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Abstract

This paper investigates the reachable set estima-
tion problem for discrete-time periodic piecewise sys-
tems subject to bounded-peak disturbances for the first
time. Based on the periodic linear-interpolative formu-
lation, the discrete time-scheduling Lyapunov function-
s with non-jumping or jumping modes are constructed
to develop criteria of reachable set estimation that can
ensure the asymptotic stability and reachability of the
investigated system. Moreover, an index optimizing the
bounding region of the desirable reachable set is given
via resorting to the ellipsoid technique, and their results
are compared. Finally, numerical examples are given to
validate the effectiveness of the proposed results.

1. INTRODUCTION

Periodic systems, which can be used to character-
ize engineering dynamics with cyclic behavior, are in-
termediate systems connecting time-varying and time-
invariant systems, whose applications widely exist in
various fields. In recent years, periodic piecewise sys-
tems (PPSs), an effective tool for modeling and control-
ling periodic time-varying dynamics, have attracted in-
creasing research attention since they can get rid of the
difficulties caused by traditional methods like the Flo-
quet theory [1]. Apart from periodic properties, PPS is
also regarded as a special switched system, in which the
subsystem has inherently predetermined switching rules
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and dwell time over one period. Concerning practical
examples of periodic piecewise models are easy to find,
such as vibrating conveyor systems [2], mass-spring-
damper systems with periodic dynamics [3], and PWM
voltage-controlled DC-DC converters [4]. On the basis
of switching theory and Lyapunov techniques, many re-
search results on the control and estimation of periodic
piecewise systems in the continuous-time domain have
been reported. For time-invariant subsystem dynamics,
with different methods, the stability, L2-gain analysis,
and the corresponding controller were studied in [5, 6],
and moreover, the fault detection observer and the guar-
anteed cost controller were designed in [7, 8]. To more
closely approximate the original periodic system, a pe-
riodic piecewise model with time-varying subsystems is
developed in [9], followed by the research of this mod-
el’s L1 performance and positivity analysis [10], non-
fragile controller design [11, 12], H∞ tracking control
scheme [13], Bumpless H∞ controller design [14], and
so on.

The set of all terminal states that a dynamic system
can reach with a prescribed initial state and disturbance
is called the reachable set, which is an important con-
cept in control engineering and has received much at-
tention in the past decades. In practical engineering, it
is usually difficult to accurately capture the character-
istics of the system reachable set, which gives rise to
the problem of reachable set estimation. A common re-
search means for this problem is to resort to ellipsoid
techniques constraining the reachable set to a region as
compact as possible. Reachable set estimation can de-
termine whether a state is moving in a prescribed re-
gion, which can therefore be used used in practical ap-
plications like robot obstacle avoidance [15] and safety
monitoring [16]. Specifically, it can be conducted by
checking whether the intersection of an insecure region
and an estimated reachable set. Up to now, many result-
s concerning reachable set estimation have been repre-
sented [15, 17–23]. For instance, In [15], the reach-
able set estimation and synthesis criteria of discrete-
time switching systems were derived, and three opti-
mization frameworks were proposed to shrink bounding
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ellipsoids, where the optimal design parameters can be
solved by genetic algorithm. [17] proposed a sufficient
condition for the ellipsoidal boundary of the reachable
set estimation of singular systems and extends the re-
sult to the scenarios of time-varying delay. In [18], the
reachable set estimation problem is reconstructed as a
chance-constrained optimization problem, and the ac-
curacy of the reachable set estimation was studied by
using scenario optimization. Recently, for continuous-
time periodic piecewise systems, in [19, 20], a low con-
servative reachable set estimation condition is given by
the subinterval segmentation method and the Bernstein
polynomial method, respectively. Moreover, the prob-
lem of observer-based output reachable set synthesis for
periodic piecewise systems was reported in [21]. How-
ever, it is worth noting that discrete-time plants are fa-
vored in the engineering field due to their advantages in
numerical computations, whereas for the discrete-time
periodic piecewise system, corresponding works have
not received adequate attention they deserve[24, 25], es-
pecially when it comes to reachable set estimation prob-
lems.

Motivated by the above, in this work, we focus
on the reachable set estimation problem for discrete-
time periodic piecewise systems with bounded-peak
disturbances. With the discrete time-scheduling Lya-
punov functions and ellipsoid techniques, the tractable
conditions of estimating reachable sets and optimizing
bounding regions for discrete-time periodic piecewise
systems are obtained. The main contributions of this
work are twofold:

• The criterion of reachable set estimation for
discrete-time PPSs is proposed for the first time,
and the desirable conditions for optimizing bound-
ing ellipsoids are given. Compared with the con-
tinuous plant, the obtained conditions are easy to
deal with and beneficial to engineering applica-
tions.

• Compared with the results of the estimation of the
reachable sets of discrete periodic systems [15],
the conditions proposed in this work have a larger
solution space because the time-varying Lyapunov
function is provided instead of the time-invariant
one.

Notations:
Rn stands for the n-dimensional Euclidean space. The
superscript T represents the transpose of a matrix. M ≤
0 (resp., M < 0) indicates that the matrix is negative
semidefinite (resp., negative definite). 0 and I stand for
the zero matrix and the identity matrix of appropriate
dimensions, respectively. “∗” in symmetric block matri-
ces is used to denote an ellipsis of the symmetric terms.

2. Problem Formulation and Preliminaries

Consider a discrete-time PPS as

x(k+1) = A(k)x(k)+Bw(k)ω(k), (1)

where x(k) ∈ Rnx and y(k) ∈ Rny are the system state
and the measurement output, respectively. ω(k) ∈ Rnω

is the bounded-peak disturbance vector and assumed to
be measurable, satisfying

ωT (k)ω(k)≤ ω̄2,∀k ≥ 0, (2)

where ω̄ is a known scalar describing the bound of
the disturbance. A(k) = A(k+Tp),Bw(k) = Bw(k+Tp)
are Tp-periodic matrix functions, where each funda-
mental period is split into S subintervals k = {ℓTp +
ki−1, . . . , ℓTp+ki}, ℓ= 0,1,2, . . . , i ∈S = {1,2, . . . ,S}.
ki−1 is the switching instant in the period from the
(i−1)th subsystem to ith subsystem, where k0 = 0 and
kS = Tp. In ith subsystem, the dwell time is defined
as Ti = ki − ki−1 with ∑S

i=1 Ti = Tp, and the system pa-
rameter sets {A(k),Bw(k)} can be characterized by the
time-invariant matrix sets {Ai,Bwi}, i ∈ S . Then, the
system (1) becomes:

x(k+1) = Aix(k)+Bwiω(k), (3)

where AS+1 = A1,Bw,S+1 =Bw1 are known constant ma-
trices with appropriate dimensions.

Let us concern the reachability of the system state
x(k), the reachable set of the PPS (3) is defined as

Rx =
{

x ∈ Rnx |x(0) = 0,x(k),ω(k)

satisfy (1) and (2),k ≥ 0
}
(4)

The reachable set estimation problem of the PPS (3)
devotes to finding a region Ēs as compact as possible
to constrain the reachable set under bounded-peak dis-
turbances assumed in (2), in which Ēs is described by
Ēs ,

∪
0≤k≤Tp E (P(k)) with

E (P(k)),
{

x ∈ Rnx |xT P(k)x ≤ 1,P(k)> 0
}
, (5)

and P(k) is the discrete time-varying matrix function
whose specific form will be given in the sequel.

Remark 1. Notice that, it is not difficult to find that a
common method in previous results on reachable set es-
timation is that the time-invariant Lyapunov matrix is
used to determine a bounding ellipsoid to estimate the
reachable set of the dynamic system. The bounding el-
lipsoid is defined as E(P),

{
x∈Rnx |xT Px≤ 1,P> 0

}
.

To ensure the advantage in conservatism and feasible
sets, the bounding region described in (5) will be con-
sidered in the later development of this paper.
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The following lemma is a basic tool for the reach-
able set estimation for discetre-time PPSs.

Lemma 1. Consider the PPS (3) with the bounded-
peak disturbance satisfying (2). Given a Lyapunov
function V (k) =Vi(k) satisfying V (0) = 0 and V (k)> 0,
for k ∈ {ℓTp +ki−1, . . . , ℓTp +ki −1}, ℓ= 0,1,2, . . . , i ∈
S , if there exist scalars 0 < δi < 1, i ∈ S , such that

Vi(k+1)−δiVi(k)−
1−δi

ω̄2 ωT (k)ω(k)≤ 0, (6)

then the system is asymptotically stable and under zero
initial conditions, V (k) ≤ 1, which implies that Rx ⊆
Ēs ,

∪
0≤k≤Tp E (P(k)), where E (P(k)) defined in (5).

Proof. As we know, from the previous assumption,
the bounded-peak disturbance satisfies (2), and the s-
calars 0 < δi < 1, i ∈ S , intuitively, for k ∈ {ℓTp +
ki−1, . . . , ℓTp + ki − 1}, ℓ = 0,1,2, . . . , i ∈ S , it can be
obtained that

Vi(k+1)−δiVi(k) ≤ 1−δi

ω̄2 ωT (k)ω(k),

≤ 1−δi, (7)

which implies

Vi(k+1)−1 ≤ δi
(
Vi(k)−1

)
, (8)

one can recursively calculate (8) as, over a period Tp,

V (ℓTp)−1 = V1(ℓTp)−1,

≤ δ TS
S

[
VS
(
(ℓ−1)Tp + kS−1

)
−1

]
,

≤
S

∏
i=1

δ Ti
i

[
V1
(
(ℓ−1)Tp

)
−1

]
,

...

≤
( S

∏
i=1

δ Ti
i

)ℓ[
V1(0)−1

]
. (9)

Moreover, for k ∈ {ℓTp + ki−1, . . . , ℓTp + ki}, ℓ =
0,1,2, . . . , i ∈ S , one has

V (k)−1 ≤δ (k−ℓTp−ki−1)
i

[
Vi(ℓTp + ki−1)−1

]
,

≤
S

∏
i=1

δ Ti
i

[
V1(ℓTp)−1

]
. (10)

Thus, combining (9) and (10), it follows that

V (k)≤ 1+
S

∏
i=1

δ (ℓ+1)Ti)
i

[
V1(0)−1

]
.

Therefore, one has V (k) ≤ 1, as ℓ → ∞. The proof is
completed.

3. Main Results

3.1. Stability and Reachability Analysis

In this section, the stability and reachability of the
discrete-time PPS (3) will be discussed. The discrete
time-scheduling Lyapunov function with periodic pa-
rameters is used. A sufficient condition is proposed to
ensure the desirable bounding region for the estimation
of the PPS (3).

Before proceeding, for k ∈ {ℓTp + ki−1, . . . , ℓTp +
ki −1}, ℓ = 0,1,2, . . . , i ∈ S , one constructs a discrete
time-scheduling Lyapunov function with periodic pa-
rameters:

V (k) =Vi(k) = xT (k)pi(k)x(k),

V (k+1) =Vi(k+1) = xT (k+1)pi(k+1)x(k+1),

where

pi(k) = σi(k)pi +
(
1−σi(k)

)
pi−1,

pi(k+1) = σi(k+1)pi +
(
1−σi(k+1)

)
pi−1, (11)

with σi(k) =
k+ℓTp−ki−1

Ti
, σi(k + 1) =

k+1+ℓTp−ki−1
Ti

.
pi(k + Tp) = pi(k), pi(k + 1+ Tp) = pi(k + 1), i ∈ S ,
where pi > 0, pi−1 > 0 are constant matrices, and
pS+1 = p1, pS = p0.

Theorem 1. Consider the discrete-time PPS (3) with
bounded-peak disturbance in (2), under zero initial con-
ditions, if there exist positive symmetric matrices pi−1,
pi, pi+1, i ∈ S , with pS+1 = p1, pS = p0, and scalars
0 < δi < 1, such that[

Θi,11 Θi,12
∗ Θi,22

]
≤ 0, (12)[

Σi,11 Σi,12
∗ Σi,22

]
≤ 0, (13)

where

Θi,11 =AT
i
(

pi−1 +
1
Ti
(pi − pi−1)

)
Ai −δi pi−1,

Θi,12 =AT
i
(

pi−1 +
1
Ti
(pi − pi−1)

)
Bwi,

Θi,22 =BT
wi
(

pi−1 +
1
Ti
(pi − pi−1)

)
Bwi −

1−δi

ω̄2 I,

Σi,11 =AT
i piAi −δi pi +

δi

Ti
(pi − pi−1),

Σi,12 =AT
i piBwi,

Σi,22 =BT
wi piBwi −

1−δi

ω̄2 I.

Then the investigated system is asymptotically stable
and its state converges to the ellipsoids E (pi(k)).
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Proof. First, to analyze the asymptotical stability and
reachability of the system (3), one can choose the
discrete time-scheduling Lyapunov function candidate
(11) with Lyapunov matrix (11). It follows that, for
k ∈ {ℓTp +ki−1, . . . , ℓTp +ki −1}, ℓ= 0,1,2, . . . , i ∈S ,

Vi(k+1)−δiVi(k)−
1−δi

ω̄2 ωT (k)ω(k)

=xT (k+1)pi(k+1)x(k+1)−δixT (k)pi(k)x(k)

− 1−δi

ω̄2 ωT (k)ω(k)

=
(
Aix(k)+Bwiω(k)

)T pi(k+1)(Aix(k)+Bwiω(k)
)

−δixT (k)pi(k)x(k)−
1−δi

ω̄2 ωT (k)ω(k)

=ηT (k)Πi(k)η(k), (14)

where

η(k) =
[
xT (k) ωT (k)

]T
,

Πi(k) =
[

Λi(k) AT
i pi(k+1)Bwi

∗ BT
wi pi(k+1)Bwi − 1−δi

ω̄2 I

]
,

Λi(k) =
[
AT

i pi(k+1)Ai −δi pi(k)
]
,

In the light of the convex property of Pi(k), one can
consider the switching instant ℓTp+ki−1, which can ob-
tained that

pi(k) = pi−1, pi(k+1) = pi−1 +
1
Ti
(pi − pi−1). (15)

In what follows, let us now consider the switching in-
stant ℓTp + ki −1, and then it is easily to derive that

pi(k) = pi +
1
Ti
(pi − pi−1), pi(k+1) = pi. (16)

With (12)-(13), combining (15)-(16), one has Πi(k) ≤
0. According to (14), one can derive that Vi(k + 1)−
δiVi(k)− 1−δi

ω̄2 ωT (k)ω(k) ≤ 0 holds. Hence, it can be
known from Lemma 1 that Vi(k) ≤ 1, for k ∈ {ℓTp +
ki−1, . . . , ℓTp +ki}, ℓ= 0,1,2, . . . , i ∈ S , which implies
that Ēs ,

∪
0≤k≤Tp E (pi(k)), where E (pi(k)) defined in

(5). The proof of Theorem 1 is completed.
Note that, the above results are based on the

fact that adjacent subsystems can share information
about adjacent time instant (so-called non-jump mod-
e). Specifically, for the (i + 1)th subsystem, that is,
k ∈ {ℓTp + ki, . . . , ℓTp + ki+1}, one has that Pi+1(k) = Pi
when k is at the initial time instant ℓTp+ki, which is ob-
viously consistent with information from the last instant
of the previous subsystem. For the sake of practical en-
gineering, one considers the more general case where
the Lyapunov matrices have bounded mode-dependent

jumps at the switching instant of the adjacent subsys-
tem, that is, Vm,i+1(ℓTp+ki)≤ µiVm,i(ℓTp+ki), in which
the Pm,i(k) is given as

pm,i(k) = σi(k)pi,i+1 +
(
1−σi(k)

)
pi,i−1, (17)

and pm,i(k + Tp) = pm,i(k), i ∈ S . Moreover, for k ∈
{ℓTp + ki−1, ℓTp + ki − 1}, ℓ = 0,1,2, . . . , i ∈ S , it fol-
lows that

pm,i(ℓTp + ki−1) = pi,i−1,

pm,i(ℓTp + ki−1 +1) = pi,i−1 +
1
Ti
(pi,i+1 − pi,i−1),

(18)

pm,i(ℓTp + ki −1) = pi+1,i −
1
Ti
(pi+1,i − pi,i−1),

pm,i(ℓTp + ki) = pi+1,i. (19)

Thus, the following corollary can be obtained as fol-
lows.

Corollary 1. Consider the discrete-time PPS (3) with
bounded-peak disturbance in (2), under zero initial con-
ditions, if there exist positive symmetric matrices pi,i−1,
pi,i+1, i∈S , and scalars µi > 1, 0< δi < 1, with p1,0 ≤
µS pS,S+1, pi+1,i ≤ µi pi,i+1, i = 1,2 . . . ,S−1, such that[

Ωi,11 Ωi,12
∗ Ωi,22

]
≤ 0, (20)[

∆i,11 ∆i,12
∗ ∆i,22

]
≤ 0, (21)

where

Ωi,11 =AT
i
(

pi,i−1 +
1
Ti
(pi,i+1 − pi,i−1)

)
Ai −δi pi,i−1,

Ωi,12 =AT
i
(

pi,i−1 +
1
Ti
(pi,i+1 − pi,i−1)

)
Bwi,

Ωi,22 =BT
wi
(

pi,i−1 +
1
Ti
(pi,i+1 − pi,i−1)

)
Bwi −

1−δi

ω̄2 I,

Σi,11 =AT
i pi,i+1Ai −δi pi,i+1 +δi

1
Ti
(pi,i+1 − pi,i−1)

)
,

Σi,12 =AT
i pi,i+1Bwi,

Σi,22 =BT
wi pi,i+1Bwi −

1−δi

ω̄2 I.

Then the investigated system is asymptotically stable
and its state converges to the ellipsoids E (pm,i(k)).

Proof. First, the Lyapunov function candidate Vm,i(k)
with Lyapunov matrix (17) is constructed and given
as V (k) = Vm,i(k) = xT (k)Pm,i(k)x(k). With (20)-(21),
combining (18)-(19), one can know that, for k ∈ {ℓTp +
ki−1, . . . , ℓTp + ki − 1}, ℓ = 0,1,2, . . . , i ∈ S , Vm,i(k +
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1)−δiVm,i(k)− 1−δi
ω̄2 ωT (k)ω(k). According to the proof

line similar to lemma 1, it follows that V (ℓTp)− 1 =
Vm,1(ℓTp)−1, and

Vm,1(ℓTp)−1,
≤µS[Vm,S(ℓTp)−1+1]−1,

≤µSδ TS
S

[
Vm,S

(
(ℓ−1)Tp − kS−1

)
−1

]
+(µS −1),

≤µSδ TS
S

[
µS−1Vm,S−1

(
(ℓ−1)Tp − kS−1

)
−1

]
+(µS −1),

≤
S

∏
i=1

δ Ti
i µi

[
Vm,1

(
(ℓ−1)Tp

)
−1

]
+ϕi,

...

≤
( S

∏
i=1

δ Ti
i µi

)ℓ[
Vm,1(0)−1

]
+ ℓϕi,

where

ϕi =
S

∏
i=1

δ Ti
i µi(µ2 −1)+

S

∏
i=2

δ Ti
i µi(µ3 −1)

+δ TS
S µS(µS−1 −1)+ · · ·+(µS −1).

For k ∈ {ℓTp+ki−1, . . . , ℓTp+ki}, ℓ= 0,1,2, . . . , i ∈S ,
one has

V (k)−1 ≤δ (k−ℓTp−ki−1)
i

[
Vm,i(ℓTp + ki−1)−1

]
,

≤δ Ti
i

[
Vm,i(ℓTp + ki−1)−1

]
,

...

≤δ TS
S

S−1

∏
i=1

δ Ti
i µi

[
Vm,1(ℓTp)−1

]
+ϑi. (22)

where

ϑi =δ TS
S

S−1

∏
i=1

δ Ti
i µi(µ2 −1)+δ TS

S

S−1

∏
i=2

δ Ti
i µi(µ3 −1)

+δ TS
S

S−1

∏
i=S−1

δ Ti
i µi(µS−2 −1)+ · · ·+δ TS

S (µS−1 −1).

Thus, combining (9) and (10), it follows that

V (k)≤1+δ (ℓ+1)TS
S µℓ

S

S−1

∏
i=1

δ (ℓ+1)Ti
i µℓ+1

i
[
V1(0)−1

]
+ ℓϕiδ TS

S

S−1

∏
i=1

δ Ti
i µi +ϑi.

Since µi > 1, 0 < δi < 1, one has V (k) ≤ 1, as ℓ→ ∞.
The proof is completed.

Remark 2. Compared with the case of non-jumping
Pi(k), the results based on the bounded mode-dependent

jumping Pm,i(k) will be less conservative and more con-
ducive to engineering applications. Note that if we de-
sire to further reduce the conservatism of the result, one
can partition the Lyapunov matrix into smaller interval-
s [19]. Whereas for computing resources, the proposed
conditions in this paper are more economical.

3.2. Optimization of the bounding ellipsoids

Notice that, with Theorem 1 and Corollary 1, the
bounding ellipsoids E (pi(k)) and E (pm,i(k)) are ob-
tained. In what follows, our goal is to optimize these
ellipsoids to make them as compact as possible. In most
existing results on reachable set estimation, a common
method is to introduce a positive definite scalar ε , which
can not only be used to optimize the bounding region
[15] but also can be used to compare the conservatism
of estimation results [19]. Specifically one can achieve
it by providing conditions εI ≤ pi(k) or εI ≤ pm,i(k)
while maximizing ε . It can be ensured that, for all k,
the following inequalities hold.

εxT (k)x(k)≤ εxT (k)pi(k)x(k)≤ 1, (23)

or εxT (k)x(k)≤ εxT (k)pm,i(k)x(k)≤ 1. (24)

By applying the Schur complement equivalence to in-
equalities (23)-(24), according to the properties of the
matrix functions pi(k) and pm,i(k) at time instant ℓTp +
ki−1 and ℓTp + ki − 1, one enables from (23)-(24) that
the following inequalities[

−pi−1 I
∗ −θ I

]
≤ 0,

[
φi I
∗ −θ I

]
≤ 0, (25)

or
[
−pi,i−1 I

∗ −θ I

]
≤ 0,

[
νi I
∗ −θ I

]
≤ 0, (26)

where φi = −pi +
1
Ti
(Pi − Pi−1), νi = −pi,i+1 +

1
Ti
(Pi,i+1 −Pi,i−1), θ = ε−1 > 0. Combined with the cri-

teria in Theorem 1 and Corollary 1, the optimization
problem of reachable set estimation for discrete-time
PPSs can be characterized as follows:

Minimize θ subject to{
(12)− (13),(25), for Theorem 1,
(20)− (21),(26), for Corollary 1.

Therefore, the bounding region can be minimized by el-
lipsoids

∪
i∈S E(pi−1),E(pi),E(pi,i−1),E(pi+1,i) which

are all contained in the ball B(ε) = {x ∈ Rn|xT εx ≤
1,ε > 0}.

4. Numerical Example

Consider a PPS containing three subsystems,
whose fundamental period is Tp = 20. The dwell time
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is specified as T1 = 4,T2 = 6,T3 = 10. With (2)-(3), the
relevant parameters are given as

k ∈ [ℓTp, ℓTp +4),

A1 =

[
0.65 0.2
0.128 −0.6

]
, Bw1 =

[
−0.4200
0.3717

]
,

k ∈ [ℓTp +4, ℓTp +10),

A2 =

[
0.60 −0.15
0.2 0.19

]
, Bw2 =

[
−0.3633
0.6857

]
,

k ∈ [ℓTp +10,(ℓ+1)Tp),

A3 =

[
0.24 −0.4
0.2 0.12

]
, Bw3 =

[
0.2897
−0.5238

]
.

Given δ1 = 0.696, δ2 = 0.592, δ3 = 0.652, and consid-
er the bounded-peak disturbance signal ω(k) = 1.21 ∗
sin(k) with ω̄ = 1.4641. In order to compare the ad-
vantages of estimation criteria developed by pi(k) and
pm,i(k), we use the SeDuMi solver in MATLAB based
on the YALMIP language, and the results are given as
follows:

Table 1: Comparisons of θ

The criterion of Theorem 1 The criterion of Corollary 1

θ 2.5742 2.5739

One can observe from Table I that the estimation
result developed with pm,i(k) (Corollary 1) is less con-
servative compared with non-jumping ones. Moreover,
with zero initial state x =

[
0 0

]T , the reachable set Rx
and its bounding region are shown in the following fig-
ures.
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Figure 1: Bounding regions of reachable set (Theorem
1 and Corollary 1)
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Figure 2: Comparison of bounding regions of reachable
set

The bounding ball constructed by ε , the bounding
ellipsoids E(pi) (Theorem 1), and the bounding ellip-
soids E(pi,i−1), E(pi+1,i) (Corollary 1) are shown in
Figure 1, respectively. It can observer that the bound-
ing region obtained by subinterval switching informa-
tion (Theorem 1 and Corollary 1) is smaller than the
ball B(ε) developed by a positive scalar ε . Then, the
comparative result of E(pi) and E(pi,i−1),E(pi+1,i) is
given in Figure 2. It shows that the bounding region
E(pi+1,i) is more compact, which is consistent with the
results of Table 1. Therefore, this means that the pro-
posed criteria is desirable, where Corollary 1 is more
conducive to engineering applications.

5. Conclusions

In this paper, the reachable set estimation problem
of discrete-time PPSs is studied for the first time. By
constructing discrete time-scheduling Lyapunov func-
tions with non-jumping or jumping modes at switch-
ing instant, the estimation criteria of reachable sets for
discrete-time PPSs are established, and sufficient con-
ditions for optimizing the bounding region of reachable
sets are given by using ellipsoid techniques. The sim-
ulation results show that the proposed condition based
on bounded mode-dependent jumping Lyapunov matri-
ces is less conservative and can shrink the reachable set
to a smaller region, which is more advantageous in en-
gineering applications.
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