof is similar to that of Theorem 1. ■
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V. SIMULATION

We consider a higher-order cooperative system, whose
parameters are given as follows:

A =

 0.2 0.4 0.2
0.1 0.3 0.2
0.1 0.4 0.3

 , B =

 2.0 0.9
9.1 2.1
1.3 8.1

 ,

C =

[
2.0 1.6 1.2
2.0 2.0 1.1

]
, R =

[
7.0 1.8
1.8 0.8

]
,

Q =

 1.9 0.9 0.4
0.9 2.8 2.0
0.4 2.0 2.4

 , W =

 1.8 2.0 0.5
2.0 9.8 0.9
0.5 0.9 5.4

 ,

U =

[
4.5 1.0
1.0 8.8

]
.

We analyze the privacy metric Qprivacy and the perfor-
mance loss QLoss under varying noise covariances ∆ within
time horizon T = 3000, which are presented in Fig. 5 and
Fig. 6.

Fig. 5. The impact of different noise covariance ∆ on Qprivacy .

Fig. 6. The impact of different noise covariances ∆ on QLoss.

According to these two figures, we can draw the following
conclusions:

1) Without recovering the perfect optimal control u∗
k, the

privacy preservation quality Qprivacy and the perfor-
mance loss QLoss are directly proportional. As the

privacy preservation quality improves, the performance
loss also increases.

2) With recovering the perfect optimal control u∗
k, our

scheme ensures the performance loss QLoss = 0 and
provides an acceptable level of privacy preservation.

3) The covariance ∆ of the added noise is also di-
rectly proportional to the privacy preservation quality
Qprivacy and the performance loss QLoss. Greater
covariance of the added noise leads to better privacy
preservation quality and greater performance loss.

Conclusions 1) and 2) show that we can add noise arbitrar-
ily, and the larger the noise is, the better the effect of privacy
preservation will be, since it always holds that QLoss = 0.

Comparing these four schemes, we can see that the two
schemes of recovering perfect optimal control are the best.
They have similar privacy preservation quality and no perfor-
mance loss. For the two schemes without recovering perfect
optimal control, the scheme ϕindrt

k = ξindrtk + δk provides
better privacy preservation quality but also brings larger
performance loss. Which of these two schemes is better
depends on how much performance loss the user can accept
and how good the privacy preservation quality the user needs.

VI. CONCLUSION

This paper proposes two novel privacy schemes used in
a cooperative LQG control system. We evaluate the privacy
preservation quality and performance loss of both schemes
based on the proposed metrics. We then formulate an opti-
mization problem that considers the trade-off between privacy
preservation quality and performance loss. Furthermore, we
propose a procedure to recover the perfect optimal control,
such that the user’s plant has no performance loss in LQG
control.

APPENDIX

A. Proof of Theorem 1

From (20), (23), we have

x̂pub
k|k − x̂opt

k|k = (x̂pub
k|k−1 +Kkϕ

drt
k )

−[x̂opt
k|k−1 +Kk(yk − Cx̂opt

k|k−1)]

= [x̂pub
k|k−1 +Kk(yk − Cx̂pub

k|k−1 + δk)]

−[x̂opt
k|k−1 +Kk(yk − Cx̂opt

k|k−1)]

= (I −KkC)(x̂pub
k|k−1 − x̂opt

k|k−1) +Kkδk

= (I −KkC)[(Ax̂pub
k−1|k−1 +Bupub

k−1)

−(Ax̂opt
k|k−1 −Bupub

k−1)] +Kkδk

= (I −KkC)A(x̂pub
k−1|k−1 − x̂opt

k−1|k−1) +Kkδk.

According to the definition (23), we then calculate
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Qk
privacy=E[(x̂pub

k|k − x̂opt
k|k)(x̂

pub
k|k − x̂opt

k|k)
′]

=E{[(I −KkC)A(x̂pub
k−1|k−1 − x̂opt

k−1|k−1) +Kkδk]

[(I −KkC)A(x̂pub
k−1|k−1 − x̂opt

k−1|k−1) +Kkδk]
′}

=(I −KkC)AE[(x̂pub
k−1|k−1 − x̂opt

k−1|k−1)(x̂
pub
k−1|k−1

−x̂opt
k−1|k−1)

′]A′(I −KkC)′ +KkE[δkδ
′
k]K

′
k

+(I −KkC)AE[(x̂pub
k−1|k−1 − x̂opt

k−1|k−1)]E[δ′k]K
′
k

+KkE[δk]E[(x̂pub
k−1|k−1 − x̂opt

k−1|k−1)
′]A′(I −KkC)′

=(I −KkC)AE[(x̂pub
k−1|k−1 − x̂opt

k−1|k−1)(x̂
pub
k−1|k−1

−x̂opt
k−1|k−1)

′]A′(I −KkC)′ +KkE[δkδ
′
k]K

′
k

=(I −KkC)AQk−1
privacyA

′(I −KkC)′ +Kk∆K ′
k.

The fourth equality holds because the noise δk and the state
estimate are independent, and E[δk] = 0.

B. Proof of Theorem 2
In this scenario, the states are unaccessible. When we

calculate the LQG objective O0:T from backward, the ex-
pectation should depend on the information set defined as
follows:

Ik = {y1, y2, ..., yk, u0, u1, ..., uk−1}.
First, we have

Ok:T = E(x′
kWxk + u′

kUuk +Ok+1:T | Ik).
We calculate the objective in a backward manner.

OT :T = E(x′
TWxT | IT ).

OT−1:T = E(x′
T−1WxT−1 + u′

T−1UuT−1 +OT :T | IT−1)

= E(x′
T−1ST−1xT−1 | IT−1) + tr(STQ)

+tr
[
A′WB(U +B′WB)−1B′WAPT−1|T−1

]
+tr

[
L′
T−1(U +B′STB)LT−1QT−1

privacy

]
.

Let

rT = 0,

rT−1 = rT + tr(STQ),

tT = 0,

tT−1 = tT + tr
[
A′WB(U +B′WB)−1B′WAPT−1|T−1

]
,

ϕT = 0,

ϕT−1 = ϕT + tr
[
L′
T−1(U +B′STB)LT−1QT−1

privacy

]
.

Then we have

OT−1:T = E(x′
T−1ST−1xT−1| IT−1) + rT−1 + tT−1 + ϕT−1.

Repeating the same reverse iterative calculation, finally we
get

O0:T = E(x′
0S0x0) + r0 + t0 + ϕ0

= E(x′
0S0x0) +

T−1∑
k=0

tr(Sk+1Q) +

T−1∑
k=0

tr(ΦkPk)

+

T−1∑
k=0

tr
(
ΦkQk

privacy

)
.

The proof is similar to that of Theorem 3 in the literature
[2], and detailed proof can be found.
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