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Abstract— In this paper, a two-link flexible manipulator n-
dimensional model is developed using the assumed modes
method. Based on this model, the manipulator dynamics are
segregated into two subsystems by the two-time scale de-
composition method of singular perturbation. Subsequently, a
contraction-based control theory and a backstepping control
of composite controller are investigated for the desired chaotic
trajectory tracking along with tip deflection vibration suppres-
sion. In the two subsystems, the slow subsystem is involved
in the modelling of the joint angles, and the fast subsystem
is for corrected flexible modes of vibration suppression. In
order to guarantee strict stability, Lyapunov’s stability is
realized for closed-loop system uniform boundedness. Thus, by
choosing the control parameters appropriately, the system states
converge to a neighborhood of asymptotic stability. Eventually,
extensive validation by comparative simulations of the Quanser
model of the two-link flexible manipulator is carried out to
demonstrate and indicate the effectiveness of the proposed
composite controller in terms of faster tip deflection vibration
suppression and better trajectory tracking.

Index Terms— Flexible manipulators, assumed modes
method, singular perturbation, contraction based theory.

I. INTRODUCTION

Over the past few years, the direct application object
of multibody system flexible dynamic analysis and control
theory has been the flexible manipulators. As a result of its
evident physical model and easily validated qualities, it has
become an important issue in the areas of robotics, aerospace,
aviation, medicines, education, etc. The flexible manipulator
is comprised of complicated dynamics and the research area
content is segregated into two directions, modelling of the
flexible manipulators and controller design. The area of the
control problems indicate the type of the controller designed
for flexible manipulators. The angular and tip position de-
flection given by [1], angular and tip trajectory tracking
problem discussed in [2], the regulation problem discussed
in [3] are the commonly used control problems of two-link
flexible manipulator (TLFM). The most challenging and the
accepted control problem is based on the trajectory tracking
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[2]. The goal of this study is to design a reliable control
algorithm for the two-time scale subsystem employing a
novel trajectory tracking problem for TLFM with quick tip
deflection suppression using singular perturbation (SP).
The accurate operation of the flexible manipulator (FM)
depends on the method of modelling and the control design.
The methods of modelling in flexible manipulator are mainly
the lumped parameter method (LPM) [4], assumed modes
method (AMM) [2] and finite element method (FEM) [5].
AMM is the most commonly used modelling method for
the flexible manipulators. The singular perturbation (SP)
technique [6] is mostly used in coordination with AMM for
the designing of controllers. In this techniques, separation
decomposition method of two-time scale division is done
for the segregation of two subsystems. One subsystem is
segregated as slow dynamics from the original dynamics
and the other as the fast dynamics. To achieve desired
performances, separate controllers are designed for separate
control inputs. Many methods of modeling are enlisted for
the fast suppression of the link’s deflection [7]. Hence,
singular perturbation method is most appropriate in links
deflection suppression as it entails controllers that can be
designed in terms of slow and flexible dynamics. In the
literature, some control techniques for slow subsystem have
been reported like PID feedback control [8], PID ANN [7],
fuzzy non-singular TSMC [9], inverse dynamic based control
[10] of trajectory tracking. Similarly, PID [8], LQR based
state feedback control [11], Lyapunov based control [10] are
designed for the tip deflection suppression of fast subsystem.
In this paper, a desired trajectory chaotic signal generated
from a chaotic system is utilized as the desired trajectory. For
achieving the expected trajectory, a contraction theory based
controller is used for the slow subsystem. A good trajectory
tracking performance is observed with this controller with
less steady state error. The technique of backstepping control
is designed for fast tip deflection suppression. The error
dynamics are also given with respect to the tip deflection and
desired trajectory. With this, using theory of Lyapunov sta-
bility, it guarantees the stability of the dynamics in terms of
convergence of the error dynamics. The design of Genesio-
Tesi chaotic trajectory tracking with contraction based theory
along with backstepping controller for the subsystems is
hardly seen in the literature for controlling a TLFM.
The rest of the paper is organised as follows. The dynamics
of the two-link flexible manipulator is presented in Section
II, Section III describes the slow and fast subsystems via
singular perturbation. Section IV describes the composite
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control design of the slow and the fast subsystems. Section
V is presented with the results and discussion and Section
VI is the conclusion of the paper.

II. TWO-LINK FLEXIBLE MANIPULATOR DYNAMICS

Fig. 1. An experimental set-up of TLFM (two-link flexible manipulator)
[12].

Fig. 2. A schematic representation of the two-link flexible manipulator.

Fig. 2 shows the TLFM system of the Quanser model.
The shaft of the motor drives each link inorder to track
the position desired for link. The AMM model is used for
modelling the dynamic model of TLFM. (Xj , Yj) represents
the inertial frame of the TLFM. (xj , yj) is the moving frame
rigid body which is associated with jth link. τj expresses the
actuated torque at jth joint, ξj is the deflection of the flexible
jth link. The payload mtip is attached at the link-2 tip end
and θj is the jth link joint angle with j = 1, 2.
This method comprises the vibration modes of the dynamics
of the flexible link aside from the natural modes. This

flexibility of the link is decomposed for a set of combinations
of the eigenfunction modes Φjk(xj) categorised as mode
shapes. δjk(t) is the time dependent generalized coordinate
as described in (1). The finite dimensional equation of the
flexibility of the links ξj(xj , t) can be expressed using
assumed modes method [2] as

ξj(xj , t) =

rj∑
k=0

Φjk(xj)δjk(t) (1)

where at xj(0 ≤ xj ≤ lj), the deflection of the jth link
is considered as ξj(xj , t). lj as the jth link length, rj as
the modes number describing the link’s deflection. Also,
Φjk(xj) is the mode function of the kth mode shape for
the link j bounded to k = [1, 2].
Using the approach of Lagrangian, the dynamics of the links
are modelled through the energy systems incorporating the
AMM modelling. The flexible dynamics is described as given
in Lagrangian [2] denoted as below:

d

dt

δ((ek)i − (ep)i)

δqi
− δ((ek)i − (ep)i)

δqi
= τi (2)

The time harmonic function is given in (3) for the solution
(2)

δjk(t) = ejωjkt (3)

and the space eigenfunction as

Φjk(xj) = C1,jk sin(βjkxj) + C2,jk cos(βjkxj)

+C3,jk sinh(βjkxj) + C4,jk sinh(βjkxj)
(4)

where in (3), ωjk is the kth natural frequency in angular
form of link k given for the eigenvalue problem, βjk =
ω2
jkρi/(EI)i.

Using the mass boundary conditions of the clamped assump-
tions for the AMM, the clamped boundary conditions using
the constants in (4), is given as

C3,jk = −C1,jk,

C4,jk = −C2,jk

(5)

While the mass condition lead to the homogeneous system
in the form

[F (βjk)]

(
C1,jk

C2,jk

)
= 0 (6)

This frequency equation can be solved by setting the determi-
nate to zero in (4) and (5). Using (2), the dynamic equation
of motion for TLFM with AMM is given as

M(θj , δj)

(
θ̈j
δ̈j

)
+

(
h1(θj , δj , θ̇j , δ̇j)

h2(θj , δj , θ̇j , δ̇j)

)
+K

(
0
δj

)
+D

(
θ̇j
δ̇j

)
=

(
τj
0

) (7)

where M is the positive definite mass inertia matrix, θj is the
joint angle of the jth link, δj is the mode of the jth link, h,
K, D and τ as the centrifugal and coriolis force, the stiffness
matrix, the damping and the input torque, respectively.
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III. SLOW AND FAST SUBSYSTEM VIA SINGULAR
PERTURBATION TECHNIQUE

Considering each modes of the flexible links in terms of
first and second modes, the manipulator is segregated in two
subsystems, a slow and fast dynamics. The dynamic model
using two-time scale decomposition method of singular is
written as

M

(
θ̈

δ̈

)
+

(
hr +D1θ̇

hf +D2δ̇ +Kδ

)
=

(
I
0

)
τi (8)

This can be further simplified as{
θ̈ = −P11(D1θ̇ + hr − P12(hf +D2δ̇ +Kδ) + P11τi

δ̈ = −P21(D1θ̇ + hr − P22(hf +D2δ̇ +Kδ) + P21τi
(9)

where θi = [θ1 θ2]
T ϵR2: the angular joints, δi =

[δi1 δi2]
T ϵR4: the flexible modes of the ith links for i =

1, 2, hr(θ, δ)ϵR
2 and hf (θ, δ)ϵR

4: are the terms for gravity,
Coriolis and the Centripetal forces, D1ϵR

2x2 and D2ϵR
4x4:

are the damping matrices, KϵR4x4: the stiffness matrix,
τi = [τ1 τ2]

T ϵR2: the vectors of the input torque. Also, since
M(θ, δ)ϵR6x6 is an inertia matrix of positive definiteness, the
inverse exist and can be defined as

P =

(
P11 P12

P21 P22

)
=

(
Mr MT

rf

Mrf Mf

)T

(10)

where P11ϵR
2x2, P12ϵR

2x4, P21ϵR
4x2, P22ϵR

4x4. Hence,

Mr = [P11 − P12P
−1
22 P21]

−1 (11)

Defining a new variable δ = ϵx and Kt = ϵK, where ϵ, the
parameter of singular perturbation and defined as 1

ϵ as the
smallest stiffness of K, Km = minimum(K).
Using the new variable, (9) can be rewritten as

θ̈ = −P11(D1θ̇+hr−P12(hf +D2ϵẋ+Ktx)+P11τi (12)

ϵδ̈ = −P21(D1θ̇+hr−P22(hf+D2ϵδ̇+Ktx)+P21τi (13)

The control input of the composite structure can be formu-
lated as

τi = τs + τf (14)

where τs, τf are the slow subsystem and the fast subsystem
control input, respectively. Considering the property of two-
time scale division with ϵ = 0 in (13), the slow subsystem
for x can be obtained as

x̄ = −K−1
t P̄−1

22 (P̄21D̄1
˙̄θ + P̄21h̄1 + P̄22h̄2 − P̄21τs) (15)

where the over-bar term denotes the element for the evalua-
tion with ϵ = 0. Substituting (15) in the expression (12), we
get

¨̄θ = (P̄11 − P̄12P̄
−1
22 P̄21)(−D̄1

˙̄θ − h̄r + τs) (16)

The above (16) is the TLFM rigid body dynamics for the
singularly perturbed system. With (11), the dynamics of slow
subsystem is:

¨̄θ = M̄−1
r (−D̄1

˙̄θ − h̄r + τs) (17)

Using two-time scale decomposition method, fast subsystem
dynamics can be obtained by defining τ = t√

ϵ
as the fast

time scale and with the boundary correction as{
q1 = x− x̄

q2 =
√
ϵẋ

(18)

Hence, by using the boundary layer correction term (18), the
system can be written as

dq1
dτ = q2
dq2
dτ = −P21(D1θ̇ + hr)

−P22(D2ϵẋ+ hf +Ksx) + P21τi

(19)

Using time-scale decomposition method, the slow variables
can be neglected or treat as the frozen parameter. Hence,
pertaining to dx̄

dτ =
√
ϵẋ = 0.

Substituting (15) in (19) and setting ϵ = 0, yields

dq2
dτ

= −P22Ksq1 + P̄21τf (20)

The fast subsystem dynamics is given in the form as

q̇ = Qfq +Rfτf (21)

where q = [q1 q2]
T ϵR8 and

Qf =

(
0 1

−P̄22Kt 0

)
;Rf =

(
0
P̄21

)
(22)

It corresponds to the linear system of slow parameters of θ̄.

IV. COMPOSITE CONTROL DESIGN

In this section, the composite control input is presented.
τi = τs + τf is the slow and fast control input combination
for the flexible manipulator (8). Separate slow and fast
subsystems controllers are designed.

A. Contraction Theory Tracking Control for Slow Subsystem

Considering the dynamics given in (17)

¨̄θ = (M̄r)
−1(−h̄r − D̄1

˙̄θ + τs) (23)

Considering y1 = θ̄ and y2 = ˙̄θ, (23) can be written as{
ẏ1 = y2

ẏ2 = (M̄r)
−1(−h̄r − D̄1y2 + τs)

(24)

The slow subsystem contraction based tracking control de-
sign is discussed in two levels:
Level 1: The main aim for this level is for tracking the
trajectory (yd) desired for the slow dynamics. The trajectory
generated from the Genesio-Tesi system [13] is used for
tracking the flexible manipulator as given in (45). Hence, the
error in the trajectory is defined as e1s = y1−yd. Considering
the derivative of the angular joint as

u1 = y2d = −a1se1s + ẏd (25)

where yd is the differentiable desired trajectory and a1s >
0. The difference error in the derivative joint variable and
desired variable is given as:

x1s = y2 − u1 = y2 + a1se1s − ẏd (26)
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Then, the dynamics is given as

ẋ1s = ẏ2+a1ė1s = (M̄r)
−1(−h̄r−D̄1y2+τs)+a1ė1s (27)

Level 2: By considering the input control of the slow
dynamics (28), the control inputs will be obtained to stabilize
e1s and x1s in this step.

τs = M̄r(h̄r + D̄1y2 − a1sė1s − a2sx1 − e1s) (28)

Hence, the dynamics of x1s is given as

ẋ1s = −a2sx1 − e1s (29)

Thus, the error dynamics in the transform domain is given
as {

ė1s = x1 − a1se1

ẋ1s = −a2sx1 − e1s
(30)

Theorem 1: A section of state space is regarded as a con-
tracting zone for the equation (8) of a dynamical system if the
differential δ(x,t)

δx of that region is uniformly negative definite
(UND) [13]. By UND, with γ > 0,∀(x, t) > 0and δ(x,t)

δx ≤
−γI , there exist Js = 1

2 [
δ(x,t)
δx + ( δ(x,t)δx )T ] ≤ −γI < 0.

By using the Theorem 1, for all the condition of contraction
theory, the overall transformed dynamics is given in (30).
Hence, this is for the uniformly negative definite closed loop
system. Hence, Jacobian matrix of (30) is given as

J1s =

(
a1s 1
−1 a2s

)
(31)

The symmetric part of (31) is obtained as

−Js = −1

2
(J1s + JT

1s) =

(
a1s 0
0 a2s

)
(32)

The closed loop error of the Jacobian matrix as in (31) and
(32), is UND when a1s and a2s are chosen as a quantity
which is positive. Using the property of Theorem 1, the
angular joint follows (45) and gives the stable closed loop
system dynamics.

B. Backstepping Control for Fast Subsystem

This stage, comprises the fast subsystem backstepping
controller design for the quick tip deflection. From (30) and
(31), considering z = q, (21) is rewritten as{

ż1 = z2

ż2 = −Qfz1 +Rfτf
(33)

where Qf = P̄22Kt and Rf = P̄21 The links error deflection
are obtained as {

e1f = zd − z1

e2f = vd − z2
(34)

Here, zd is the desired link deflection and twice differentiable
for the flexible manipulator and vd is the virtual control term.
The error dynamics is obtained as{

ė1f = żd − ż1

ė2f = v̇d +Qfz1 −Rfτf
(35)

Using Theorem 2, backstepping control law is calculated and
designed for the suppression of tip deflection.
Theorem 2: Supposing that the control law obtained by
backstepping in (36) with the error dynamics (35) controls
the fast dynamics of the subsystem given in (33), hence, the
system follows the desired tip deflection zd.

τf = (Rf )
−1(v̇d +Qfz1 + a1be2f ) (36)

Proof: A backstepping controller is designed in this step for
(33).
Level 1: Taking the candidate of Lyapunov function as

v1f =
1

2
e21f (37)

The derivative of (37) using (35) is

v̇1f

{
= e1f (żd + e2f − vd)

= e1f żd − e1fvd + e1f22f
(38)

The virtual control variable vd selected for the derivative of
Lyapunov function (38) for the negative definiteness is given
as

vd = żd +A1e1f + e2f (39)

where A1 is the positive definite matrix.
The derivative of (38) can be given as

v̇1f = −A1e
2
1f (40)

From (40), it is noted as a negative definite function. Hence,
z1 in (33), the first variable is stabilized.
Level 2: In this step, the next state variable for backstepping
control is designed for its stability. Also, τf , the fast subsys-
tem control input is designed.
Taking the Lyapunov function candidate as

v2 = v1 +
1

2
e22f (41)

Using the second error variable (38), the time derivative (40)
is

v̇2f = −A1e
2
1f + e2f (v̇d +Qfz1 −Rfτf ) (42)

It can be seen from (42) that, if the input torque τf is selected
as (43), it is negative definite.

τf = (Rf )
−1(v̇d +Qfz1 +A2e2f ) (43)

Using the input torque of τf defined in (43), the derivative
in (42) can be rewritten as

v̇2 = −(A1e
2
1f +A2e

2
2f ) (44)

Hence, from the theory of Lyapunov stability, (44) is a
negative definite function such that it requires the condition
of A1, A2 as the positive constant matrices. Also, e1f and
e2f , the error variables are asymptotically stable. Thus, the
proper selection of the parameters of A1 and A2 leads to the
fast suppression and quick stabilization of the error variables
leading it to zero. Fig. 3 depicts the composite control
schematic diagram of the singular perturbation TLFM.
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Fig. 3. Composite control model using singular perturbation for a TLFM.

V. RESULTS AND DISCUSSION

Using fourth-order Runge-kutta method with a step time
h = 10−3 in MATLAB, the dynamics of the robotic
manipulator is solved. The dynamics of the desired trajectory
[13] is given as below:

ẏ1 = y2

ẏ2 = y3

ẏ3 = p3y3 + p2y2 + p1y1 + y21

(45)

where p1 = −1.1, p2 = −1.2, p3 = −0.50 are the param-
eters and y1, y2, y3 are the states of the chaotic behaviour
of the system (45). Hence, with the desired trajectories:
yd = y1, ẏd = y2 and ÿd = y3. The initial condition of
y(0) = [0.1, 0.1, 0.002]T are chosen for the chaotic system
(45).
The chaotic system (45) time responses and chaotic attractors
are shown in Fig. 4 and Fig. 5. Table I gives the physical
parameters involved in the model design of Quanser two-link
FM (8) for n-dimensional discretized system from [12].

Also, [θ(0)] = [0.1, 0.1]T ; [δ(0)] = [0.0, 0.0, 0.0, 0.0]T are
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Fig. 4. Time response of the desired trajectories for the dynamics (45) of
slow subsystem.
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Fig. 5. The chaotic attractor of (45): (i) on y1 − y2 plane and (ii) on
y2 − y3 plane.

TABLE I
THE PHYSICAL PARAMETERS OF THE QUANSER TWO-LINK FLEXIBLE

MANIPULATORS [12].

Parameters Values Units
Mass of link-1, M1 0.15268 kg
Mass of link-2, M2 0.0535 kg

Mass of hub joint-2, mh2 0.689 kg
Tip payload mass, Mtip 0.145 kg

Length of link-1, L1 0.202 m
Length of link-2, L2 0.2018 m

Link-1 armature resistance, Rm1 11.5 Ω
Link-2 armature resistance, Rm2 2.32 Ω

At load, link-1, Ih 0.099 kgm2

equivalent moment of inertia
At load, link-2, Ih2 0.092 kgm2

equivalent moment of inertia
Link-1 moment of inertia, Il1 0.002035 kgm2

Link-2 moment of inertia, Il2 0.0007204 kgm2

Link-1 Viscous, Beq1 4 Nms/rad
coefficient of damping
Link-2 Viscous, Beq2 1.5 Nms/rad
coefficient of damping

Link-1 gear box efficiency, ηg1 0.85
Link-2 gear box efficiency, ηg2 0.9
Link-1, Link-2 motor efficiency, 0.85

ηm1, ηm2

Link-1 back e.m.f. constants, Km1 0.119 V/rad
Link-2 back e.m.f. constants, Km2 0.0234 V/rad

Link-1 gear ratio, Kg1 100
Link-2 gear ratio, Kg2 50

Link-1 motor torque constants, Kt1 0.119 Nm/A
Link-2 motor torque constants, Kt2 0.0234 Nm/A
Link-1 stiffness constants, Kstiff1 22 Nm/rad
Link-2 stiffness constants, Kstiff2 2.5 Nm/rad
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the initial conditions of terms in (8). The gains used in
contraction based theory for a1s and a2s are given as:

a1s =

(
3 0
0 3

)
; a2s =

(
9 0
0 9

)
Gains values used in the backstepping controller are given as:
A1 = 6I4X4, A2 = 9I4X4. The gains are chosen such that
it achieves good tracking performances with lesser control
efforts.

The chaotic trajectory tracking θi of the TLFM with
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Fig. 6. Trajectory tracking of chaotic path for link-1 and link-2 of the
TLFM (45).
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tip payload mass of 0.145 kg for a control torque of τsi in
the links 1 and 2 are shown in Fig. 6. The trajectory of the
designed controller tracks the Genesio-Tesi chaotic desired
signal and converge at 0.65 s for link-1 and 0.6 s for link-2.
The tip deflection first and second modes of link 1, 2 are
depicted in Fig. 7. In comparison, the vibration is larger in
the first mode of the first link, but it decreases to 10−3 in the
first mode of the second link. In comparison to the link-1 first
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Fig. 11. Chaotic path trajectory tracking comparison for link-1 and link-2
using CT+BS and with LMI-SMC-SFC [14].
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Fig. 14. Comparison of the control inputs for both the links using CT+BS
and LMI-SMC-SFC [14].

mode and link-2 first mode, the modes of vibration in the
second mode reduces significantly owing to the combination
of the modes mapping to the total tip deflection, as shown
in Fig. 8. As this is a chaotic trajectory, the vibration settles
down but within a range of −0.02 mm to +0.02 mm in the
trajectory tracking of tip deflection vibration suppression.
At the initiation of the second link motion, vibration is
because of the first link’s inertia. It is also shown that the
link modes are suppressed within a minimal zero value. The
slow subsystem control inputs τs1 and τ2 of the link-1 and
link-2 are given in Fig. 9. It is seen that the control torque of
slow subsystem is in the range of +8.323 Nm to −6.461 Nm
for the link-1 and +18.223 Nm to −22.813 Nm for link-2.
Fig. 10 shows the fast control torque of the subsystem in
the range of +4.065 Nm to −3.055 Nm for link-1, +4.110
Nm to −5.150 Nm for the tip deflection suppression. The
combination of slow and fast subsystem controllers gives the
final control inputs.
A comparative simulation is done with the existing controller
in the literature [14]. Fig. 11 shows the trajectory tracking
of both the controllers along with the chaotic trajectory. In
our designed composite controller of contraction theory and
backstepping (CT+BS), the trajectory converged at 0.654 s
for link-1 and 0.6 s for link-2. In comparison with the
existing controller (LMI-SMC-SFC) of [14], the trajectory
converged at 2.85 s for link-1 and 3s for link-2. The
comparative joint trajectory tracking error of link-1 and link-
2 of both the controllers are shown in Fig. 12. As seen from
Figs. 11 and 12, links 1, 2 reach the desired position faster
in the designed controller than the existing controller. So,
each of the links of the flexible manipulator is able to track
the desired trajectory in the form of Genesio-Tesi chaotic
trajectory.
The comparative analysis of the tip deflection of designed
and the existing controllers of links 1, 2 are shown in Fig. 13.
In this figure, the tip deflection vibrates higher in magnitude
for the designed controller with a value of +0.02 mm for the
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link-1 and +1X10−3 mm for link-2 in the first and the second
overshoot which then comparatively reduces to almost zero.
Apparently, Fig. 14 shows the comparison of the composite
control inputs in terms of the combination of slow and fast
subsystems for link-1 and link-2. Fig. 14 depicts that the
designed composite controller torque range is −6.461 Nm
to +8.323 Nm for link-1 and −22.813 Nm to +18.223 Nm.
While the existing controller has the control torque range of
−57.140 Nm to +16.784 Nm for the link-1 and −52.822
Nm to +2.94664 Nm. It is also seen from Fig. 14 that the
magnitudes of the combination of the prosed controllers of
fast subsystem and slow subsystem are much lesser than that
reported one in [14]. It is clear from all the comparisons
that the proposed composite controller tracks the trajectory
more quickly while requiring fewer control inputs and better
vibration suppression.

VI. CONCLUSION

The singular perturbation assumed modes method is used
in this research to produce the Quanser two-link flexible
manipulator discretized n-dimensional model. This realizes
the segregation of two subsystems: a fast and a slow, fa-
cilitating the dynamic complexity and the separate design
of the controllers for both the subsystems. In this paper,
the slow subsystem is controlled using a contraction-based
controller, and the fast subsystem is controlled using a back-
stepping controller. The required tracking is achieved using
contraction theory based composite control and backstepping
control for the deflection suppression of the two-link flexible
manipulator. The results indicate the robustness and the
effectiveness of the designed two-time scale controller for
the desired trajectory tracking system. The designed com-
posite controller exhibits better performance in terms of fast
tracking time, quicker tip suppression deflection and lesser
control inputs. The experimental validation of the proposed
composite controller in the presence of disturbances and
uncertainities can be future direction of this work.
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