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Abstract— This paper proposes a novel constructive bar-
rier feedback for reactive collision avoidance between two
agents. It incorporates this feature in a formation tracking
control strategy for a group of 2nd-order dynamic robots
defined in three-dimensional space. Using only relative mea-
surements between neighboring agents, we propose an elegant
decentralized controller as the sum of a nominal tracking
controller and the constructive barrier feedback for leader-
follower formations under a directed single-spanning tree graph
topology. The key ingredient is the use of divergent flow as
a dissipative term, which slows down the relative velocity in
the direction of the neighboring robots without compromising
the nominal controller’s performance. Compared to traditional
barrier function-based optimization controllers, the proposed
constructive barrier feedback avoids feasibility issues and
results in more computationally efficient control algorithms
with systematic equilibrium analysis. Simulations are provided
to validate the effectiveness of the proposed control method.

I. INTRODUCTION

The topic of multi-robot coordination has garnered in-
creasing interest in both robotics and control communities
owing to its vast potential in various applications, such
as infrastructure inspection, intelligent transportation, and
exploration of unknown environments. A multi-robot sys-
tem’s primary goal in a mission is typically to solve a task
collaboratively while maintaining a certain relative position
between neighboring agents. Collision avoidance, typically
considered a secondary objective, is critical for safety.

The field of multi-robot formation control with collision
avoidance has seen significant advancements over the years.
Early works mainly focused on designing gradient descent
control laws based on constructing the potential function
using geometric information on the considered topology
[1], [2]. Although convergence to the desired and undesired
equilibrium points is explicitly analyzed, these solutions
were limited to multi-robot systems under single-integrator
systems operating in two-dimensional space. More recently,
optimization-based controllers that employ control barrier
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functions have emerged as promising alternatives (e.g., [3],
[4]) to guarantee collision-free behavior between robots. In
[3], a decentralized safety controller is proposed for multi-
robot systems modeled as second-order systems by solving
a quadratic programming problem. In contrast, the work in
[3] focuses on analyzing the conditions that guarantee a
safe distance between robots without explicitly analyzing the
system’s equilibrium. It is worth noting that the use of barrier
function-based optimization controllers poses challenges in
explicitly analyzing the equilibrium and convergence of the
multi-robot system, in addition to potential computational
complexity and feasibility issues. As pointed out in [4],
even in a simple scenario where only one single-integrator
robot with one static obstacle is considered, undesirable
asymptotically stable equilibria can exist on the boundary
of the safety set.

This paper introduces a novel control method inspired
by natural systems like insects and birds, which exploits
divergent flow [5] to prevent collisions while effectively
achieving the primary control objective. Previous research
has demonstrated divergent flow’s capacity for ensuring safe
quadrotor landings in cluttered environments [6] and on
moving platforms [7], as well as its application in avoiding
collisions in flocking models [8]. While promising, the full
potential of divergent flow for collision avoidance remains
unexplored.

This paper exploits the divergent flow to achieve safe
collision avoidance without compromising the primary con-
trol objective, providing a robust and intuitive solution for
multi-agent systems in cluttered environments. In particu-
lar, we address collision-free formation control design for
second-order dynamic robots in three-dimensional space.
The proposed method adds the divergent flow directly to
a nominal leader-follower formation tracking controller that
stabilizes the formation tracking error. The added divergent
flow acts as a dissipative function, slowing down the relative
velocity in the direction of neighboring robots without affect-
ing the nominal controller’s performance. By assuming the
formation has a directed single-spanning tree graph topology
with a leader controlled independently, we guarantee that
1) there is no collision between neighboring agents, and
2) the configuration of the formation either converges to
the asymptotically to the desired configuration or a finite
number of unstable set points. To the best of the authors’
knowledge, this is the first work that exploits divergent flow
in formation tracking control for collision avoidance with
systematic equilibria analyses.

The remainder of this paper is organized into four sections.
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Section II provides notation and some mathematical prelim-
inaries on graph theory. Section III presents the proposed
control method with stability analysis. Simulation results
are presented in Section IV, and some final comments are
discussed in Section V.

II. PRELIMINARIES ON GRAPH THEORY

Let S2 := {y ∈ R3 : ∥y∥ = 1} denote the 2-Sphere
and ∥.∥ the Euclidean norm. For any y ∈ S2, we define the
projection operator πy

πy := I − yy⊤ ≥ 0,

such that, for any vector x ∈ R3, πyx provides the projection
of x on the plane orthogonal to y. For any z ∈ R3, z×
represents the skew-symmetric matrix associated with the
vector z. Let SO(3) := {R ∈ R3×3 | R⊤R = I3, det(R) =
1} be the special orthogonal group and the Lie algebra
so(3) := {Ω ∈ R3×3 | Ω⊤ = −Ω} be the set of skew-
symmetric 3× 3 matrices, such that Ṙ = RΩ.

Consider a system of n (n ≥ 2) connected agents. The
underlying interaction topology can be modeled as a digraph
(directed graph) G := (V, E), where V = {1, 2, . . . , n} is the
set of vertices and E ⊆ V × V is the set of directed edges.
The set of neighbors of agent i is denoted by Ni := {j ∈
V|(i, j) ∈ E}. To provide clarity on the graph topology used
in this work, we make the following assumption:

Assumption 1: The topology G is fixed and described by
an acyclic digraph with a single directed spanning tree.
Without loss of generality, agents are numbered (or can be
renumbered) such that agent 1 is the leader, i.e. N1 = ∅, all
other agents i, i ≥ 2 are followers whose neighboring set is
Ni = {i− 1}.

III. REACTIVE COLLISION AVOIDANCE DURING
LEADER-FOLLOWER FORMATION TRACKING CONTROL

In this section, we consider a constructive control design
for the leader-follower formation tracking control problem
with reactive inter-agent collision avoidance. Given a di-
rected graph G, we denote the position of each agent i ∈ V
expressed in a common inertial frame as pi ∈ R3. The
stacked vector p = [p⊤1 , ..., p

⊤
n ]

⊤ ∈ R3n is defined as the
configuration of G, and the formation G(p) in 3-dimensional
space is determined by G and p.

We consider the case in which a double integrator de-
scribes the individual robot dynamics. That is:{

ṗi = vi

v̇i = ui

(1)

where vi ∈ R3 is velocity of each agent i and and ui ∈ R3

its acceleration used here as the control input.
In the considered scenario, the topology of the forma-

tion G(p) satisfies Assumption 1 such that each agent i
(i = 2, . . . , n) only has access to information relative to its
topological neighbor i−1 as illustrated in Fig. 1. To simplify
the notation, we define the relative position vectors between
two neighboring agents i and i− 1 as:

ei := pi − pi−1, i ≥ 2. (2)
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Fig. 1. Interaction of a 5-agent leader-follower formation G(p) in three-
dimensional space. The arrows indicate each agent i, i ≥ 2 can measure
the relative states to its neighboring agent i− 1: ei, νi, and ϕi.

Similarly, νi := ėi = vi − vi−1 denotes the relative velocity
between agent i and i − 1. As long as ∥ei∥ ≠ 0, one can
define direction vector from i to i− 1 as:

gi =
ei
∥ei∥

.

Let r be a positive constant that we term the safety
distance and define di := ∥ei∥ − r = ∥pi − pi−1∥ − r. A
straightforward computation shows that ḋi = g⊤i νi.

The desired configuration p∗ of G(p∗) is assumed to be
smooth in 3-dimensional space such that for some constant
D > r, r < |e∗i | < D. The control objective considered is
formally described in the following.

Problem 1: Find individual feedback control actions ui

depending only on the relative measured states and the first
and second derivatives of the smooth trajectory p∗i such
that the tracking error (p − p∗) converges towards zero for
all bounded initial conditions such that ∥ei(0)∥ > r while
guaranteeing that ∥ei∥ > r (resp. di > 0) for all time.

Without a precise description of the measures to be used
as feedback information and making additional assumptions
on the desired trajectory, the difficulty level of solving the
problem as described is high. The relative states ei and νi
are the natural information to be used in a nominal control
design to ensure asymptotic (or exponential) stability of the
equilibrium (ei − e∗i , νi − ν∗i ) = (0, 0). To prevent collisions
between neighboring agents, the key principle is controlling
the relative velocity along the direction gi, i.e., ḋi = g⊤i νi. To
get an effective reactive collision avoidance without affecting
the nominal controller stability property, we design controller
ui as:

ui = un
i − kogif

B(ḋi, di), i ∈ V/{1}, (3)

with ko a positive constant gain and un
i = un

i (ẽi, ν̃i) the
nominal control input ensuring the asymptotic (or the expo-
nential) stability of the equilibrium (ei−e∗i , νi−ν∗i ) = (0, 0)
and fB a dissipative control barrier feedback slowing down
the relative velocity in the direction of the neighbor without
compromising the stability nature of the nominal control
action.

To the best of our knowledge, in most applications, the
divergent flow is the simplest and most elegant choice for
fB . That is:

ϕi := fB(ḋi, di) =
ḋi
di

=
g⊤i νi
di

. (4)
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It can be obtained directly from the optical flow using visual
information [6], built or estimated from the measure of di
[9].

To illustrate the obstacle avoidance principle employed in
this context, let’s consider a 2-agent system with agent i −
1 as the leader, agent i as the follower. Using the above
definitions of d = di and ḋ = ḋi, it is straightforward to
verify that:

d̈ = −ko
ḋ

d
− α(t) (5)

with α(t) = −∥πgi
νi∥2

d+r + g⊤i (u
n
i − ui−1). The barrier effect

of the fB , is announced in the following technical Lemma:
Lemma 1: Given the dynamics (5) with ko a positive

gain and α(t) a continuous and bounded function. Then for
any initial condition satisfying d(0) > 0 and ϕ(0) = ḋ(0)

d(0)
bounded, the following assertions hold:

1) d remains positive, ∀t ≥ 0.
2) d converges to zero as t → ∞ if and only if (iff)

limt→∞
∫ t

0
α(τ)dτ → +∞.

3) If d converges to zero, then ḋ is bounded and con-
verges to zero, and ϕ(t) remains bounded, ∀t ≥ 0.
Furthermore, if α(t) converges to a positive constant
α0 > ϵ > 0, then ḋ

d → −α0

ko
and hence d̈ converges to

zero.
Proof of the Lemma is given in Appendix A. This Lemma

shows that d = di will never cross zero for all the time as
long as the baseline controller un

i , the leader input ui−1, and
the relative velocity νi are continuous and bounded.

The control architecture adopted here differs from classical
barrier function approaches by incorporating explicit control
barrier feedback instead of relying on quadratic programming
barrier constraints. Unlike traditional potential field methods,
the proposed approach utilizes control barrier feedback for
damping rather than repulsive effects, eliminating local min-
imal issues.

Note, however, that by involving a simple additive control
barrier feedback in the control design to avoid collisions be-
tween agents according to the graph topology while ensuring
asymptotic (or exponential) stability of the equilibrium, the
following assumption on the desired formation is required,
which involves the desired relative positions e∗i = p∗i −
p∗i−1, i ≥ 2.

Assumption 2: The desired trajectories p∗ of the forma-
tion are smooth such that: the edges satisfy e∗i = cig

∗
i , i ≥ 2,

where ∥g∗i ∥ = 1 and ci is a constant larger than r

This assumption implied that e∗i is subjected to a distance-
preserving action and ė∗i (t) = Ω∗

i e
∗
i with Ω∗

i ∈ so(3) any
smooth and bounded signal. When Ω∗

i = Ω∗, ∀i ∈ V , one
verifies that the desired formation is subject to a rigid motion
transformation for which Ω∗ = Ṙ∗R∗⊤, with R∗ ∈ SO(3)
the rotation of the desired formation with respect to a fixed
reference frame. When Ω∗

i = Ω∗ = 0, one has a rigid
desired formation with only translational motion. From there,
one defines the desired relative velocity and acceleration as

follows:

ν∗i (e
∗
i ) := v∗i − v∗i−1 = Ω∗

i e
∗
i

u∗
ei(e

∗
i ) := u∗

i − u∗
i−1 =

(
Ω̇∗

i +Ω∗2

i

)
e∗i

Assumption 3: The leader is independently controlled
from the formation such that one assumes without loss of
generality that p1 = p∗1, v1 = v∗1 and u1 = u∗

1.
From Assumptions 2 and 3, one verifies that the desired
absolute position for each agent i ≥ 2 can be explicitly
expressed as:

p∗i = p∗1 +

i∑
j=2

cjg
∗
j . (6)

A. Formation tracking control design and stability analysis

Define ẽi := ei − e∗i and taking the time derivative of ẽi,
one gets:

˙̃ei = νi − ν∗i .

Using the fact that ν∗i = Ω∗
i (ei − ẽi), one verifies that:

˙̃ei = Ω∗
i ẽi + ν̃i

where ν̃i := νi − ν∗i (ei) and ν∗i (ei) := Ω∗
i ei which is

different from ν∗i (e
∗
i ). With this choice, one verifies that

ḋi = g⊤i νi = g⊤i ν̃i which in turn implies that the divergent
flow is independent of the desired trajectory.

Taking now the time derivative of ν̃i yields:

˙̃νi = −Ω∗
i ν̃i + uei − u∗

ei(ei)

= −Ω∗
i ν̃i + ui − ui−1 − u∗

ei(ei)

with u∗
ei(ei) :=

(
Ω̇∗

i +Ω∗2

i

)
ei. To achieve asymptotic

tracking of the desired formation by each follower i ≥ 2
under Problem 1 and Assumption 2, we suggest using a PD-
like controller for the nominal control input:

un
i = −kphpi

(.)ẽi − kvhvi(.)ν̃i + u∗
ei(ei) + ui−1, (7)

with kp, kv two positive scalar gains. The scalar functions
hpi

(.) and hvi(.) are smooth and bounded strictly positive
functions defined on [0,∞) such that for some positive
constant ϵ, η and β

∀s ∈ R, ϵ < h(s) < η, 0 < |∂h(s)
∂s

| < β. (8)

An example of such a function is h : s 7→ h(s) = η/
√
1 + s

and a possible choice of hpi(.) and hvi(.) is hpi(.) =
h(∥ẽi∥2) and hvi(.) = h(∥ν̃i∥).

Recalling (1), (3) and (7), one verifies that the closed-
loop dynamics of the error variable (ẽi, ν̃i), i ∈ V/{1} can
be rewritten as{

˙̃ei =Ω∗
i ẽi + ν̃i

˙̃νi =− Ω∗
i ν̃i − kphpi

(.)ẽi − kvhvi(.)ν̃i − kogiϕi

(9)

The following lemma provides the stability analysis of the
first follower under the proposed controller.

Lemma 2: Consider a 2-agent system with the dynamics
(1) and let the input u2 be given by (3) along with (4) and
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(7). If Assumptions 1-3 are satisfied, then for any initial
conditions (ẽ2(0), ν̃2(0)) such that d2(0) > 0 and ϕ2(0) is
bounded, the following assertions hold

1) d2(t) remains positive and ϕ2(t) and the control input
u2 are bounded ∀t ≥ 0;

2) (ẽ2, ν̃2) converges either to the asymptotically stable
(AS) equilibrium point (0, 0), or to the unstable set
point (−(r + c2)g

∗
2 , 0).

The proof of this Lemma is given in Appendix B.
By assuming that any follower i, i ∈ V/{1} in the G(p)

formation has access to ui−1 in addition to the relative
measures ei, νi, and ϕi, the stability analysis presented in
Lemma 2 can be extended to cover the trajectory tracking of
any formation including more than two agents (i.e., n > 2).
Let p̃i and ṽi be the absolute errors: p̃i := pi−p∗i and ṽi :=
vi − v∗i , ∀i ∈ V/{1}. We will show the collision avoidance
ability and analyze the convergence of the formation of
n ≥ 2 agents in the following Theorem.

Theorem 1: Consider an n-agent (n ≥ 2) system with the
dynamics (1) along with the feedback control law (3) and
(7). If Assumptions 1-3 are satisfied, then for any bounded
initial conditions (ẽi(0), ν̃i(0)) such that di(0) > 0 and ϕi(0)
is bounded, then ∀i ∈ V/{1}, the following assertions hold:

1) di(t) remains positive and ϕi(t) and the control input
ui are bounded ∀t ≥ 0;

2) (ẽi, ν̃i) converges either to the asymptotically stable
(AS) equilibrium point (0, 0) or to the unstable set
point (−(r + ci)g

∗
i , 0).

3) The absolute state error (p̃i, ṽi) converges to one of
2i−1 set points (p̄mi −p∗i , 0),m ∈ {1, . . . , 2i−1}, where
p̄mi = p∗1+

∑i
ȷ=2 c̊jg

∗
j with c̊j ∈ {cj ,−r} and p̄1i = p∗i ,

given by (6). The solution m = 1 leads to the unique
asymptotically stable point (p̃i, ṽi) = (0, 0) and the
remaining 2i−1 − 1 (m ∈ {2, . . . , 2i−1}) solutions are
unstable.

The proof of this Theorem is provided in Appendix C.

B. Fully distributed formation tracking control design and
stability analysis

Recall that the nominal controller (7) involved in The-
orem 1, requires that each follower i, i ≥ 2 have access
to the actual input of its neighboring agent ui−1 through
communication. This assumption is very limiting in practical
scenarios. To define a fully distributed controller in which
each agent has access only to relative error to its neighbor,
we redesign the nominal control law as follows ∀i ≥ 2:

un
i = −kphpi

(.)ẽi − kvhvi(.)ν̃i + u∗
ei(ei) + u∗

i−1. (10)

u∗
i−1 is iteratively obtained as follows:

u∗
i−1 = u∗

i−2 + u∗
ei−1

(e∗i−1), i ≥ 3, u∗
1 = p̈∗1.

Note that when Ω∗
i = Ω∗ = 0,∀i ≥ 2, one verifies that

u∗
ei(ei) = u∗

ei(e
∗
i ) = 0 and u∗

i = u∗
1, which is the desired

linear acceleration of each agent. Compared to the previous
nominal controller (7), the modified one (10) involves the
desired acceleration u∗

i−1 of the neighboring agent instead of

its actual acceleration ui−1 introducing a cascaded structure
into the system. The stability analysis of the system under
the new nominal controller is provided in the following
Proposition.

Proposition 1: Consider the n-agent system with condi-
tions described in Theorem 1. Use the new nominal controller
(10) instead of (7) in the applied control (3). Then for any
bounded initial conditions (ẽi(0), ν̃i(0)) satisfying di(0) > 0
and ϕi(0) bounded, the following assertions hold ∀i ∈
V/{1}

1) di(t) remains positive and ϕi(t) and the control input
ui are bounded ∀t ≥ 0;

2) the cascade system with state (p̃2, ṽ2, . . . , p̃n, ṽn) has
an AS equilibrium point at the origin.

Proof of this Proposition is provided in Appendix D.

IV. SIMULATION RESULTS

This section provides simulation results to illustrate the
effectiveness of the proposed control law for a four-agent
system. As indicated in Fig. 2, the formation converges
to a static desired formation (i.e., Ω∗

i = 0,∀i ≥ 2). The
gains are chosen as kp = 10, kp3

= 14, kp4
= 16, kv =

ko2 = 7, , kv3 = ko3 = 11, kv4 = ko4 = 12, the initial
velocity is v(0) = [(0 0 0)⊤, (0.2 0 0)⊤, (−0.2 0 0)⊤, (0 −
1 0)⊤], and the initial positions are indicated in Fig. 2. The
choices of h(.) in the nominal controller (7) is chosen as
hpi(.) = 1/

√
1 + ∥ẽ

i
∥2 and hvi(.) = 1/

√
1 + ∥ν̃

i
∥. The

time evolution of the relative distance between neighboring
agents is shown in Fig. 3. Under only the nominal formation
controller (7) (that is ko = 0), Fig. 2 and Fig. 3 show that
agents collide with their neighbor. In contrast, the use of
the divergent flow in the control law successfully prevents
collisions between neighbors (since di remains positive as
shown in Fig. 3) without altering the performance of the
nominal controller, as indicated in the Fig. 4. To better
illustrate the collision avoidance performance, the animation
associated to this simulation can be found in https://
youtu.be/3XUA06-Azuo.

V. CONCLUSION

The proposed constructive control design enables a group
of second-order dynamic robots to track a desired formation
in three-dimensional space while avoiding collisions with
neighboring robots. The method utilizes the divergent flow
as a barrier feedback added to a nominal formation tracking
controller that stabilizes the formation tracking error using
relative state variables. Future work includes 1) the gener-
alization of the results for more general graph topologies,
including time-varying or switching topologies, and 2) the
use of additional information in the nominal controller to
reduce the complexity of analyzing the instability cases
explicitly.

APPENDIX

A. Proof of Lemma 1

Proof: Proof of item 1): Integrating both sides of
equation (1), one gets:
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Fig. 2. Trajectories of a leader-follower formation. Solid lines represent
trajectories under the controller (3) with nominal controller (10). Dashed
lines represent trajectories under only nominal controllers (10) without
collision avoidance (i.e., ko = 0). Void and Solid disks are the initial and
final positions of the agents, respectively.
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Fig. 3. Evolution of the relative distance di. Blue solid lines indicate the
evolution of di under the controller (3) with nominal controller (10). Blue
dashed lines represent the evolution of di under only nominal controllers
(10) without using the divergent flow.
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Fig. 4. Time evolution of the state errors.

ko(ln d(t)− ln d(0)) = −(ḋ(t)− ḋ(0))−
∫ t

0

α(τ)dτ, (11)

a valid relationship as long as d(t) > 0.

To prove that d(t) will not approach zero in finite time, we
use a proof by contradiction. Assume that d(t) approaches
zero in finite time T , that is, d(T ) = 0. This implies that the
left-hand side of equation (11) tends to ’negative’ infinity. In
contrast, the right-hand side is either ’bounded’ or ’positive
infinity’ because α(t) is bounded, and ḋ is either bounded
or negative infinity, which yields a contradiction.

Proof of item (2): Consider first the forward implication:
From the above discussion, one concludes that

limt→∞
∫ t

0
α(τ)dτ = +∞ as d approaches zero when

t tends to infinity.
For the backward implication, we use a proof by contradic-

tion, analogous to the proof of item 1). Assume that d is not
converging to zero, and d is positive, either bounded or tends
to infinity as t → ∞. This implies that the left-hand side of
(11) is bounded or tends to ’positive’ infinity while the right-
hand side is ’negative’ infinity because limt→∞

∫ t

0
α(τ)dτ =

+∞, ḋ is either bounded or positive infinity. Hence, it yields
the contradiction.

Proof of item (3)
To show that ḋ converges to zero as d converges to zero

when t tends to infinity, we consider, instead of t, the new
time index s =

∫ t

0
1

d(τ)dτ that tends to infinity iff t tends to
infinity.

By rewritten (5) as follows:

d

ds
ḋ = −koḋ+ o(s), (12)

with o(s) = dα a perturbation term that tends to zero when s
goes to infinity (or equivalently when d converges to zero).
One recognizes the dynamics of a first-order system (with
ḋ as the state) perturbed by a vanishing perturbation. From
there, one concludes that ḋ is bounded and converges to zero
too. To prove that ϕ = ḋ

d is bounded when (d, ḋ) → (0, 0),
we differentiate ḋ

d with respect to s(t). One verifies that:

d

ds

ḋ

d
= −(ḋ+ ko)

ḋ

d
− α, (13)

Using the fact that α is bounded and ḋ is converging to zero,
one ensures that there exists a time T , such that (ḋ+ ko) >

0, ∀t ≥ T . From there, one guarantees that ḋ
d is ultimately

bounded by |max(α)|/ko.
As for the case when α(t) → α0 > ϵ > 0 and d →

0, one can rewrite α = α0 + o(t), with o(t) a bounded
vanishing perturbation (o(t) → 0). By again analysing (13),
one ensures that ḋ

d → −α0/ko. From there, and since o(t) →
0 and ḋ → 0, one concludes that d̈ → 0 as t → ∞.

B. Proof of Lemma 2

Proof: We will first show that the tracking error (ẽ2, ν̃2)
is bounded. Recalling (1), (3) and (7) and, using the fact
(Assumption 2), that p1 = p∗1 and v1 = v∗1 , the closed-
loop system for the dynamics of the error variable (ẽ2, ν̃2)
is expressed as{

˙̃e2 = Ω∗
2ẽ2 + ν̃2

˙̃ν2 = −Ω∗
2ν̃2 − kphp2

(.)ẽ2 − kvhv2(.)ν̃2 − kog2ϕ2.
(14)
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with ϕ2 = ḋ2

d2
=

g⊤
2 ν2

d2
. Using the fact that g2 ⊥ Ω∗

2e2 =

0, one verifies that ϕ2 =
g⊤
2 ν̃2

d2
. Consider the following

Lyapunov function candidate:

L2 =
kp
2

∫ ∥ẽ2∥2

0

hp2
(s)ds+

1

2
∥ν̃2∥2 (15)

One verifies that

L̇2 = −kv∥ν̃2∥2 − koḋ
2
2/d2 ≤ 0, (16)

if d2 is positive. This indicates that (ẽ2, ν̃2) is bounded as
long as d2 remains positive.

Proof of item 1): To prove that d2(t) will not approach
zero in finite time, we recall (14) and use the fact that ḋ2 =
g⊤2 ν2 = g⊤2 ν̃2, to show that:

d̈2 = −koϕ2 − kvhv2(.)ḋ2 − α′
2. (17)

with α′
2 = g⊤2 (kphp2

(.)ẽ2 − Ω∗2

2 e2) −
∥πg2

ν2∥2

d2+r . From (15),
it straightforward to verify that all components of α′

2(t) are
bounded as long as d2 > 0. When d2 = 0 one observes that
the first term in the expression of α′

2 is bounded since, in that
case, |e2| = r and Ω∗ and e∗2 are bounded by assumption.
In contrast the second term of α′

2 is negative and possibly
unbounded when d2 = 0. This implies that α′

2 is either
bounded and well-defined ∀d ≥ 0 or negative and unbounded
when d2 = 0.

Now, by integration both sides of (17), one gets:

kv
∫ t

0
hv2(.)ḋ2dτ + ko ln

d2(t)
d2(0)

= −(ḋ2(t)− ḋ2(0))−
∫ t

0
α′
2(τ)dτ

(18)
By exploiting condition (8) on hv2(.), one ensures that there
exist a positive and bounded scalar k̄v(t) ∈ [kvϵ, kvη], such
that : kv

∫ t

0
kvhv2(.)ḋ2dτ = k̄v(t)(d2(t)− d2(0)) and hence, one

can rewrite (18) as follows:

k̄v(t)(d2(t)− d2(0)) + ko ln
d2(t)
d2(0)

= −(ḋ2(t)− ḋ2(0))−
∫ t

0
α′
2(τ)dτ

(19)
Analogously to the discussion made after (11), if there exists
a finite time T > 0 such that d2(T ) = 0, then the left-
hand side of equation (19) tends to ’negative’ infinity while
the right-hand side is either ’bounded’ or ’positive infinity’
because ḋ2 and α′

2 are either bounded or negative infinity,
which yields a contradiction. From there, one verifies that
the new variable

α2 = kvhv2(.)ḋ2 + α′
2, (20)

is a bounded continuous function and hence direct applica-
tion of Lemma 1 concludes the proof of Item 1.
Proof of Item 2): Since L̇2(t) ≤ 0,∀t > 0, L2 is bounded.
Now, let us analyze the second derivatives of the function
L2

L̈2 = −2kv ν̃
⊤
2 ν̇2 − ko

(
2d̈2ϕ2 − ḋ2ϕ

2
2

)
(21)

which is bounded due to the boundedness of ν̃2, ϕ2, ν̇2,
d̈2. This implies that L̇2 is uniformly continuous, and hence
direct application of Barbalat’s Lemma implies that L̇2

converges to zero and so does ν̃2. From there, one concludes
that L2(t) converges to a constant and ˙̃e2 → Ω∗

2ẽ2.

To explicitly derive limt→∞ ẽ2(t), we consider two cases
and analyze (14) and (17) in sequence.
1) First, when d2(t) > ϵ > 0,∀t, a direct application of
Barbalat’s lemma on (14), ensures that ẽ2 converges to zero
as ν̃2 and ḋ2 converge to zero guaranteeing that the desired
equilibrium point (ẽ2, ν̃2) = (0, 0) is asymptotically stable.
2) As for the case when d2 → 0 as ν̃2 → 0, one ensures that
the continuous and bounded function α2 (17)1 converges to
kp limt→∞ g⊤2 ẽ2 = α0

2 which is a constant. By combining
the fact that d2 → 0 and α2 → α0

2, direct application of
Lemma 1 - items 1) and 3) shows that α0

2 is a positive
constant and hence one ensures that d̈2 is bounded and
converges to zero as t → ∞.

Rewrite now the expression ˙̃ν2 (14) as ˙̃ν2 = a2(t)+ b2(t),
with:

a2(t) = πg2
˙̃v2 = −πg2 [Ω

∗
2ν̃2 + kpẽ2 + kv ν̃2]

b2(t) = g2g
⊤
2
˙̃v2 = −g2[g

⊤
2 (Ω

∗
2ν̃2 + kpẽ2 + kv ν̃2) + koϕ2].

From the above discussion, one ensures that b2(t) is bounded
and converges to zero. Now, since a2(t) is uniformly con-
tinuous because all components of ȧ2 are bounded, direct
application of the slightly different Barbalat’s Lemma2 [10]
ensures that ˙̃ν2 → −kpπg2 ẽ2 → 0. This implies that πg2 ẽ2 =
−πg2e

∗
2 → 0 and g2 → ±g∗2 . From there and since d2 → 0

one verifies that e2 → ±rg∗2 and kpg
⊤
2 ẽ2 converges to a

positive constant and hence, one concludes that e2 → −rg∗2
and ẽ2 = e2 − e∗2 → −c02g

∗
2 , with c02 = (r + c2). Therefore,

the second set point to which (ẽ2, ν̃2) may converge is
(−c02g

∗
2 , 0) (as shown in Fig. 5 ).

ҧ𝑝2
1

−𝑟𝑔2
∗

𝑝1
∗ 𝑝2

∗

𝑐2𝑔2
∗

Fig. 5. Possible convergence of agent 2 under the controller (3) with
nominal control law (7). The red circle indicates the unstable set point, and
the blue one indicates the AS equilibrium point.

To see now that the set point (ẽ2, ν̃2) = (ẽ02, 0) (with
ẽ02 = −c02g

∗
2) is unstable, recall first that at this point

∥ẽ2∥2 = (r + c2)
2 and the Lyapunov function (15) is

L0
2 :=

kp

2

∫ ∥ẽ02∥
2

0
hp2

(s)ds+ 1
2∥0∥.

Denote R(ϵ) = exp(ϵΩ) ∈ SO(3) with Ω any bounded
matrix in the lie algebra so(3) such that Ωg∗2 ̸= 0 (or
equivalently g∗2 /∈ ker(Ω)). Consider the point ẽϵ2 = (eϵ2 −
e∗2) = −rR(ϵ)g∗2 − c2g

∗
2 such that ∥ẽϵ2∥2 = r2 + c2

2 +
2rc2(g

∗
2
⊤R(ϵ)g∗2). Let Lϵ

2 denote the value of the Lyapunov
function at (ẽϵ2, 0) such that Lϵ

2 =
kp

2

∫ ∥ẽϵ2∥
2

0
hp2(s)ds +

1
2∥0∥. Since for any small and positive ϵ, implying that
|g∗2

TR(ϵ)g∗2 | < 1 and hence ∥ẽϵ2∥ < ∥ẽ02∥, one concludes
that there exist perturbations R(ϵ) in any neighbour of
(ẽ2, ν̃2) = (ẽ02, 0) such that Lϵ

2 < L0
2 and points infinitely

close to (ẽ2, ν̃2) = (ẽ02, 0) converge to (ẽ2, ν̃2) = (0, 0).

1α2 exhibits uniform continuity as well, given that all components of α̇2

remain bounded. Nevertheless, to maintain a broader scope, we will omit
the specific details regarding uniform characteristics.

2The case b2(t) ≡ 0, correspond to the classical Barbalat’s lemma.
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C. Proof of Theorem 1

Proof: Proof for items 1) & 2): Recalling (1), and (3)
along with (4) and (7), the system dynamics of the error
variable (ẽi, ν̃i), one verifies that:{

˙̃ei = Ω∗
i ẽi + ν̃i

˙̃νi = −Ω∗
i ν̃i − kpi

ẽi − kvi ν̃i − koigiϕi.
(22)

From there, the proof of items 1) and 2) seamlessly follows
from Lemma 2.

𝑐2𝑔2
∗

−𝑟𝑔3
∗

ҧ𝑝3
1

𝑝1
∗

𝑝3
∗

𝑝2
∗

−𝑟𝑔3
∗

𝑟𝑔2
∗

ҧ𝑝2
1 𝑝1

∗

ҧ𝑝3
2

ҧ𝑝3
3

𝑐3𝑔3
∗

Fig. 6. Possible convergence of agent 3 under the controller (3) with
nominal control law (7) or (10), when agent 2 converges to the desired
equilibrium point. The red circle indicates the unstable set point, and the
blue one indicates the AS equilibrium point.

𝑐2𝑔2
∗

−𝑟𝑔3
∗

ҧ𝑝3
1

𝑝1
∗

𝑝3
∗

𝑝2
∗

−𝑟𝑔3
∗

−𝑟𝑔2
∗

ҧ𝑝2
1 𝑝1

∗

ҧ𝑝3
2

ҧ𝑝3
3

𝑐3𝑔3
∗

Fig. 7. Possible convergence of agent 3 under the controller (3) with
nominal control law (7), when agent 2 converges to the unstable set point.
The red circle indicates the unstable set point.

Proof for item 3): Since (ẽi, ν̃i), 2 ≤ i ≤ n converges
towards a binary set point (the equilibrium (0,0) or the
unstable set point (−(r + ci)g

∗
i , 0)), one directly concludes

that (p̃i, ṽi) converges to 2i−1 set points (p̄mi − p∗i , 0),m ∈
{1, . . . , 2i−1}, ∀i ∈ V/{1}. From there, one verifies that the
unique asymptotically stable point is p̄1i = p∗i , ∀i ∈ V/{1}
which corresponds to (ẽi, ν̃i) = (0, 0), ∀i ∈ V/{1}. The
remaining 2i−1−1 set points are by definition unstable since
they correspond to at least one unstable point (ẽj , ν̃j) =
(−(r + cj)g

∗
j , 0), j ∈ {2, . . . , i}. Figs. 6 and 7 illustrate

possible convergence situations of a 3-agent system.

D. Proof of Proposition 1

Proof: Recalling (1), (3) and (10), one verifies that the
closed-loop dynamics of the error variable (ẽi, ν̃i), i ≥ 2 can
be rewritten as

˙̃ei =Ω∗
i ẽi + ν̃i

˙̃νi =− Ω∗
i ν̃i − kphpi

(.)ẽi − kvhvi(.)ν̃i − kogiϕi

− (ui−1 − u∗
i−1)

(23)

which can be considered as a cascaded system with
(ẽi−1, ν̃i−1) perturbing the unforced system (22). Analo-
gously to the Proof of Lemma 2, we conclude that the state
(ẽi, ν̃i) of the unforced system (9) is bounded as long as
di > 0.

Proof of Item (1): Recalling that ḋ3 = g⊤3 ν3, from the
nominal system (23), the dynamics of d3 can be expressed
as

d̈3 = −koϕ3 − kvhv3(.)ḋ3 − α
′

3, (24)

where α
′

3(t) = g⊤3 (kp3
hp3

(.)ẽ3−Ω∗2

i e3+u∗
2−u2)+

∥πg3
ν3∥2

d3+r .
Since u2 is bounded (as shown in Lemma 2), the statement
of item (1) for i = 3 can be proved using a similar argument
as in Lemma 2 - item (1).

Now, if we assume that item (1) is true for i−1 ≥ 3, which
implies ui−1 is bounded, we can conclude analogously to
i = 3, that item (1) is true for i. By mathematical induction,
one concludes that this item holds for all i ∈ V/{1}.

Proof of Item (2): It follows from Lemma 2 and Theorem
1 that the unperturbed system (9) converges either to the
AS equilibrium point at (ẽi, ν̃i) = (0, 0) or (ẽi, ν̃i) =
(−(r + ci)g

∗
i , 0). By similar arguments, the same will hap-

pen for (23) if the perturbation ui−1 converges to u∗
i−1.

Thus, one can conclude that the cascaded system with
state (ẽ2, ν̃2, . . . , ẽi, ν̃i) has an AS equilibrium point at the
origin and any remaining set point is unstable. Applying
the appropriate change of variables to obtain the state
(p̃2, ṽ2, . . . , p̃n, ṽn) yields the claim in Item 2).
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