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Abstract— Stability in networked control systems has been
typically addressed in the deterministic setting using the con-
cepts of Maximum Allowable Transmit Interval (MATI) and
Maximum Allowable Delay (MAD). This work looks to extend
the analysis to the stochastic setting by giving conditions for
uniform stability in probability when the communication delay
follows a probability distribution that includes values over
the deterministic MAD. Analytical conditions are given and
validated through simulations using a concrete example.

I. INTRODUCTION

The widespread use of feedback control loops that share
the communication medium, particularly in the industrial
setting, has stimulated the development of a branch of control
theory known as control over networks, or networked control
systems (NCSs) [1], [2]. NCSs modernize the notion of
feedback loop by explicitly integrating in the analysis a
communication channel between sensors and the controller
and/or between the controller and actuators [3]. In an NCS,
the communication network plays a key role in the perfor-
mance of the system; hence, its presence must be taken into
account from the earliest design stage [4].

Focusing on maintaining closed-loop stability achieved
by a nominal non-networked control law, several efforts
have been made by the control community to establish
requirements on the network “quality of service” [5] to
ensure stability of the system after the inclusion of the
communication network. The introduction of the Maximum
Allowable Transmit Interval (MATI) and Maximum Allow-
able Delay (MAD) [6] of an NCS represents a concrete
step in this regard, which enables linking communications
and control. The MATI and MAD refer to timeliness of
information. The MATI can be viewed as an upper bound on
the sampling period [2], while the MAD is an upper bound
on the information delay the control loop tolerates [7].

Based on these concepts, a large body of recent literature
has focused on obtaining values for MATI and MAD that are
not conservative and get close to a “true value” [5], [7], [8],
[9]. However, MATI and MAD are deterministic bounds and
stability claims hold only in the deterministic setting. This
is certainly a limitation given that in a realistic NCS the
network is inherently stochastic, which makes it impossible
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to guarantee the fulfillment of a bound at every transmission
event, particularly for the MAD.

Inspired by the findings in [10], which show that stability
is preserved when MATI and MAD are violated with a low
probability, and supported by recent works where conditions
for stability in probability have been formulated for systems
with stochastic communication protocols [9], [11], [12] and
event-triggered control laws regulated by stochastic pro-
cesses [13], in this work we contribute by deriving conditions
for uniform stability in probability for a class of NCSs that
face a stochastic communication delay taking values over the
deterministic MAD with positive probability.

The rest of this manuscript is organized as follows. Section
II introduces preliminaries. In Section III the problem of
interest is formulated. The main result of this work is given in
Section IV. Numerical experiments are presented in Section
V. Finally, conclusions are stated in Section VI.

II. PRELIMINARIES

A. Notation and Basic Definitions

In this work, N denotes the set of positive integers, Z≥0 the
set of non-negative integers, R the set of real numbers, R≥0

the set of non-negative real numbers, and RN the Euclidean
space of dimension N . B denotes the closed unit ball and Bo

the corresponding open ball. A function α : R≥0 → R≥0 is
of class K if it is continuous, strictly increasing and α(0) =
0; it is of class K∞ if it is of class K and unbounded. Given
a compact set A ⊂ RN , ρ : RN → R≥0 is of class PD(A)
if it is continuous and ρ(x) = 0 ⇐⇒ x ∈ A.

B. Stochastic Hybrid Systems

To conduct the analysis, we adopt the stochastic hybrid
systems framework introduced in [14], [15]. Consider the
following stochastic hybrid system

ẋ = F (x), x ∈ C
x+ ∈ G(x, v+), x ∈ D, v ∼ µ(·),

(1)

where x ∈ Rn is the state, C ⊂ Rn and D ⊂ Rn are the flow
set and jump set, respectively; F : Rn → Rn is the flow map
and G : Rn × Rm ⇒ Rn is the jump map. The notation v+

is a placeholder for a sequence of independent identically
distributed (i.i.d.) input random variables vi : Ω → Rm , i ∈
N, defined on the probability space (Ω,F ,P). µ denotes the
distribution function derived from the i.i.d. random variables.

Throughout this work, the following standing assumption
is made use of.

Assumption 1: Consider system (1):
1) C, D ⊂ Rn are closed.
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2) F : Rn → Rn is continuous.
3) a) G : Rn × Rm ⇒ Rn is locally bounded.

b) v 7→ graph(G(·, v)) := {(x, y) ∈ R2n : y ∈
G(x, v)} is measurable with closed values.

The solution concept for system (1) is built as follows. A
relaxed hybrid arc is a mapping ϕ : H → Rn such that H is
a hybrid time domain [14] and, for each j ∈ Z≥0, t 7→ ϕ(t, j)
is locally absolutely continuous. Given the measurable space
(Ω,F), a stochastic hybrid arc is a mapping x defined on
Ω such that x(ω) (also written xω) is a relaxed hybrid arc
for each ω ∈ Ω and the set-valued mapping from Ω to Rn+2

defined by

ω 7→ graph(xω) := {(t, j, z) ∈ Rn+2 : (t, j) ∈ domxω,

z = xω(t, j)},

is F-measurable [15] with closed values.
Given the sequence of i.i.d. random variables v :=

{vi}∞i=1, let {Fi}∞i=1 denote the natural filtration of F with
respect to v and define graph(xω)≤j := graph(xω)∩(R≥0×
{1, . . . , j} × Rn). An {Fi}∞i=1 adapted stochastic hybrid
arc is a stochastic hybrid arc, x, such that the mapping
ω 7→ graph(xω)≤j is Fj-measurable for each j ∈ Z≥0.
A solution to (1), starting at x ∈ Rn with input v(ω), is an
adapted stochastic hybrid arc, x, such that for almost every
ω ∈ Ω:

1) xω(0, 0) = x
2) for each j ∈ Z≥0, if Ij := {t : (t, j) ∈ domxω} has

nonempty interior, then, for every t ∈ Ij(ω):
a) xω(t, j) ∈ C
b) xω(t, j)− xω(Tj , j) =

∫ t

Tj
F (xω(s, j))ds

3) if (t, j), (t, j + 1) ∈ domxω then
a) xω(t, j) ∈ D
b) xω(t, j + 1) ∈ G(xω(t, j), vj+1(ω))

For a solution x starting at a point x ∈ O, we use the notation
x ∈ Sr(O).

At this point, the stability notions used in this work are
introduced.

Definition 1 ([13]): A compact set A is said to be
1) Uniformly Lyapunov stable in probability: if for each

ϵ > 0 and ρ > 0 there exists δ > 0 such that

x ∈ Sr(A+ δB)
⇒ P(graph(x) ⊂ R2 × (A+ ϵB)) ≥ 1− ρ

(2)

2) Uniformly Lagrange stable in probability: if for each
δ > 0 and ρ > 0 there exists ϵ > 0 such that (2) holds.

3) Uniformly globally stable in probability (UGSp): if it
is both uniformly Lyapunov stable in probability and
uniformly Lagrange stable in probability.

In what follows, basic definitions are stated, to conclude
with a key result presenting sufficient conditions to prove the
uniformly globally stable in probability property.

Let V := ∪ω∈Ω,i∈Nvi(ω). A function V : domV → R
is a certification candidate for H = (C, F,D, G, µ), and we
write V ∈ D(H), if the following conditions are satisfied.

C1: C ∪ D ∪G(D × V) ⊂ domV

Plant

...
Controller

j is the node transmitted


Sampler (sensor)

Scheduling protocol 

...

Network

... ...

...

Fig. 1: NCS under study, a communication network from
sensor to controller is explicitly included.

C2: 0 ≤ V (x) for all x ∈ C ∪ D ∪G(D × V)
C3: The quantity

∫
Rm supg∈G(x,v)V (g)µ(dv) is well de-

fined (and finite) for each x ∈ D, using the convention that
supg∈G(x,v)V (g) = 0 when G(x, v) = ∅.

Definition 2: Given a closed set S ⊂ Rn, let V :
domV → R be a certification candidate for H∩S :=
(C ∩ S, F,D ∩ S,G ∩ S, µ). For all x ∈ C ∩ S we define

LSV (x) := sup
f∈F (x)

⟨∇V (x), f⟩, (3)

and for all x ∈ D ∩ S we define

∆SV (x) :=

∫
Rm

sup
g∈G(x,v)∩S

V (g)µ(dv)− V (x). (4)

These quantities are well-defined and finite for each x ∈
C ∩ S, respectively x ∈ D ∩ S, under the stochastic hybrid
basic conditions of Assumption 1.

Lemma 1 ([15]): Consider the stochastic hybrid system
(1) and let Assumption 1 hold, the compact set A ⊂ Rn is
UGSp if there exist K∞ functions α1, α2 and V ∈ D(H)
such that

α1(|x|A) ≤ V (x) ∀x ∈ C ∪ D ∪G(D × V) (5a)
V (x) ≤ α2(|x|A) ∀x ∈ C ∪ D (5b)

LRnV (x) ≤ 0 ∀x ∈ C (5c)
∆RnV (x) ≤ 0 ∀x ∈ D (5d)

III. PROBLEM STATEMENT

The NCS under study considers a communication network
from sensor to controller and is illustrated in Fig. 1. In this
setup, we consider a closed loop formed by a continuous-
time plant and a stabilizing state-feedback controller,

ẋ = f(x, u)

u = κ(x̂),
(6)

where x ∈ Rnx denotes the state of the plant, u ∈ Rnu

denotes the control input and x̂ ∈ Rnx is the most recent
state measurement available at the controller. f is assumed
to be continuous and κ is continuously differentiable.

The operation of the NCS is as follows. The plant has a
set of output nodes, which sample periodically one or more
states of the plant at transmission instants tsi , satisfying
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tsi+1
− tsi = λ ∀i ∈ N. The information is sent over

the network to the controller, according to a protocol that
determines which state node has access to the network.
The sampling period satisfies λ ≤ τmati, where τmati

denotes the MATI. The output arrives to the controller after
a transmission delay vi. It is assumed that there exists a
MAD, denoted as τmad, that guarantees closed loop stability
if vi < τmad ∀i ∈ N.

The problem of interest in this work considers a stochastic
transmission delay modeled as a random variable vi that
distributes according to a probability density function µ with
bounded support, up to d̄, such that∫ d̄

0

µ(dv) = 1. (7)

We consider τmad < d̄ < λ, i.e., the delay can take values
exceeding τmad with positive probability. Additionally, we
consider that the stochastic delay satisfies the small delay
condition [7], i.e., the controller updates always occur before
the next plant transmission. The update at tsi + vi satisfies

x̂((tsi + vi)
+) = x(tsi) + h(i, e(tsi)), (8)

where e = x̂−x and the function h is related to the protocol
that determines which node is granted access to the network
[11]. In particular, the components hj of h satisfy

hj(i, e(tsi)) =

{
0, if j is transmitted at instant tsi
ej(tsi), if j is not transmitted at tsi ,

(9)
for j ∈ {1, 2, ..., nx}.

To conduct the analysis, we formulate the NCS model
into a stochastic hybrid system framework, similar to [7].
Considering the variable s ∈ Rnx , which stores the sampled
state in the value h − e at instant tsi , a timer τt ∈ [0, λ]
to model the transmission interval, a timer τd ∈ R≥0 to
model the stochastic transmission delay, a counter k ∈ N to
track the sampling/transmission events and a binary variable
q ∈ {0, 1} that indicates if the next event is a transmission
(q = 0) or an update (q = 1), the stochastic hybrid model
describing the NCS is given by

ξ̇ := (ẋ, ė, ṡ, τ̇t, τ̇d, k̇, q̇) = (F (x, e), G(x, e), 0,−1,−q, 0, 0),

ξ ∈ C := {Rnx × Rnx × Rnx × [0, λ]× R≥0 × N× {0, 1}}
(10)

ξ+ := (x+, e+, s+, τ+t , τ+d , k+, q+)

=

{
(x, e, h(k, e)− e, λ, v, k + 1, 1), if ξ ∈ D1

(x, s+ e,−s− e, τt,M, k, 0), if ξ ∈ D2

,
(11)

where F and G are functions depending on f and κ, C
denotes the flow set, and D1 = {ξ ∈ C|τt = 0} and
D2 = {ξ ∈ C|τd = 0} are the jump sets, M ∈ R≥0 is
an arbitrary constant value and v ∼ µ(·) is the random delay
value. Note that Assumption 1 holds.

The problem considered in this work is summarized as
follows.

Problem 1: Consider the NCS described by (10)-(11).
Suppose that the closed-loop (6) remains stable whenever

λ < τmati and vi < τmad, ∀i ∈ N. Derive conditions that
ensure stability in probability when vi is allowed to surpass
τmad with a positive probability, tabulated in µ(·).

IV. MAIN RESULT

To conduct the analysis, we rely on the following assump-
tions, in the spirit of [7] and [13].

Assumption 2: There exist a continuously differentiable
function W : N×{0, 1}×Rnx ×Rnx → R≥0, K∞ functions
β
W

and βW , a constant ϵ1 ∈ (0, 1), and a measurable
function ϵ2 : R≥0 → R≥0, such that ∀k ∈ N, ∀v ∈ [0, d̄],
∀q ∈ {0, 1}, and ∀s, e ∈ Rnx the following hold:

β
W
(|(e, s)|) ≤ W (k, q, e, s) ≤ βW (|(e, s)|) (12a)

W (k+, 1, e+, s+) ≤ ϵ1W (k, 0, e, s) (12b)
W (k+, 0, e+, s+) ≤ ϵ2(v)W (k, 1, e, s) (12c)

The next assumption demands a robust stability property on
the controlled system with respect to the network.

Assumption 3: There exist a continuously differentiable
function V : Rnx → R≥0, K∞-functions β

V
, βV , continu-

ous functions Hi : Rnx → R≥0, positive definite functions
ρi and σi and constants γi > 0, for i ∈ {0, 1}, and η > 0
such that ∀k ∈ N, q ∈ {0, 1}, s, e ∈ Rnx and almost all
x ∈ Rnx , the following hold:

β
V
(|x|) ≤ V (x) ≤ βV (|x|) (13)

⟨∇V (x), F (x, e)⟩ ≤ (1− q)[−ρ0(|x, e|)−H2
0 (x)−

σ0(W (k, q, e, s)) + γ2
0W (k, q, e, s)]

+ q[−ρ1(|x, e|)−H2
1 (x) (14)

− σ1(W (k, q, e, s)) + γ2
1W (k, q, e, s)]

with σ0(W (k, 0, e, s)) ≥ 2ηW (k, 0, e, s).
Remark 1: In contrast to [7], [13], Assumption 2, refer-

ring to the stability of the communication protocol [11],
allows ϵ2 to be a random variable. Assumption 3 entails the
stability of closed loop (6) before the addition of the network;
stronger than those in [7], [13], a domination condition on
the communication protocol term, relying on the existence
of η, has been requested to face the stochastic delays.

To state the following condition, let us define strictly
increasing positive functions by

ϕ0(τt) : [0, λ] → R+, with ϕ̇0(τt) ≥
1

δ
, δ > 0,

ϕ̇1(τd) = L1ϕ1(τd) + γ1ϕ
2
1(τd) + γ1.

(15)

The following condition, which is similar to the one in
[13], will be shown critical for the analysis, as it limits the
growth rate of the terms associated to the network in flow.

Condition 1: There exist constants Li ≥ 0, i = 0, 1, and
K ≥ 0 such that ∀k ∈ N, q ∈ {0, 1}, s ∈ Rnx , x ∈ Rnx ,
and almost all e ∈ Rnx , the following holds:〈

∂W (k, q, e, s)

∂e
,G(x, e)

〉
≤ (1− q)[L0W (k, q, e, s)

+ 2K
√

W (k, q, e, s)H0(x)]

+ q[L1W (k, q, e, s) (16)

+ 2
√

W (k, q, e, s)H1(x)],
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with
L0 =

η

δγ2
0ϕ0(λ)

, K =

√
η

δγ2
0ϕ0(λ)

. (17)

The main result of this work is now introduced.
Theorem 1: Consider the NCS described by (10)-(11) and

let Assumptions 2, 3 hold. If Condition 1 is satisfied and∫ d̄

0

ϕ1(v)µ(dv) <
δγ2

0ϕ0(0)

γ1ϵ1
, (18)

∫ d̄

0

ϵ2(v)µ(dv) <
γ1ϕ1(0)

δγ2
0ϕ0(λ)

, (19)

then the set W = {0}×{0}×{0}×[0, λ]×[0, d̄]×N×{0, 1}
is UGSp.

Proof: Consider the following certification candidate

U(ξ) = V (x) + (1− q)δW (k, q, e, s)γ2
0ϕ0(τt)

+ qW (k, q, e, s)γ1ϕ1(τd),
(20)

where ϕ0 and ϕ1 are the solutions of (15). For all ξ ∈ C we
define

FSHS(ξ) = (F (x, e), G(x, e), 0,−1,−q, 0, 0). (21)

During flows, and due to Assumption 3, we have that for
q = 0, for all (τt, τd, k, q) and almost all (x, e, s),

LU(ξ) = ⟨∇U(ξ), FSHS(ξ)⟩

=
∂V (x)

∂x
F (x, e) + δγ2

0ϕ0(τt)
∂W (k, 0, e, s)

∂e
G(x, e)

− δγ2
0W (k, 0, e, s)ϕ̇0(τt)

≤ −ρ0(|x, e|)−H2
0 (x)− σ0(W (k, 0, e, s))

+ γ2
0W (k, 0, e, s) + δγ2

0ϕ0(τt)
η

δγ2
0ϕ0(λ)

W (k, 0, e, s)

+ 2δγ2
0ϕ0(τt)

√
η

δγ2
0ϕ0(λ)

√
W (k, 0, e, s)H0(x)

− δγ2
0W (k, 0, e, s)ϕ̇0(τt)

≤ −ρ0(|x, e|)−H2
0 (x)− 2ηW (k, 0, e, s)

+ ηW (k, 0, e, s) + 2
√
η
√
W (k, 0, e, s)H0(x)

= −ρ0(|x, e|)−
(
H0(x)−

√
ηW (k, 0, e, s)

)2
≤ 0. (22)

Similarly, for q = 1, for all (τt, τd, k, q) and almost all
(x, e, s),

LU(ξ) = ⟨∇U(ξ), FSHS(ξ)⟩

=
∂V (x)

∂x
F (x, e) + γ1ϕ1(τd)

∂W (k, 1, e, s)

∂e
G(x, e)

− γ1W (k, 1, e, s)ϕ̇1(τd)

≤ −ρ1(|x, e|)−H2
1 (x)− σ1(W (k, 1, e, s)) + γ2

1W (k, 1, e, s)

+ γ1ϕ1(τd)
[
L1W (k, 1, e, s) + 2

√
W (k, 1, e, s)H1(x)

]
− γ1W (k, 1, e, s)

[
L1ϕ1(τd) + γ1ϕ

2
1(τd) + γ1

]
= −ρ1(|x, e|)−H2

1 (x)− σ1(W (k, 1, e, s))

+ 2γ1ϕ1(τd)
√

W (k, 1, e, s)H1(x)− γ2
1W (k, 1, e, s)ϕ2

1(τd)

= −ρ1(|x, e|)− σ1(W (k, 1, e, s))

−
(
H1(x)− γ1ϕ1(τd)

√
W (k, 1, e, s)

)2
≤ 0. (23)

During jumps, we have that ∀ξ ∈ D1,

ξ = (x, e, s, 0,M, k, 0)

U(ξ) = V (x) + δγ2
0ϕ0(0)W (k, 0, e, s)

ξ+ = (x, e, h(k, e)− e, λ, v, k + 1, 1) (24)
U(ξ+) = V (x) + γ1ϕ1(v)W (k + 1, 1, e, h(k, e)− e),

and then,∫ d̄

0

U(ξ+)µ(dv)− U(ξ) = V (x)

∫ d̄

0

µ(dv)

+ γ1W (k + 1, 1, e, h(k, e)− e)

∫ d̄

0

ϕ1(v)µ(dv)− V (x)

− δγ2
0ϕ0(0)W (k, 0, e, s)

= γ1W (k + 1, 1, e, h(k, e)− e)

∫ d̄

0

ϕ1(v)µ(dv)

− δγ2
0ϕ0(0)W (k, 0, e, s)

≤ γ1

∫ d̄

0

ϕ1(v)µ(dv)ϵ1W (k, 0, e, s)

− δγ2
0ϕ0(0)W (k, 0, e, s)

= W (k, 0, e, s)

(
γ1ϵ1

∫ d̄

0

ϕ1(v)µ(dv)− δγ2
0ϕ0(0)

)
≤ 0. (25)

Similarly, ∀ξ ∈ D2,

ξ = (x, e, s, τt, 0, k, 1)

U(ξ) = V (x) + γ1ϕ1(0)W (k, 1, e, s)

ξ+ = (x, s+ e,−s− e, τt,M, k, 0)

U(ξ+) = V (x) + δγ2
0ϕ0(τt)W (k, 0, s+ e,−s− e), (26)

and then,∫ d̄

0

U(ξ+)µ(dv)− U(ξ) = V (x)

∫ d̄

0

µ(dv)

+ δγ2
0ϕ0(τt)

∫ d̄

0

W (k, 0, s+ e,−s− e)µ(dv)− V (x)

− γ1ϕ1(0)W (k, 1, e, s)

= δγ2
0ϕ0(τt)

∫ d̄

0

W (k, 0, s+ e,−s− e)µ(dv)

− γ1ϕ1(0)W (k, 1, e, s)

≤ δγ2
0ϕ0(τt)W (k, 1, e, s)

∫ d̄

0

ϵ2(v)µ(dv)

− γ1ϕ1(0)W (k, 1, e, s)

= W (k, 1, e, s)

(
δγ2

0ϕ0(τt)

∫ d̄

0

ϵ2(v)µ(dv)− γ1ϕ1(0)

)
≤ 0. (27)

Invoking Lemma 1 yields that W is UGSp.
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V. NUMERICAL RESULTS

To validate the analytical result, we conduct numerical
experiments on a closed loop involving a linear system and
a state-feedback controller, namely,

ẋ = Ax+Bu, u = Kx̂, (28)

with A = 1, B = 5 and K = −0.4. By using the NCS model
given in (10) and (11), we have F (x, e) = A11x+A12e and
G(x, e) = A21x+A22e, with A11 = A+BK, A12 = BK,
A21 = −(A+BK) and A22 = −BK.

To simulate the NCS, we use the HyEQ Toolbox for
Matlab, considering in all cases the initial condition ξ0 =
(1,−1, 1, 0, 1, 0, 0). First, we simulate the NCS without
delay with the objective of obtaining the experimental “true”
MATI, resulting in τmati = 1.098s. Then, setting the sam-
pling rate as λ = 1.09s, we obtain the deterministic MAD,
resulting in τmad = 0.184s.

Considering the MAD, four scenarios are defined for µ
based on a slotted principle, yielding the discrete distribu-
tions shown in Fig. 2. It can be seen that each scenario
includes a positive probability for a value over the MAD.

To verify Assumption 2, assume that W (k, q, e, s) = eT e
and, hence, (12a) holds trivially. Since only one node samples
the state of the system, is follows that W (k+, 1, e+, s+) =
W (k, 0, e, s) in the transmission jump; therefore, (12b) holds
with ϵ1 = 1. To obtain ϵ2, we simulate the NCS set-
ting the delay as a constant value for each possible delay
value; at each update jump, we calculate the ratio between
W (k+, 0, e+, s+) and W (k, 1, e, s), with W (k, 1, e, s) ̸= 0,
and take the maximum on (k, e, s) to obtain an approximated
value for ϵ2, so that (12c) –and hence Assumption 2– holds.
Table I shows the values obtained. Note that since ϵ2 is a
strictly increasing function, it also distributes according to
µ.

TABLE I: Values for ϵ2 obtained in simulations

Delay (µs) 0.22 2.2 220 220000
ϵ2 1.1× 10−13 1.1× 10−11 1.1× 10−7 2.39

We now proceed to verify Condition 1. Firstly, we compute
(16) for q = 0〈

∂(eT e)

∂e
,A21x+A22e

〉
= 2eTA21x+ 2eTA22e

≤ 2
√
W (k, 0, e, s)|A21x|+ 2|A22|W (k, 0, e, s)

≤ 2K
√

W (k, 0, e, s)H0(x) + L0W (k, 0, e, s),

(29)

which is satisfied if H0(x) = |A21x| and

L0 =
η

δγ2
0ϕ0(λ)

≥ 2|A22|, K =

√
η

δγ2
0ϕ0(λ)

≥ 1 (30)

considering η sufficiently large. Then, for q = 1〈
∂(eT e)

∂e
,A21x+A22e

〉
= 2eTA21x+ 2eTA22e

≤ 2
√
W (k, 1, e, s)|A21x|+ 2|A22|W (k, 1, e, s)

≤ 2
√

W (k, 1, e, s)H1(x) + L1W (k, 1, e, s),

(31)

which is satisfied if H1(x) = |A21x| and L1 = 2|A22|.
From this, we define H(x) = H0(x) = H1(x). Then, we
consider V (x) = xTPx (note that (13) holds). We can derive
from (14) the values for γ0 and γ1, such that Assumption
3 holds. In particular, for this example, we will consider
ρ(|x, e|) = ρ0(|x, e|) = ρ1(|x, e|) and γ = γ0 = γ1 so we
will proceed indistinctly for q = 0 and q = 1 as follows

⟨∇V (x), A11x+A12e⟩ = 2xTPA11x+ 2xTPA12e

≤ −ρ(|x, e|)−H2(x) + γ2W (k, q, e, s)
(32)

Defining ρ(|x, e|) = ν|x|2 + ν|e|2, (32) results in the

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Fig. 2: Discrete probability distributions ruling the transmis-
sion delay in each scenario.

following LMI(
AT

11P + PA11 + νI +AT
21A21 PA12

AT
12P (ν − γ2)I

)
≤ 0

P = PT > 0

(33)

Solving (33) with the YALMIP toolbox and setting ν = 0.01,
we obtain γ = 2.33.

Regarding ϕ0, we can approximate it as a linear function
and by setting δ = 0.1, ϕ0(0) = 2.35 and ϕ1(0) = 0.4, (15)
can be solved. Fig. 3 shows the resulting ϕ0 and ϕ1.

To validate Theorem 1 we simulate the scenarios in Fig.
2. Since we are working with probabilities, we ran a total
of 500 realizations for each scenario. From this, we can
calculate the probability of the state converging to the origin
for the different delay distribution used. Fig. 4 shows the
state trajectory for one representative realization to illustrate
the expected behavior of the system in each scenario.

For the probability distribution in scenario 1, the condi-
tions (18) and (19) in Theorem 1 hold and the simulations
indeed indicate that the system is stable with probability 1.
This result is meaningful since it implies that the MAD can
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be violated in 5% of the transmissions without compromising
the stability of the NCS. For scenarios 2, 3 and 4, the
conditions in Theorem 1 do not hold. However, in scenario 2,
the amount by which the conditions are violated is lower than
in scenario 3, and in scenario 3 are lower than in scenario
4. This fact impacts the simulation results, where scenario 2
yielded a 75.8% probability of being stable, while scenarios
3 and 4, yielded a 18.2% and 0%, respectively.

The representative trajectories in Fig. 4 graphically illus-
trate the different dynamical behavior in each scenario. While
in scenario 1 convergence is clean, stability deteriorates
progressively as the delay distribution makes violating the
MAD more likely. These results suggest that quantifying the
amount by which the conditions in Theorem 1 are violated
is relevant to assess the dynamical behavior of the NCS.

VI. CONCLUSIONS

In this work, analytical conditions are given that ensure
uniform stability in probability for a class of NCSs subject
to a stochastic transmission delay that takes values over
the MAD. It is shown that the deterministic MAD can be
violated with a low probability without compromising the
stability of the system. The results are verified in the context
of a simulated example.

The results of this work are of practical relevance when an
NCS, designed in an ideal setting and hence with a known
MAD, is operated in a realistic scenario where the channel
is no longer deterministic and becomes stochastic. If an
estimation of the delay distribution is available, our results
allow giving a guarantee for uniform stability in probability.

Future work includes extending the results for a more
general NCS setup and verifying the stability conditions in
a real implementation.

(a) ϕ0 (b) ϕ1

Fig. 3: Functions ϕi used in the numerical analysis.
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