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Abstract— This work proposes a compositional data-driven
technique for the construction of finite Markov decision pro-
cesses (MDPs) for large-scale stochastic networks with unknown
mathematical models. Our proposed framework leverages dis-
sipativity properties of subsystems and their finite MDPs using
a notion of stochastic storage functions (SStF). In our data-
driven scheme, we first build an SStF between each unknown
subsystem and its data-driven finite MDP with a certified prob-
abilistic confidence. We then derive dissipativity-type composi-
tional conditions to construct a stochastic bisimulation function
(SBF) between an interconnected network and its finite MDP
using data-driven SStF of subsystems. Accordingly, we formally
quantify the probabilistic distance between trajectories of an
unknown large-scale stochastic network and those of its finite
MDP with a guaranteed confidence. We illustrate the efficacy
of our data-driven results over a room temperature network
composing 100 rooms with unknown models.

I. INTRODUCTION

Providing a formal analysis framework for large-scale
stochastic networks to fulfill complex logic properties is gen-
erally very challenging. This is particularly due to (i) dealing
with uncountable state/input sets with large dimensions, (ii)
stochastic nature of dynamics, (iii) complex logic require-
ments, and (iv) lack of closed-form mathematical models
in many real-world applications. To mitigate the aforesaid
difficulties, one rewarding solution is to approximate the
original (concrete) system by a finite MDP as a finite-
state model. By establishing a similarity relation between
each concrete system and its finite MDP using a notion of
stochastic simulation functions, the probabilistic mismatch
between two systems can be quantified within a guaranteed
error bound.

There have been numerous studies, conducted in the past
two decades, on the abstraction-based analysis of stochastic
systems. Existing results encompass construction of (in)finite
abstractions for stochastic dynamical systems with contin-
uous state sets [1]–[4]. However, the main bottleneck of
those techniques is curse of dimensionality problem due to
discretizing state and input sets. Compositional techniques
for constructing finite abstractions have then been proposed
to alleviate the underlying state-explosion problem: one can
build a finite abstraction for a large-dimensional system using
finite abstractions of smaller subsystems [5]–[8].

Although the above-mentioned studies on constructing
finite abstractions are comprehensive, unfortunately, they
require knowing the mathematical model of the system.
Accordingly, one cannot leverage those techniques for many
practical scenarios with unknown models. Although identifi-
cation techniques have been proposed to learn approximate
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models of unknown systems, obtaining a precise model is
computationally very burdensome [9, and references herein]).
In addition, even if a model can be identified using system
identification techniques, the relation between the identified
model and its finite abstraction should be still constructed.
Consequently, the computational complexity exists in two
levels of identifying the model and establishing the similar-
ity relation. In this work, we develop a direct data-driven
scheme, without performing any system identification, and
construct finite abstractions together with their associated
similarity relations by directly gathering data from trajec-
tories of unknown concrete systems.

The original contribution here is to propose a composi-
tional data-driven technique for constructing finite MDPs
for large-scale stochastic control networks with unknown
mathematical models. We leverage dissipativity properties of
subsystems and their finite MDPs using a notion of stochastic
storage functions (SStF). In our data-driven scheme, we
recast conditions of SStF as a robust optimization program
(ROP). By gathering samples from trajectories of each un-
known subsystem, we then provide a scenario optimization
program (SOP) for the original ROP. By quantifying the
closeness between the optimal values of SOP and ROP, we
build an SStF between each unknown subsystem and its data-
driven finite MDP with a guaranteed probabilistic confidence.
We then derive a dissipativity-type compositional condition
to construct stochastic bisimulation functions (SBF), between
an interconnected network and its finite MDP, using data-
driven SStF of subsystems. Eventually, we quantify the
probabilistic closeness between trajectories of an unknown
interconnected network and its finite MDP with a guaranteed
confidence level. We demonstrate the efficacy of our pro-
posed data-driven results over a room temperature network
composing 100 rooms with unknown models.

There has been a limited number of work on data-
driven construction of symbolic models (in deterministic
setting) and finite MDPs (in stochastic setting). Existing
results include: data-driven abstraction of monotone systems
with disturbances [10]; data-driven construction of symbolic
abstractions via a probably approximately correct (PAC)
approach [11]; data-driven construction of finite abstractions
for verification of unknown systems [12]; data-driven con-
struction of symbolic models for incrementally input-to-state
stable systems [13]; and data-driven construction of finite
MDPs for incrementally input-to-state stable systems [14].
In comparison, we propose here a compositional data-driven
framework using dissipativity approach for constructing fi-
nite MDPs for large-scale interconnected networks, whereas
the results in [10]–[14] are all tailored to monolithic systems.
As a result, the approaches in [10]–[14] suffer from the
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sample complexity problem and are not useful in practice
when dealing with high-dimensional systems. In addition,
the works [10]–[13] construct symbolic abstractions from
unknown deterministic systems, whereas we develop here a
data-driven technique for building finite MDPs for stochastic
systems which is more challenging given the stochastic
nature of unknown dynamics. Due to space limitations, we
refer to the arXiv version [15] for the proofs of all statements.

II. DISCRETE-TIME STOCHASTIC CONTROL SYSTEMS

A. Notation and Preliminaries
In this work, R,R+, and R+

0 , represent sets of real, pos-
itive, and non-negative real numbers, respectively. Symbols
N := {0, 1, 2, ...} and N+ = {1, 2, ...} denote, respectively,
sets of non-negative and positive integers. A column vec-
tor, given N vectors xi ∈ Rni , is represented by x =
[x1; . . . ;xN ]. Given a set X , its power set is denoted by
2X . We denote the minimum and maximum eigenvalues of a
symmetric matrix P , respectively, by λmin(P ) and λmax(P ).
Given any scalar a ∈ R and vector x ∈ Rn, |a| and ‖x‖
represent, respectively, the absolute value and the Euclidean
norm. For a matrix P ∈ Rm×n, ‖P‖ :=

√
λmax(P>P ).

We denote the supremum of a function f : N → Rn by
‖f‖∞ := (ess)sup{‖f(k)‖, k ≥ 0}. Given a system Λ and a
property ϕ, Λ � ϕ denotes that Λ fulfills ϕ.

Given a probability space (Ω,FΩ,PΩ), with Ω being a
sample space, FΩ a sigma-algebra on Ω, and PΩ a probabil-
ity measure, N -Cartesian product set of Ω and its associated
product measure are denoted, respectively, by ΩN and PN .
A set X is Borel, denoted by B(X), if it is homeomorphic
to a Borel subset of a Polish space, i.e., a separable and
metrizable space.

B. Discrete-Time Stochastic Control Systems
Here, we first formally define discrete-time stochastic

control systems as the following.
Definition 2.1: A discrete-time stochastic control system

(dt-SCS) is characterized by

Λ = (X,U,D, ς, f), (1)

where:
• X ⊆ Rn is a Borel state set;
• U = {ν1, ν2, . . . , νm}, with νi ∈ Rm̄, i ∈ {1, . . . ,m},

is a discrete input set;
• D ⊆ Rp is a Borel disturbance set;
• ς is a sequence of independent-and-identically dis-

tributed (i.i.d.) random variables from the sample space
Ω to a set Hς , i.e. ς := {ς(k) : Ω→ Hς , k ∈ N};

• f : X × U ×D ×Hς → X is a transition map, which
is assumed to be unknown.

The evolution of dt-SCS can be described by

Λ: x(k + 1) = f(x(k), ν(k), d(k), ς(k)), k ∈ N, (2)

for any x ∈ X , ν(·) : Ω→ U , and d(·) : Ω→ D. The state
trajectory of Λ under ν(·), d(·) starting from x(0) = x0 is
denoted by xx0νd: Ω× N→ X .

Since the ultimate objective is to construct a finite MDP
for an interconnected dt-SCS, we consider dt-SCS in (2) as a
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Fig. 1. Interconnected dt-SCS I(Λ1, . . . ,ΛM ).

subsystem and present another definition for interconnected
dt-SCS without disturbances d as a composition of individual
dt-SCS with disturbances d.

Definition 2.2: Consider M ∈ N+ dt-SCS Λi =
(Xi, Ui, Di, fi, ςi), i ∈ {1, . . . ,M}, with a matrix M as
a coupling among them. An interconnection of Λi is charac-
terized as Λ = (X,U, f, ς), represented by I(Λ1, . . . ,ΛM ),
where X :=

∏M
i=1Xi, U :=

∏M
i=1 Ui, f := [f1; . . . ; fM ],

and ς := [ς1; . . . ; ςM ], such that:[
d1; · · · ; dM

]
=M

[
x1; · · · ;xM

]
. (3)

Such an interconnected dt-SCS is described by

Λ: x(k+1)=f(x(k), ν(k), ς(k)),with f : X×U×Hς → X.
(4)

An interconnected dt-SCS Λ is schematically depicted in
Fig. 1.

C. Finite Markov Decision Processes

Here, we construct finite MDPs as finite-state approxi-
mations of dt-SCS. To this end, we first partition state and
disturbance sets as X = ∪iXi and D = ∪iDi, and then
pick representative points x̂i ∈ Xi and d̂i ∈ Di within those
partitions sets as finite states and disturbances.

The dt-SCS in (1) can be equivalently considered as a
continuous-space MDP Λ = (X,U,D,Tx) [16], with Tx :
B(X)×X × U ×D → [0, 1] being a conditional stochastic
kernel that assigns to any x ∈ X, ν ∈ U, d ∈ D, a probability
measure Tx(·

∣∣x, ν, d) such that for any set X ∈ B(X):

P
{
x(k + 1) ∈ X

∣∣x(k), ν(k), d(k)
}

=

∫
X
Tx(dx(k + 1)

∣∣x(k), ν(k), d(k)).

One can uniquely determine the conditional stochastic kernel
Tx using (ς, f) [16]. In the next definition, we formalize the
construction of finite MDPs.

Definition 2.3: Consider a continuous-space MDP Λ =
(X,U,D,Tx). The finite MDP, constructed from Λ, is char-
acterized by Λ̂=(X̂, U, D̂, T̂x), with X̂ and D̂ being discrete
state and disturbance sets of Λ̂ and

T̂x(x
′∣∣x, ν, d)=Tx(Ξ(x′)

∣∣x, ν, d),∀x, x′∈X̂, ∀ν∈U,∀d∈D,
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where Ξ : X → 2X . Equivalently, given a dt-SCS Λ =
(X,U,D, ς, f), its constructed finite MDP can be character-
ized as [16]

Λ̂ = (X̂, U, D̂, ς, f̂),

where f̂ : X̂ × U × D̂ × Hς → X̂ is a transition function
defined as

f̂(x̂, ν, d̂, ς) = Px(f(x̂, ν, d̂, ς)), (5)

and Px : X → X̂ is a quantization map with a state
discretization parameter ρ fulfilling the following inequality:

‖Px(x)− x‖ ≤ ρ, ∀x ∈ X. (6)

III. STOCHASTIC STORAGE AND BISIMULATION
FUNCTIONS

In this section, we aim at quantifying the probabilistic
mismatch between trajectories of an interconnected dt-SCS
and its finite MDP using a notion of stochastic bisimulation
functions, as defined next.

Definition 3.1: Given an interconnected dt-SCS Λ =
(X,U, ς, f) and its finite MDP Λ̂ = (X̂, U, ς, f̂), a function
V : X×X̂ → R+

0 is a stochastic bisimulation function (SBF)
between Λ̂ and Λ, represented by Λ̂ ∼=V Λ, if

∀x ∈ X,∀x̂ ∈ X̂ : γ‖x− x̂‖2 ≤ V(x, x̂), (7a)

∀x ∈ X,∀x̂ ∈ X̂,∀ν ∈ U :

E
[
V(f(x, ν, ς), f̂(x̂, ν, ς))

∣∣x, x̂, ν] ≤ αV(x, x̂) +$, (7b)

for some γ ∈ R+, 0 < α < 1, and $ ∈ R+
0 , where E is the

expected value associated to ς .
We now leverage SBF V and quantify the probabilistic

mismatch between trajectories of an interconnected system
and its finite MDP, as in the next theorem [8].

Theorem 3.2: Given an interconnected dt-SCS Λ and its
finite MDP Λ̂, let V be an SBF between Λ̂ and Λ. Then the
probabilistic closeness between state trajectories of dt-SCS
(i.e. xx0ν(·)) and its finite MDP (i.e. x̂x̂0ν(·)) within a time
horizon T ∈ N can be quantified as

P

{
sup

0≤k≤T
‖xx0ν(k)− x̂x̂0ν(k)‖ ≥ ε

∣∣x0, x̂0

}
≤ δ, (8)

where

δ :=

{
1−(1− V(x0,x̂0)

γε2 )(1− $
γε2 )T , if γε2≥ $

1−α ,

(V(x0,x̂0)
γε2 )αT +( $

(1−α)γε2 )(1−αT ), if γε2< $
1−α ,

with ε ∈ R+ being an arbitrary threshold. If $ = 0 in (7b),
the closeness guarantee in (8) can be generalized to infinite
horizons as

P

{
sup

0≤k<∞
‖xx0ν(k)−x̂x̂0ν(k)‖ ≥ ε

∣∣x0, x̂0

}
≤ V(x0, x̂0)

γε2
.

In general, constructing SBF for large-scale interconnected
networks is very expensive (if it is not impossible). To
tackle this computational difficulty, we present a notion of
stochastic storage functions for individual subsystems and
propose, in Section VI, some compositional dissipativity
conditions to construct an SBF for an interconnected network
using SStF of subsystems.

Definition 3.3: Given a dt-SCS Λ = (X,U,D, ς, f) and
its finite MDP Λ̂ = (X̂, U, D̂, ς, f̂), a function S : X× X̂ →
R+

0 is a stochastic storage function (SStF) between Λ̂ and Λ,
represented by Λ̂ ∼=S Λ, if

∀x ∈ X,∀x̂ ∈ X̂ : γ‖x− x̂‖2 ≤ S(x, x̂), (9a)

∀x ∈ X,∀x̂ ∈ X̂,∀ν ∈ U, ∀d ∈ D,∀d̂ ∈ D̂ :

E
[
S(f(x, ν, d, ς), f̂(x̂, ν, d̂, ς))

∣∣x, x̂, ν, d, d̂]
≤ αS(x, x̂) +$ +

[
d− d̂
x− x̂

]> [Z11 Z12

Z21 Z22

]
︸ ︷︷ ︸

Z

[
d− d̂
x− x̂

]
,

(9b)

for some γ ∈ R+, 0 < α < 1, $ ∈ R+
0 , and a symmetric

matrix Z with partitions Zjj′ , j, j′ ∈ {1, 2}.

IV. DATA-DRIVEN CONSTRUCTION OF SSTF
In our data-driven framework, we consider SStF in the

form of S(κ, x, x̂) =
∑z
j=1 κjhj(x, x̂) with basis functions

hj(x, x̂) and unknown variables κ = [κ1; . . . ;κz] ∈ Rz .
We now cast conditions (9a)-(9b) of SStF as a robust
optimization program (ROP):

ROP :



min
[Q;ψ]

ψ,

s.t. maxj

{
Υj(x, x̂, ν, d, d̂,Q)

}
≤ψ, j∈{1, 2},

∀x ∈ X,∀x̂ ∈ X̂, ∀ν ∈ U,∀d ∈ D,∀d̂ ∈ D̂,
Q=[γ;α;$;Z11;Z12;Z22;κ1; . . . ;κz],

γ∈R+, α∈(0, 1), $∈R+
0 ,Zjj

′
, ψ∈R,

(10)

where:

Υ1 = γ‖x− x̂‖2 − S(κ, x, x̂),

Υ2 = E
[
S(κ, f(x, ν, d, ς), f̂(x̂, ν, d̂, ς))

∣∣x, x̂, ν, d, d̂]
− αS(κ, x, x̂)−$−

[
d−d̂
x−x̂

]>[Z11 Z12

Z21 Z22

][
d−d̂
x−x̂

]
. (11)

When ψ∗R, the optimal value of ROP, is less than or equal to
zero, it is straightforward to confirm that conditions (9a)-(9b)
are met.

The ROP in (10) is not solvable due to unknown maps f , f̂
appearing in Υ2. To resolve this difficulty, we collect N i.i.d.
data within X×D, denoted by (x̄i, d̄i)

N
i=1. We now propose a

scenario optimization program (SOP), with an optimal value
ψ∗N , associated to the original ROP:

SOPN:



min
[Q;ψ]

ψ,

s.t. maxj

{
Υj(x̄i, x̂, ν, d̄i, d̂,Q)

}
≤ψ, j∈{1, 2},

∀x̄i ∈ X,∀d̄i ∈ D,∀i∈{1, . . . , N},
∀x̂ ∈ X̂, ∀d̂ ∈ D̂,∀ν ∈ U,
Q=[γ;α;$;Z11;Z12;Z22;κ1; . . . ;κz],

γ∈R+, α∈(0, 1), $∈R+
0 ,Zjj

′
, ψ∈R.

(12a)

We can now replace the unknown function f(x̄i, ν, d̄i, ς) in
Υ2 by observing the one-step transition of dt-SCS starting
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from x̄i under ν and d̄i. Regarding f̂(x̂, ν, d̂, ς) in Υ2, we
begin by initializing the unknown model at x̂ under ν and d̂
to compute f(x̂, ν, d̂, ς). With a state discretization parameter
ρ in place, we then compute f̂(x̂, ν, d̂, ς) as the point nearest
to f(x̂, ν, d̂, ς), where condition (6) is satisfied.

By proposing SOP (12a), the problem of unknown maps
f, f̂ in ROP (10) got solved. However, the proposed SOP
in (12a) is not still tractable since there is no closed-form
solution for computing the expected value in Υ2. To resolve
this issue, we propose another version of SOP, denoted by
SOPς , by computing the expected value using its empirical
approximation:

SOPς:



min
[Q;ψ]

ψ,

s.t. max
{
Υ1(x̄i,x̂,ν,d̄i,d̂,Q),Ῡ2(x̄i,x̂,ν,d̄i,d̂,Q)

}
≤ψ,

∀x̄i ∈ X,∀d̄i ∈ D,∀i∈{1, . . . , N},
∀x̂ ∈ X̂, ∀d̂ ∈ D̂,∀ν ∈ U,
Q=[γ;α;$;Z11;Z12;Z22;κ1; . . . ;κz],

γ∈R+, α∈(0, 1), $∈R+
0 ,Zjj

′
, κi, ψ∈R,

(12b)

with

Ῡ2 =
1

L

L∑
q=1

S(κ, f(x̄i, ν, d̄i, ςq), f̂(x̂, ν, d̂, ςq))−αS(κ, xi, x̂)

−$ + µ−
[
d− d̂
x− x̂

]>[Z11 Z12

Z21 Z22

][
d− d̂
x− x̂

]
,

where µ ∈ R+
0 and L ∈ N+

0 are the approximation error and
required number of realizations, respectively. We denote the
optimal value of SOPς by ψ∗ς .

We now leverage Chebyshev’s inequality [17] to construct
a relation between solutions of SOPς and SOPN with a
guaranteed confidence level β1 ∈ (0, 1].

Lemma 4.1: Let S be a feasible solution for SOPς
in (12b). For a desired confidence level β1 ∈ (0, 1] and an
approximation error µ ∈ R+

0 , one has

P
{
S(κ, x, x̂) |= SOPN

}
≥ 1− β1,

provided that L ≥ C
β1µ2 , where

Var
[
S(κ, f(x, ν, d, ς), f̂(x̂, ν, d̂, ς))

]
≤ C, ∀x ∈ X,∀x̂ ∈

X̂, ∀ν ∈ U,∀d ∈ D,∀d̂ ∈ D̂.
Remark 4.2: As it can be observed, there is a bilinearity

between unknown variables κ and α in Υ2. To resolve it,
we consider α in a discrete set as α ∈ {α1, . . . , αl}. The
cardinality l is then taken into account when determining the
necessary amount of data to solve SOP, as shown in (13).

V. DATA-DRIVEN GUARANTEE FOR SBF CONSTRUCTION

Here, we aim at constructing an SStF between each
unknown subsystem and its finite MDP with a certified con-
fidence level by establishing a probabilistic relation between
optimal values of SOPς and ROP [18].

Theorem 5.1: Consider unknown dt-SCS Λ in (1). Let
Υ1 and Υ2 be Lipschitz continuous, with respect to x
and (d, x) with Lipschitz constants, respectively, L1,L2t ,
for given αt where t ∈ {1, . . . , l}, and any ν ∈

U . Consider the SOPς in (12b) with ψ∗ς , Q∗ =
[γ∗;$∗;Z11∗;Z12∗;Z22∗;κ∗1; . . . ;κ∗z], and

N(ε2t
,β2):=min

{
N ∈N

∣∣ l∑
t=1

c−1∑
i=0

(
N

i

)
εi2t

(1−ε2t
)N−i≤β2

}
,

(13)

where β2, ε2t
∈ [0, 1] for any t ∈ {1, . . . , l}, with c, l being,

respectively, number of unknown variables in SOPς , and
cardinality of finite set of α. If

ψ∗ς + max
t

LΥtη
−1(ε2t) ≤ 0, (14)

with LΥt := max
{
L1,L2t

}
for any t ∈ {1, . . . , l}, and

η(r) : R≥0 → [0, 1], which depends on the geometry of
X × D and the sampling distribution, then the data-driven
S is an SStF between Λ̂ and Λ, with a confidence of 1− β
with β = β1 + β2, i.e.,

PN
{

Λ̂ ∼=S Λ
}
≥ 1− β1 − β2,

where β1 ∈ (0, 1] is as in Lemma 4.1.
In the next lemma, we compute the function η which is

required for checking condition (14).
Lemma 5.2: The function η in (14) fulfills the following

condition [18, Proposition 3.8]:

η(r) ≤ P
[
Br(x, d)

]
, ∀r ∈ R≥0,∀(x, d) ∈ X ×D,

(15)

with Br(c) ⊂ X ×D being an open ball with center c and
radius r. By gathering data from an (n+ p)-dimensional
hyper-rectangle uncertainty set X × D with a uniform
distribution, the function η in (15) is then quantified as

η(r) =
Vol(Br(x, d))

2n+pVol(X ×D)
=

π
n+p
2

Γ( n+p
2 +1)

rn+p

2n+pVol(X ×D)

=
π

n+p
2 rn+p

2n+pΓ(n+p
2 + 1)Vol(X ×D)

, (16)

with Vol(·) and Γ being volume set and Gamma function,
respectively.

To assess condition (14), it is necessary to determine LΥt
.

The following lemmas present computations of LΥt
for both

linear and nonlinear stochastic systems
Lemma 5.3: Given a linear dt-SCS x(k + 1) = Ax(k) +

Bν(k)+Ed(k)+ς(k), let (x−x̂)>P (x−x̂) be an SStF with
a positive-definite matrix P ∈ Rn×n. Then LΥt

is computed
as LΥt

= max
{
L1,L2t

}
, with

L1 = 4s1(λmin(P ) + λmax(P )),

L2t
= 2λmax(P )(2Y2

1s1+2Y1Y2s2+2Y1Y3s3+Y1ρ+Y3ρ

+ 2Y2
3s3 + 2Y3Y2s2 + 2Y3Y1s1 + 2s1αt) + 2s4s5,

where ‖A‖ ≤ Y1, ‖B‖ ≤ Y2, ‖E‖ ≤ Y3, ‖x‖ ≤ s1 for any
x ∈ X , ‖ν‖ ≤ s2 for any ν ∈ U , ‖d‖ ≤ s3 for any d ∈ D,
‖[d− d̂;x− x̂]‖ ≤ s4 for any x ∈ X , x̂ ∈ X̂ , d ∈ D, d̂ ∈ D̂,
and ‖Z‖ = s5.

We now compute LΥt
for nonlinear stochastic systems.

Lemma 5.4: Given a nonlinear dt-SCS x(k + 1) =
f(x(k), ν(k), d(k))+ ς(k), let (x− x̂)>P (x− x̂) be an SStF
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with a positive-definite matrix P ∈ Rn×n. Then LΥt
is

computed as LΥt
= max

{
L1,L2t

}
, with

L1 =4s1(λmin(P ) + λmax(P )),

L2t
=2λmax(P )(2YfYx + Yxρ+ 2YfYd + Ydρ+ 2s1αt)

+ 2s4s5,

where ‖f(x, ν, d)‖ ≤ Yf , ‖∂xf(x, ν, d)‖ ≤ Yx,
‖∂df(x, ν, d)‖ ≤ Yd, ‖x‖ ≤ s1 for any x ∈ X , ‖[d− d̂;x−
x̂]‖ ≤ s4 for any x ∈ X , x̂ ∈ X̂ , d ∈ D, d̂ ∈ D̂, and
‖Z‖ = s5.

A. Data-Driven Finite MDPs via Maximum Likelihood Es-
timation

Here, we construct finite MDPs from data by estimating
parameters of the probability distribution via maximum like-
lihood estimation (MLE) [19]. If the underlying stochasticity
has a Gaussian distribution, its mean and standard deviation
can be estimated via MLE as

µ̂N̂ =
1

N̂

N̂∑
j=1

x̃j , σ̂2
N̂

=
1

N̂ − 1

N̂∑
j=1

(x̃j − µ̂N̂ )2,

where µ̂N̂ , σ̂N̂ are the empirical mean and standard deviation
given N̂ sampled data. Additionally, MLE approach can
be used to estimate parameters of any arbitrary probability
distributions. We then use the estimated parameters from
MLE method and construct a finite MDP via the results of
Section II-C. Although it is possible to provide an asymptotic
confidence bound for MLE using Fisher information [20], we
leave it to a future work for the sake of an easier presentation.

VI. COMPOSITIONAL CONSTRUCTION OF SBF FOR
INTERCONNECTED DT-SCS

Here, we propose a compositional dissipativity approach
to build an SBF for an interconnected network using SStF of
individual subsystems. The constructed SBF is then utilized
to compute the probabilistic mismatch between trajectories
of the interconnected system Λ and its finite MDP Λ̂, as
presented in Theorem 3.2.

Theorem 6.1: Consider an interconnected dt-SCS Λ =
I(Λ1, . . . ,ΛM ) composed of M ∈ N+

0 subsystems Λi. Let
there exist an SStF between each subsystem Λi and its finite
MDP Λ̂i with a confidence of 1− β, with β = β1 + β2, as
in Theorem 5.1. Then

V(κ, x, x̂) :=

M∑
i=1

Si(κi, xi, x̂i), (17)

is an SBF between Λ̂ = I(Λ̂1, . . . , Λ̂M ) and Λ =
I(Λ1, . . . ,ΛM ) with a confidence of 1 −

∑M
i=1 βi, where

βi = β1i
− β2i

, if [
M
I

]>
Zcmp

[
M
I

]
� 0, (18)

with Zcmp :=


Z11

1 Z12
1. . . . . .

Z11
M Z12

M

Z21
1 Z22

1. . . . . .
Z21
M Z22

M

.

VII. CASE STUDY: ROOM TEMPERATURE NETWORK

We showcase our data-driven results using a room temper-
ature network consisting of 100 rooms, each with unknown
models, interconnected in a circular topology, and equipped
with cooling systems. The temperature dynamics, denoted as
x(·), can be described through the following interconnected
network [21]:

Λ: x(k + 1) = Ax(k) + θTcν(k) + zTE + ς(k),

where the matrix A has diagonal entries aii = 1 − 2ℵ −
z − θνi(k), i ∈ {1, . . . ,M}, off-diagonal entries ai,i+1 =
ai+1,i = a1,M = aM,1 = ℵ, i ∈ {1, . . . ,M − 1},
and other entries being zero. Symbols ℵ, z, and θ are
thermal factors between rooms i ± 1 and i, the outside
environment and the room i, and the cooler and the room
i, respectively. In addition, x(k) = [x1(k); . . . ;xM (k)],
x(k) = [ς1(k); . . . ; ςM (k)], TE = [Te1 ; . . . ;TeM ], with
Tei = −1 ◦C, ∀i ∈ {1, . . . ,M}, being the outside tempera-
tures. The cooler temperature is Tc = 5 ◦C and the control
input is ν ∈ {0, 0.05, 0.1, 0.15, 0.2}. Now by characterizing
each individual room as

Λi : xi(k + 1) = aiixi(k) + ℵ(di−1(k) + di+1(k))

+ θTcνi(k) + zTei + ςi(k), (19)

where d0 = dM , dM+1 = d1, one has Λ = I(Λ1, . . . ,ΛM ),
with a coupling matrix M as m̄i,i+1 = m̄i+1,i = m̄1,M =
m̄M,1 = 1, i ∈ {1, . . . ,M − 1}, and other entries being
zero. We assume the model of each room is unknown to
us. The main target is to compositionally construct a finite
MDP as well as a data-driven SBF via solving SOP (12b).
Accordingly, we utilize the data-driven finite MDP and
synthesize controllers regulating the temperature of each
room in a safe set Xi = [−0.5, 0.5] with a guaranteed
probabilistic confidence.

We consider our SStF as Si(κi, xi, x̂i) = κ1i
(xi− x̂i)4 +

κ2i
(xi − x̂i)2 + κ3i

. We also fix εti = 0.025, β2i
= 10−4,

and ρi = 0.05, a-priori. According to (13), we compute
Ni = 911 required for solving SOP in (12b). We also fix
µi = 0.1, β1i = 10−4 and compute Li = 643 according to
Lemma 4.1. By solving SOP (12b) with Ni, Li, we obtain
the corresponding decision variables as

Si(κi, xi, x̂i) = 0.11(xi − x̂i)4 + 0.14(xi − x̂i)2 + 143,

Z11
i = 0.001,Z22

i = −0.01,Z12
i = Z21

i = 0,

γ∗i = 141, $∗i = 0.42, ψ∗ςi = −0.3019, (20)

with a fixed αi = 0.99. We now compute LΥti
= 0.8

according to Lemma 5.4. We also compute η−1(ε2ti
) ac-

cording to Lemma 5.2 as η−1(ε2ti
) = 0.362. Since ψ∗ςi +

maxt LHti
η−1(ε2ti

) = −11 × 10−3 ≤ 0, the constructed
data-driven Si is an SStF between each unknown room
Λi and its finite MDP Λ̂i, with a confidence of at least
1− β1i − β2i = 1− 2× 10−4.

We now construct an SBF for the interconnected rooms
via SStF of individual rooms, constructed from data. By
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leveraging Zi as in (20), the matrix Zcmp is reduced to

Zcmp =

[
0.001I100 0

0 −0.01I100

]
,

and compositionality condition (18) is reduced to[
M
I100

]>
Zcmp

[
M
I100

]
=0.001I100M>M− 0.01I100 � 0.

Hence, one can certify that V(κ, x, x̂) =∑100
i=1{Si(κi, xi, x̂i)} =

∑100
i=1{0.11(xi − x̂i)4 + 0.14(xi −

x̂i)
2 + 143} is an SBF between the interconnected rooms Λ

and its finite MDP Λ̂ with γ = 14100, α = 0.99, $ = 42,
and a confidence of 1 −

∑100
i=1 β1i

−
∑100
i=1 β2i

= 98%.
Hence, by employing the results of Theorems 3.2 and 6.1,
we guarantee that the mismatch between state trajectories of
Λ and Λ̂ remains within ε = 0.5 during T = 5 (45 minutes)
with a probability of 95% and a confidence of 98%.

Let us now synthesize a controller for Λ via its data-
driven finite MDP Λ̂, constructed via the MLE approach
with N̂ = 105, such that the controller regulates state of
each room within [−0.5, 0.5]. To do so, we first synthesize
a controller for each abstract room Λ̂i via AMYTISS [22]
and then refine it back over unknown original room Λi.
Accordingly, the overall controller for the network would be
a vector whose entries are controllers for individual rooms.
Closed-loop trajectories of a representative room with several
noise realizations are depicted in Fig. 2. As observed, all
trajectories respect the safety specification.

0 1 2 3 4 5
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-0.2
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0
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0.2

0.3

0.4

0.5

Fig. 2. Closed-loop state trajectories of an unknown representative room
with several noise realizations.

VIII. CONCLUSION

In this work, we developed a compositional data-driven
technique using dissipativity reasoning for constructing fi-
nite MDPs for large-scale stochastic networks with un-
known mathematical models. The main goal was to leverage
stochastic bisimulation functions (SBF) and quantify the
closeness between an unknown original network and its data-
driven finite MDP, while proposing a certified probabilistic
confidence. In our proposed scheme, we first constructed
a stochastic storage function between each unknown sub-
system and its data-driven finite MDP with an a-priori
confidence level. We then provided dissipativity-type com-
positional conditions to construct an SBF for an unknown

interconnected network using its data-driven SStF of sub-
systems. We verified our results over a room temperature
network composing 100 rooms with unknown dynamics.
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