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Abstract— In this paper, we explore the relationship between
the injected attack signal and the attack selection strategy
in networked control systems where the adversary desires
to steer the system state to the expected malicious one. We
construct a sequential attack framework, i.e., the injected
false data varies with the sampling time in discrete-time
systems, and then derive an optimal sequential FDI attack
strategy. The optimal sequential FDI attack strategy reveals
the strongly coupled relationship between the injected attack
signal and the attack selection strategy. Furthermore, we prove
the finite-time inverse convergence of the critical parameters in
the injected optimal attack signal by discrete-time Lyapunov
analysis, which enables the efficient off-line design of the attack
strategy and saves computing sources. Extensive simulations
are conducted to show the effectiveness of the injected optimal
sequential attack and the relationship between the attack signal
and the attack selection strategy.

I. INTRODUCTION

Security issues are becoming increasingly prominent in
networked control systems (NCSs) as network technologies
are extensively used to connect physical components within
a control loop [1]. In NCSs, false data injection (FDI) —
whereby an adversary injects false data by manipulating sen-
sor readings or communication channels — is a commonly
encountered form of attack [2]. Crucially, through an FDI
attack, an adversary can cause significant damage to control
components while remaining undetected.

Considerable efforts have been devoted to studying the
effects of potential FDI attacks [3]–[7] and designing the
optimal FDI attack strategies [8]–[10]. For instance, Chen et
al. [8] found an optimal attack strategy to balance the control
objective and the detection avoidance objective. Li et al.
derived the optimal linear attack vector injected in the sensor
readings to degrade the system estimation performance [9].
Most of these works focus on the design of the injected
optimal attack signal to meet the given objective function.
Besides, there are some researchers aiming at developing
the FDI attack selection strategy [11]–[13]. Wu et al. solved
an optimal switching data injection attack design problem
where only one actuator is compromised each time to
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minimize the quadratic cost function [11]. In [13], the
adversary with limited capability aims to select a subset of
agents and manipulate their local multi-dimensional states to
maximize the consensus convergence error by utilizing the
submodularity optimization theory. It shows distinct attack
effects under different attack selection strategies.

Note that there exist two interesting problems worthy
of further investigation. One is to explore the relationship
between the injected attack signal and the attack selection
strategy. It is significant to build an analytic expression
for both and analyze how the attack selection strategy
influences the injected attack signal. The other is to excavate
the property of the injected optimal attack signal. It is
intriguing and promising to demonstrate the characteristic of
the injected attack signal. Meanwhile, it is advantageous to
design resilient algorithms to improve the system’s security.

Motivated by the above observations, in this paper, we
study the relationship between the injected optimal sequen-
tial attack signal and the attack selection strategy. Mean-
while, we desire to seek the potential property of the injected
attack signal where the adversary aims to steer the system
state value to an expected malicious one in a discrete-time
system. The main contributions are summarized as follows.

• We construct a sequential attack framework based
on dynamic programming where the adversary injects
false data over sampling times and expects to drive the
system state to a desired malicious one.

• We derive an analytical closed-form expression be-
tween the optimal sequential attack signal and the
attack selection strategy, in which they are deeply
coupled. Moreover, the attack signal is also a linear
function concerning the system state.

• We theoretically characterize the finite-time inverse
convergence of the critical parameters in the obtained
optimal sequential attack signal via the discrete-time
Lyapunov analysis, which contributes to saving re-
sources in calculating attack signals offline.

The rest of the paper is organized as follows. Section
II introduces the system model and the adversary model,
and formulates the FDI attack design problem. In Section
III, the optimal sequential attack strategy is designed and
the convergence of the critical parameters in the injected
attack signal is analyzed. Simulation results are presented
in Section IV. Finally, we conclude our work in Section V.

Notations. Let R denote the set of real numbers. For a
vector l1 ∈ Rp, we let ∥l1∥2R denote lT1 Rl1. We denote
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In and 1n as the n-dimensional diagonal unit matrix and
column vector with all elements of 1, respectively. For a
matrix L1, we let L∗

1 denote its Hermitian matrix.

II. PROBLEM FORMULATION

A. System Dynamic Model & Adversary Model

Consider a discrete-time dynamical system

xk+1 = Akxk +Bkuk, (1)

where Ak ∈ Rn×n, Bk ∈ Rn×m are the system matrices,
xk ∈ Rn is the system state at time k, and uk ∈ Rm is
the system input. We set the linear feedback controller as
uk = Lkxk. Then, we have xk+1 = Wkxk with Wk =
Ak +BkLk.

Consider an adversary can compromise the stable system
(1) by altering the original control law uk or deviating
the control signals from the true values, thus indirectly
manipulating the system states xk. Meanwhile, the adversary
has the ability to select which agent to tamper with. The
dynamic system under attacks can be rewritten as

xa
k+1 = Wkx

a
k + Γkθk, (2)

where the attack selection strategy Γk = [γ1, . . . , γn]
T ∈

Rn with the binary variable γi = 1 if the i-th agent is
compromised, and θk ∈ R is the injected attack signal. Then,
we make the following assumptions about the ability of the
adversary and the definition of a sequential FDI attack.

Assumption 1: The adversary knows the exact knowledge
of the system model.

Assumption 1 is a common and implicit condition for the
adversary to inject false data successfully [14].

Definition 1: (Sequential FDI attack) An FDI attack is
called sequential if it injects false data as the sequential
sampling time k.

B. Problem Formulation

In this work, we consider that the adversary’s objective
is to inject the false data Γkθk and steer the system state to
the expected malicious one as closely as possible in finite
time. We also consider that the adversary desires to save the
attack energy. Therefore, the total goal of the adversary is
to reduce both the error between the true system state and
the expected malicious one and the consumed attack energy
as much as possible. Herein, there exist two optimization
variables Γk and θk, i.e., the sequential attack signal θ ≜
{θ0, θ1, . . . , θN} and sequential attack selection strategy
Γ ≜ {Γ0,Γ1, . . . ,ΓN} where N is the given upper bound
of finite-time iteration. Then, we construct the following
optimization problem P0.

P0 : min{θ,Γ} J = J1 + J2 (3)
s.t. (2),
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Fig. 1. The schematic of the optimal sequential attack design

where the sum of the state error J1 and the energy of injected
false data J2 in finite time satisfy

J1 =

N∑
k=0

(
∥xa

k − x∗∥2Pk

)
+ ∥xa

N+1 − x∗∥2H ,

J2 =

N∑
k=0

(
∥Γkθk∥2Qk

)
,

and x∗ is the expected malicious state predefined by the
adversary and Qk, Pk and H are the positive definite weight
matrices, respectively.

The challenges of directly solving problem P0 result from
the nonlinearity and non-convexity of the objective function
J with respect to two closely coupled optimization variables
Γk and θk. Furthermore, it is difficult to directly obtain the
gradients of the objective function for variables θ and Γ
to solve problem P0. If we can explore the relationship
between the attack signal θk and the attack selection strategy
Γk and derive an analytical closed-form relation, it is vital to
simplify the solution of problem P0. Thus, we decompose
P0 and first focus on problem P1:

P1 : min{θ0,θ1,...,θN} J = J1 + J2 (4)
s.t. (2),

where the attack selection strategy Γ is fixed. In an extended
part of the paper, we will deal with Γ under the obtained
optimal sequential attack signal θ. In this paper, we mainly
tackle problem P1 and analyze the relationship between the
injected attack signal θ and the attack selection strategy Γ.

III. OPTIMAL SEQUENTIAL ATTACK SCHEME

In this section, we solve problem P1 and derive the
optimal sequential attack signal based on dynamic program-
ming. Then, we excavate its critical parameters’ property.

A. Attack Scheme Design

The schematic of the optimal sequential attack design is
shown in Fig. 1. After giving the attack selection strategy
Γk, the critical parameters Fk and Mk can be obtained
backward offline based on (6) and (8). Then, the solution of
problem P1, i.e., the optimal sequential attack θk is derived
in the following theorem.

Theorem 1: (Optimal Sequential Attack) The optimal
sequential attack θk for k = 0, 1, · · · , N , that minimizes
J in (4) is

θk = Fkx
a
k +Mk, (5)

where

Fk = −R−1
k ΓT

kKk+1Wk, (6)
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with Rk = ΓT
k (Qk +Kk+1)Γk and

Kk = Pk +WT
k Kk+1Wk + 2WT

k Kk+1ΓkFk (7)

+ FT
k ΓT

k (Qk +Kk+1)ΓkFk,

and

Mk =

{
R−1

k ΓT
kKk+1x

∗, k = N,
R−1

k ΓT
kKk+1(Pk+1x

∗ −WT
k+1Kk+2Γk+1Mk+1), k ̸= N.

(8)
Proof: The proof can be completed by solving the

Bellman equation backward from time N+1 of termination.
When time k = N+1, KN+1 = H , for any xa

N+1 ∈ Rn,
the value function

V (xa
N+1, N + 1)

=(xa
N+1 − x∗)TH(xa

N+1 − x∗)

=(xa
N+1)

TKN+1(x
a
N+1) +GN+1, (9)

where GN+1 = −2(xa
N+1)

TKN+1x
∗ + ∥x∗∥2. Note that

the value function V (xa
N+1, N+1) is the quadratic function

with respect to xa
N+1. Next, with the mathematical induction

method, we prove that the value function always satisfies the
following form

V (xa
k+1, k + 1) = (xa

k+1)
TKk+1(x

a
k+1) +Gk+1, (10)

where Kk is the real symmetric positive definite matrix for
k = 0, 1, . . . , N .

Then, we derive the optimal attack signal θN at time N .
With the obtained value function V (xa

N+1, N + 1) in (9),
for any xa

N ∈ Rn, we have

V (xa
N , N)

= minθN
{
(xa

N − x∗)TPN (xa
N − x∗)

+ ∥ΓNθN∥2QN
+ V (xa

N+1, N + 1)
}

= minθN
{
(xa

N − x∗)TPN (xa
N − x∗)

+ θTNΓT
NQNΓNθN +GN+1

+ (WNxa
N + ΓNθN )TKN+1(WNxa

N + ΓNθN )
}
.
(11)

Taking the derivative of (11) with respect to θN , for
any xa

N ∈ Rn, we have 2θTNΓT
NQNΓN + 2(WNxa

N +
ΓNθN )TKN+1ΓN = 0. Thus, it can be inferred that

θN = −R−1
N (ΓT

NKN+1WNxa
N − ΓT

NKN+1x
∗), (12)

where RN ≜ ΓT
N (QN +KN+1)ΓN . (12) is rewritten as

θN = FNxa
N +MN , (13)

where FN = −[ΓT
N (QN +KN+1)ΓN ]−1ΓT

NKN+1WN and
MN = [ΓT

N (QN +KN+1)ΓN ]−1ΓT
NKN+1x

∗.
When time k = N , combined with (11) and (13), we

derive the value function

V (xa
N , N)

= (xa
N )T

{
Pk +WT

k KK+1Wk + 2WT
k Kk+1ΓkFk

+ FT
k ΓT

k (Qk +Kk+1)ΓkFk

}
(xa

N ) +GN+1

− 2(x∗)TPNxa
N + ∥x∗∥2

+ θTNΓT
N (QN +KN+1)ΓNθN

+ 2xT
NWT

NKN+1ΓNMN . (14)

Let

KN ≜PN +WT
NKN+1WN + 2WT

NKN+1ΓNFN

+ FT
NΓT

N (QN +KN+1)ΓNFN

and

GN ≜GN+1 − 2(x∗)TPNxa
N + 2xT

NWT
NKN+1ΓNMN

+ θTNΓT
N (QN +KN+1)ΓNθN + ∥x∗∥2.

Thus, the value function V (xa
N , N) also satisfies (10).

Then, we derive the optimal attack signal θN−1 at time
N − 1. With the obtained value function V (xa

N , N) in (9),
for any xa

N−1 ∈ Rn, we have

V (xa
N−1, N − 1)

= minθN−1

{
(xa

N−1 − x∗)TPN−1(x
a
N−1 − x∗)

+ ∥ΓN−1θN−1∥2QN−1
+ V (xa

N , N)
}

= minθN−1

{
(xa

N−1 − x∗)TPN−1(x
a
N−1 − x∗)

+ θTN−1Γ
T
N−1QN−1ΓN−1θN−1

+ (WN−1x
a
N−1 + ΓN−1θN−1)

T

KN (WNxa
N−1 + ΓN−1θN−1) +GN

}
. (15)

Taking the derivative of (15) with respect to θN−1, for
any xa

N−1 ∈ Rn, we have 2θTN−1Γ
T
N−1QN−1ΓN−1 +

2(WN−1x
a
N−1 + ΓN−1θN−1)

TKNΓN−1 = 0. Thus, it can
be inferred that

θN−1 =−R−1
N−1(Γ

T
N−1KNWN−1x

a
N−1

− ΓT
N−1KNPNx∗ +WT

NKN+1ΓNMN ), (16)

which also can be derived as θN−1 = FN−1x
a
N−1+MN−1

with FN−1 = −R−1
N−1Γ

T
N−1KNWN−1 and

MN−1 = R−1
N−1Γ

T
N−1KN (PNx∗ −WT

NKN+1ΓNMN ).

When time k = N − 1, combined (15) with (16), we derive
the value function

V (xa
N−1, N − 1) = (xa

N−1)
TKN−1(x

a
N−1) +GN−1,

where

KN−1 = PN−1 +WT
N−1KNWN−1 + 2WT

N−1KNΓN−1FN−1

+ FT
N−1Γ

T
N−1(QN−1 +KN )ΓN−1FN−1

and

GN−1 = GN − 2(x∗)TPN−1x
a
N−1

+ ∥x∗∥2 + θTN−1Γ
T
N−1(QN−1 +KN )ΓN−1θN−1

+ 2xT
N−1W

T
N−1KNΓN−1MN−1.

Continue the iterative process for k = 0, 1, . . . , N − 2.
Finally, we can obtain the optimal sequential attack signal

θk = Fkx
a
k +Mk,

and the value function

V (xa
k+1, k + 1) = (xa

k+1)
TKk+1(x

a
k+1) +Gk+1,

Thus, the proof is completed.
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Fig. 2. The recursion flow of Fk , Kk , Mk and θk

Theorem 1 reveals the strongly coupled relationship be-
tween the optimal sequential attack signal and the attack
selection strategy. Especially, the optimal attack signal θk at
time k is the function of the system state xa

k. Besides, it is
related to the system structure Wk, the expected malicious
state x∗, and the initial states x0. In other words, once the
adversary knows the initial state x0 and the system structure
Wk, the optimal sequential attack signal θk can be designed
after the adversary determines the expected malicious state
x∗, the attack selection strategy Γk, and weight matrices
Pk, Qk and H . As shown in Fig. 2, with the initial matrix
KN+1, Fk, Kk and Mk are derived backward based on
(6), (7) and (8), respectively. Then, with the known initial
states x0 and (5), the adversary can directly inject optimal
sequential attack signal θk along the iteration timeline.

B. Property Analysis

In this part, we demonstrate the inverse convergence of
the critical parameter matrix Kk in (7) and vector Fk in
(6), respectively. Since Kk and Fk are derived backward,
its inverse convergence is defined as follows.

Definition 2: (Inverse Convergence) Matrix/Vector/Point
convergence is called inverse convergence if the ma-
trix/vector/point is derived backward and converges in the
reverse order of iteration time.

Based on Definition 2, we find that the sequential {KN ,
KN−1, KN−2, . . ., K2, K1} and {FN , FN−1, FN−2, . . .,
F1, F0} converge forward, which are also called inverse
convergence of Kk and Fk. With this property, it is possible
to quickly obtain the steady-state parameters Kk and Fk. In
other words, only a small number of iteration time k are
required to derive Fk and Kk backward regardless of the
finite-time N . Based on these few backward recursions, the
optimal sequential attack signal can be directly designed.

In what follows, we first analyze the symmetry and posi-
tive definiteness of Kk, and the system’s finite-time stability,
which is beneficial to proving its inverse convergence.

Lemma 1 (Symmetry and positive definiteness of Kk):
The matrix Kk in (7) is a positive definite Hermitian matrix
for k = 0, 1, . . . , N , i.e., Kk = K∗

k ≻ 0.
Proof: The proof can be divided into two parts. One

is to show the Hermitian matrix Kk. The other is to show
Kk ≻ 0. Both are based on mathematical induction method.
The concrete proof can be founded in [15].

Corollary 1: Kk in (7) can be simplified as

Kk = Pk +WT
k Kk+1Wk −R−1

k WT
k Kk+1ΓkΓ

T
kKk+1Wk.

Proof: The proof can be founded in [15].

Lemma 2 (Finite-time stability): Consider a discrete-
time system with a corresponding positive definite
matrix-valued Lyapunov function Ṽ : Rn×n → R and
let Ṽk = Ṽ (Kk − K⋆). Let α and ϵ be a constant in
the open interval (0, 1). Let ṼN > 0 be the finite initial
value of the Lyapunov function with respect to Kk. Denote
φk ≜ φ(Ṽ 1−α

k ) where φ : R+ → R+ is a class-K function
of Ṽ 1−α

k that satisfies
φk

φN
≥ 1− ϵ for Ṽ 1−α

k ∈ (Ṽ 1−α
N − χ, Ṽ 1−α

N ) (17)

for some finite positive constant χ < Ṽ 1−α
N . Then, if Ṽk

satisfies the relation

Ṽk−1 − Ṽk = −φkṼ
α
k , (18)

matrix Kk has the steady state and converges to K⋆ for
0 ≤ k < ξ⋆ where the positive integer ξ⋆ satisfies (20).

Proof: Note that (18) is a sufficient condition to ensure
that Ṽk−1 − Ṽk decreases along the convergence direction
of matrix Kk −K⋆ in the discrete-time system. Moreover,
given φk in (17), if and only if Ṽk = 0, the equality will be
zero. Then, (18) can be expressed as

Ṽk−1 = Ṽk − φkṼ
α
k = Ṽk(1−

φk

Ṽ 1−α
k

).

Let the initial value of the Lyapunov function be

ṼN = βN (φN )
1

1−α , βN > 0.

Substituting the value ṼN in (18), one gets

ṼN−1 = βN (φN )
1

1−α − φN Ṽ α
N = (βN − βα

N )(φN )
1

1−α .

Define βN−1 = βN − βα
N . Then we have ṼN−1 = βN−1 −

βα
N−1. Substituting the above value ṼN−1 into (18), it can

be inferred that

ṼN−2 = βN−2(φN )
1

1−α ,

where βN−2 = βN−1 − aN−1β
α
N−1 and aN−1 = φN−1

φN
.

Similarly, with a recursive relation of βk for 1 ≤ k ≤ N ,
Ṽk−1 can be expressed as

Ṽk−1 = βk−1(φN )
1

1−α , (19)

where βk−1 = βk − akβ
α
k and ak = φk

φN
. If Ṽk and φk

satisfy (17), then we obtain

βk−1 ≤βk − (1− ϵ)βα
k ,

=ϵβα
k − (1− β1−α

k )βα
k .

Since Ṽk−1 = Ṽ (Kk−1 −K⋆) is positive definite, βk−1 is
non-negative. When βk−1 = 0, it follows that

ϵ = 1− β1−α
k ⇔ β1−α

k = 1− ϵ. (20)

Let k = ξ⋆ be the smallest integer for which (20) is satisfied,
i.e., βξ⋆ = (1− ϵ)

1
1−α . In other words, βξ⋆−1 = 0. Thus, it

is easy to obtain that Ṽk = 0 with βk = 0 for 0 ≤ k < ξ⋆.
Consequently, Kk converges to K⋆ inversely in finite-time
ξ⋆. The proof is completed.
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Lemma 2 provides a new insight to prove the finite-time
inverse convergence for the matrix Kk in (7), which is also
an extension of finite-time vector forward convergence [16]
to matrix inverse convergence. Based on Lemma 2, then we
develop a matrix-valued Lyapunov function in the following
theorem to show the inverse convergence of Kk.

Theorem 2 (Finite-time inverse convergence of Kk):
Let ξ⋆ be the smallest integer for the inverse convergence
of matrix Kk. The parameter matrix Kk in (7) converges
inversely when 0 ≤ k < ξ⋆ where ξ⋆ satisfies (20).

Proof: The proof is completed by utilizing discrete-
time Lyapunov analysis. With Corollary 1 and Lemma 2,
we just need to find a Lyapunov function Ṽk, which satisfies
the convergence condition in (18). The concrete proof can
be founded in [15].

From Theorem 2, we know that the inverse convergence
of Kk for k = 1, . . . , N is independent of the initial matrix
KN+1. Furthermore, the inverse convergence of Fk is shown
as follows.

Corollary 2 (Inverse Convergence of Fk): When the
system structure Wk is fixed, the parameter vector Fk in
(6) converges inversely when 0 ≤ k < ξ⋆ + 1.

Proof: Since Fk = −R−1
k ΓT

kKk+1Wk with Rk =
ΓT
k (Qk + Kk+1)Γk and Kk in (7), the proof can be com-

pleted if the convergence of Kk+1 is guaranteed. When
0 ≤ k < ξ⋆, Kk converges inversely. Thus, Fk converges
when 0 ≤ k < ξ⋆ + 1. The proof is completed.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the optimal
sequential attack strategy, i.e., we analyze the driving perfor-
mance and the inverse convergence of its critical parameters
Kk and Fk.

Consider a consensus process with three agents. Under
attacks, the dynamics of the whole system satisfy (1). We set
the matrix W = I3−0.2∗L, which can achieve the average
consensus without attacks. Meanwhile, the system is stable
and controllable. In the linear network, the Laplacian matrix
L = [1 − 1 0;−1 2 − 1; 0 − 1 1] and L = [2 − 1 −
1;−1 2 − 1;−1 − 1 2] in the circle network. Let time
N = 50, and weight matrices Pk = Qk = H = I3 for all
0 ≤ k ≤ N . We set the initial state x0 = [−1 12 −5]T and
the expected malicious state x∗ = [0 0 0]T.

1) Effects of the sequential attack signal θ on the system
states: Given the attack selection strategy Γ1 = [1 0 0]T

and the linear network, the differences between the states
without attacks and that with the injected attack signal θ
are shown in Fig. 3(a). It is illustrated that the injected
sequential attack signal can steer the average consensus
value [2 2 2]T to the desired malicious state x∗ = [0 0 0]T.

2) Effects of the attack selection strategy Γ on θ under
different networks: We set attack selection strategy Γ1 =
[1 0 0]T, Γ2 = [0 1 0]T, and Γ3 = [0 0 1]T. The effects of
different attack selection strategies on the injected sequential
attack signal under linear and cycle networks are shown
in Fig. 3(b). Notably, the injected sequential attack signal
θ varies with the distinct attack selection strategies and

approaches zero. Moreover, from Table I and Table II, we
find that there exists a trade-off between the injected attack
energy and the value of the objective function regardless of
the type of the connected network. Specifically, the more the
objective function needs to be minimized while driving the
states to the malicious states, the more attack energy needs
to be injected.

TABLE I
RESULTS OF DIFFERENT ATTACK SELECTION IN LINEAR NETWORKS

Network
structure

Attack selection
strategy Γ

Attack energy∑N
k=0 θ

T
k θk

Objective function
J

Linear

[1 0 0]T 6.8787 238.6639

[0 1 0]T 14.7073 206.0239

[0 0 1]T 3.0517 300.6101

TABLE II
RESULTS OF DIFFERENT ATTACK SELECTION IN CIRCLE NETWORKS

Network
structure

Attack selection
strategy Γ

Attack energy∑N
k=0 θ

T
k θk

Objective function
J

Circle

[1 0 0]T 5.9828 234.0186

[0 1 0]T 14.7073 193.3255

[0 0 1]T 4.9348 242.1756

3) Effects of the initial states on θ: We set two types of
initial states x(1)

0 = [−1 12 −5]T and x
(2)
0 = [−1 10 −15]T,

and remain the other conditions. The effects of the initial
states on the injected optimal sequential attack signal θ are
shown in Fig. 3(c). It is illustrated that the size of the
injected attack signal highly depends on the initial states.
Even though there exists the same initial state for agent
1, the size of the injected attack signal is different and
influenced by the initial states of other agents.

4) Inverse convergence of Kk and Fk: In this part, we
show the inverse convergence of Kk and Fk, which are
measured by the following index

Kc = ∥Kk −K⋆∥, (21)

and

Fc = ∥Fk − F ⋆∥, (22)

where K⋆ and F ⋆ are the steady-state matrix of Kk and
Fk for 0 ≤ k ≤ N , respectively. Given the attack selection
strategy Γ1 = [1 0 0]T and the other same conditions as the
first part, the convergence error of Kk and Fk are illustrated
as Fig. 4(a) and Fig. 4(b). Under the linear network, when
the first or the third agent is compromised, the convergence
error of Kk and Fk are the same, which is different from that
when the only second agent is attacked. In other words, the
effects of attack selection strategies on the injected attack
signal depend on the network structure. Especially, under
the cycle network, the selection of the compromised agents
does not affect the injected signal. Moreover, comparing Fig.
4(a) with Fig. 4(b), it is easy to reveal that the convergence
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Fig. 3. Performance of the optimal sequential attack signal.

0 5 10 15 20 25 30 35 40 45

Iterations

10-15

10-10

10-5

100

C
on

ve
rg

en
ce

 e
rr

or

K
c
 Under 

1

F
c
 Under 

1

K
c
 Under 

2

F
c
 Under 

2

K
c
 Under 

3

F
c
 Under 

3

Inverse 
convergence

(a) Linear network

0 10 20 30 40 50
Iterations

10-15

10-10

10-5

100

C
on

ve
rg

en
ce

 e
rr

or

K
c
 Under 

1

F
c
 Under 

1

K
c
 Under 

2

F
c
 Under 

2

K
c
 Under 

3

F
c
 Under 

3

Inverse 
convergence

(b) Cycle network

Fig. 4. The convergence error of Kk and Fk under different networks.

rate of Fk is greater than that of Kk, which is owing to
the convergence of weight matrix Wk. From Table III, we
show the inverse convergence times for Kk and Fk, which
validate the result in Corollary 2. Meanwhile, we find that
only 15 iteration times are required to compute Kk and 14
iteration times for Fk regardless of the length of N .

TABLE III
TIMES OF INVERSE CONVERGENCE OF Kk AND Fk

Length of N 50 100 200 1000

Inverse Convergence
Time of Kk

[1, 35] [1, 85] [1, 185] [1, 985]

Inverse Convergence
Time of Fk

[1, 36] [1, 86] [1, 186] [1, 186]

V. CONCLUSION

We investigated the relationship between the injected at-
tack signal and the attack selection strategy. Specifically, we
first designed a sequential attack scheme where the injected
attack signals vary with the sampling time in discrete-
time systems. Then, we derived the optimal sequential
attack signal where the adversary steers the system state
to the malicious one, which reveals the strongly coupled
relationship about the attack selection strategy. When the
adversary knows the knowledge of the system model and
clears the expected malicious state, the designed optimal
sequential attack signal is related to the initial state and
the attack selection strategy. In addition, we proved the
inverse convergence of the critical parameters in the optimal
sequential attack signal. Future work will strive to obtain the
near-optimal attack selection strategy under the proposed
optimal sequential attack signal.
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