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Abstract—This paper focuses on exploring a novel
trackability-based framework for the iterative learning control
(ILC) systems subject to stochastic disturbances by using
a two-dimensional (2-D) system method. By examining the
fundamental trackability property of the stochastic ILC sys-
tems, the trackability-based stochastic ILC design and analysis
framework is developed, eliminating the need for the common
realizability assumption. Under this framework, thanks to the
2-D system method with the Roesser systems, the convergence
results for both the output and input errors can be established
under a unified condition, regardless of the full column or
row rank of the input-output coupling matrix. A simulation
example is included to demonstrate the validity of our proposed
stochastic ILC design framework for ILC systems.

I. INTRODUCTION

Iterative learning control (ILC), one of the widely-
employed intelligent control methods, has been implemented
to numerous fields to achieve the trajectory tracking control
tasks, such as high-speed trains, batch processes, and robot
manipulators (see, e.g., [1]-[3]). The working principle of
ILC involves designing an appropriate learning gain matrix
to learn and correct the control input in repetitive tasks,
which aims to achieve convergence of the control input to the
desired input while simultaneously achieving perfect tracking
of the prescribed trajectory. Further, ILC possesses a natural
advantage in overcoming the influences of iteration-invariant
(or repetitive) uncertainties on the prescribed tracking ob-
jectives (see, e.g., [4]). Nevertheless, when the ILC systems
are subjected to the stochastic disturbances, the repetitive
uncertainties are effectively attenuated, leading to primary
errors arising from the stochastic disturbances after a limited
number of iterations. This constraint significantly narrows the
usability of ILC.

To overcome the stochastic disturbances for the ILC
systems, many effective stochastic ILC methods have been
developed to achieve the tracking objectives such that the
stochastic ILC problems can be addressed in the sense of the
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probability. There generally exist three categories of stochas-
tic ILC methods, i.e., the stochastic approximation based ILC
method (see, e.g., [5]-[7]), the stochastic optimization ILC
method (see, e.g., [8]-[10]), and the statistics based method
(see, e.g., [11]-[13]).

In most of the existing stochastic ILC literature, the real-
izability assumption is commonly imposed on the stochastic
ILC systems (see, e.g., [5]-[15]), which necessitates the
input-output coupling matrix to be of full column rank.
The validity of this assumption in stochastic ILC systems
is open to debate. By utilizing the realizability assumption,
it is practical to adopt the indirect analysis methods for
ILC systems subject to stochastic disturbances. The con-
trol input convergence results can be obtained, enabling
the achievement of the tracking objectives that the output
can converge to the prescribed trajectory in the probabilis-
tic sense when using the indirect methods to address the
stochastic ILC convergence problems (see, e.g., [5]-[15]).
However, many stochastic ILC problems may not satisfy the
realizability assumption, rendering the indirect convergence
analysis method ineffective in dealing with these problems.

Motivated by the above discussions, we intend to pro-
pose a novel trackability-based stochastic ILC framework
by using two-dimensional (2-D) method. For the stochastic
ILC system, we first explore the fundamental trackability
property and elucidate the difference between trackabil-
ity and realizability. Specifically, the results obtained from
realizability-based stochastic ILC can be viewed as a special
case of trackability-based results. Further, thanks to the 2-
D system method with the Roesser systems, we develop
the trackability-based stochastic ILC design and analysis
framework, eliminating the requirement for the commonly
assumed realizability condition in the existing stochastic ILC
literature (see, e.g., [S]-[15]). In addition, we resort to a
unified condition to develop the convergence results for both
the tracking errors and the inputs of stochastic ILC systems,
regardless of the full column or row rank of the input-output
coupling matrix, which can not be attained in e.g., [5]-[15].

The rest of this paper is organized as follows. In Section
II, we introduce our concerned stochastic ILC problems. We
establish a trackability-based stochastic ILC design frame-
work in Section III. Section IV includes a simulation example
demonstrating the validity of our proposed stochastic ILC
framework. Finally, we draw conclusions in Section V.

Notations: Let Zy = {0,1,2,...} and Zy = {0,1,...,N}
for N € Z;\{0}. Let 0 and I be zero matrix and identity
matrix with appropriate dimensions, respectively. For any
vector x € R", ||x||> denotes its 2-norm. For any vector
sequence {xi(1) 1k € Zy,t € Zy}, let Ax(t) = xpp1 () —xx(2).
For any matrix A € R"™", p(A) denotes its spectral radius.
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For any random variable X, E{X} denotes its expectation.

II. PROBLEM STATEMENT

We consider a stochastic ILC system evolving over both
the time axis ¢ € Zy and the iteration axis k € Z.:

{Xk(f+ 1) = A(t)xe(t) + Bt )ug (1) + wi (1)
yk(t) = C(t)xk

(1) +vi(1)
where x;(¢) € R", u(¢t) € R?, and y(t) € R™ are the state,
input, and output, respectively; wi(t) € R" and v (z) € R™
denote the stochastic disturbances; and A(¢) € R™", B(r) €
R™P_ and C(t) € R™" denote the time-varying system
matrices. We consider the initial state fixed at x;(0) = xo,

Vk € Z. . Further, we denote a o-algebra as
52;{ =0 {W,’(Z‘),

(D

vi(t),0<i<k,0<t<N}, VkeZ;.

Hence, {.%; : k € Z. } forms a filtration, and then we present
a typical assumption regarding the stochastic disturbances:
Al) Let {wi(t):t € Zy,k€Zs} and {w(t):t € Zn,k €Ly}
satisfy E{wi1(t)| 7} = 0 and E{vi1(t)[F} = 0,
Vk € Z,t € Zn, respectively.
The Assumption A1) encompasses the commonly used white
noise assumption concerning the stochastic disturbances, and
thus can characterize the stochastic disturbances in many
practical applications (see, e.g., [16]). Thanks to the tower
property of conditional expectation, the properties of the
stochastic disturbances wy(¢) and vi(7) can be given as

E{we()} =0, E{we(t)} =0, Vk€ Z1,t € Zy.  (2)

Problem statement: Our objective is to determine some
control input sequence {uy(t):t € Zy_1,k € Z1} such that
for the prescribed trajectory y, (1) € R™, Vi € Zy, the stochas-
tic ILC system (1) can achieve the asymptotic tracking
objective:

]}im E{ew(t)} =0, Vi € Zn\{0} 3)
— Y00
where e (1) = yq(t) —yi(f) denotes the tracking error.

To fulfill the asymptotic tracking objective (3), we intro-
duce two essential definitions for stochastic ILC system (1).

Definition 1. The prescribed trajectory y,(t), t € Zy is said
to be trackable for stochastic ILC system (1) if some desired
inputs ug(t) € R™, t € Zn_1 exist, together with the initial
state condition x4(0) = xo, such that

{xdo +1) = A)xar) + B()ua(1)
yd(l‘+ 1) = C([ + l)xd(t-i- 1)

Definition 2. The prescribed trajectory y,(t), t € Zy is said
to be realizable for stochastic ILC system (1) if a unique

desired input uy(t) € R™, t € Zn_ exists, together with the
initial state condition x4(0) = xo, such that (4) holds.

R teZn_1. 4)

Note that the realizability assumption is generally imposed
on classic stochastic ILC systems (see, e.g., [S]-[15]). Based
on Definitions 1 and 2, it is clearly that the realizability of the
prescribed trajectory y,(t), t € Zy can be viewed as a special
case of the trackability. Therefore, solving trackability-based
stochastic ILC problems can enhance the design and analysis

methods for existing stochastic ILC results of, e.g., [S]-[15],
which heavily rely on the realizability assumption.

With the above discussions, we propose a helpful lemma
to develop our trackability-based stochastic ILC results.

Lemma 1. For the ILC system (1), any prescribed trajectory
ya(t), Vt € Zy
1) is realizable if and only if it is trackable when C(t +
1)B(t), Vt € Zn—1 is of full column rank;
2) is trackable, but not realizable when C(t+ 1)B(t), Vt €
Zn—1 is of full row rank.

Proof. See [17, Theorem 1]. [ |

With Lemma 1, we know that trackability is a more
essential property for the stochastic ILC system (1) compared
to realizability. Thus, the subsequent sections of this paper
will focus on developing the trackability-based results.

III. MAIN RESULTS

In this section, to achieve the asymptotic tracking objective
(3) and develop the trackability-based results, we consider
two cases separately for the stochastic ILC system (1):
rank (C(¢ +1)B(t)) =m, Vt € Zy_ and rank (C(¢t + 1)B(z)) =
p, YVt € Zn_1.

A. Case: rank(C(t+1)B(t)) =

We adopt the following stochastic ILC algorithm for the
system (1):

1 (1) = u(t) +E(t)ex(t +1), Vk€ Lyt €Zy—1 (5)

m, Vit € ZN,]

where Z(t) € RP*™ denotes the learning gain matrix. We
then leverage (1) and (5) to derive
Axk(H- 1) = Xj+1 (l + 1) —xk(t—i— l)
=A(t)Ax (1) +B()E(t)er(t + 1) + Awg(2).
Further, we can derive

err1(t+1)

=yat+1) =yt + 1) +y(t+1) =yea (t+1)

=ei(t+1) = C(t + 1)A(t)Axy(t) — C(t + 1) Awy (1)
—C(t+1)B(t)E(t)er(t+1) — Avi(r + 1).

Combine (6) and (7) in a 2-D Roesser system as

L;‘iﬁ%i%]

(6)

(7

A1)

_ (DE()
—C(t+1)A(r)

- c(t+1)1(3( DE( )H%’f%] @®)
i [—C(f +1) —OI} [AVA,:(Vf 1)1)} -

Then, we develop the trackability-based results
for the stochastic ILC system (1) under the case
rank (C(t+1)B(t)) = m, Vt € Zy_; in the following
theorem.

Theorem 1. For any prescribed trajectory y,(t), Vt € Zy,
let Assumption Al) and rank(C(t+1)B(t)) =m, ¥Vt € Zn_1
hold, and the stochastic ILC algorithm (5) be applied to
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the stochastic ILC system (1). Then, the asymptotic tracking
objective (3) and the convergence of the input u(t), i.e.,

klim E{uw(t) —u(t)} =0, Vi € Zy_; 9)
—$o0
can be achieved if and only if

pI—-C(+1)B(t)E()) <1, Vt € Zy_y (10)

where uw(t) is dependent on uy(t), t € Zy—1.

Proof. We implement two steps to develop the convergence
results. Step i): The asymptotic tracking objective (3). With
(2) and (8), we can derive

[]E{Axk(t—kl)}}
Efex1(t+1)}

:[ A(t) B(t)&(r)
—Ct+DA(t) I—C(t+1)B{)E®)

[t hy] wezerez

By applying the 2-D system theory from [18, Lemma 3] to
(11), we establish that lim;_,. E{ex(z)} =0, Vr € Zy\{0} if
and only if p(I—C(r+1)B(t)&(r)) < 1, Vt € Zy_1, where
E{Ax(0)} =0, Yk € Z is inserted.

Step ii): The convergence of the input (9). Thanks to
rank (C(t +1)B(t)) = m, Vt € Zy-1, there exists a full row
rank matrix M(z) € RP="™*P V€ Zy_; such that we can
obtain a nonsingular matrix D(¢) € RP*” with

D(t)=[(Ct+1)B1)" M(1)T]
Then, we can denote its inverse matrix in a specific form as
S(t)=D(t)"" = [E(t) (C(t+ 1)B()E(X) ™" N(1)]

where N(r) € RP*(P~™) vt € Zy_ | is a full column rank
matrix. Clearly, we have

C(t+1)B(t)S(t) = [In 0]

D()E(r) = Ct+ 1)(1)9(t)3(t)] .

Let (1) = D(t)ux(t) = [@yx(1)" ﬁzyk(t)T]T, Vk€Zyt €
Zyn_1 with ﬁl,k(t) € R™ and 172#(2‘) € RP™™, Then, with (5),
we can derive
{ﬁl,kJrl(t) =upx(t) +C(t+1)B(t)E(t)ex(t +1)
r 41 (1) = o k(1) = U2,0(t), Vk € Zyt € Zy-1.

(1)

T

12)

Let us revisit (1), and then we have
yie(t+1)=C(t+1)B(t)S(t)ug (1) +C(t +
+C(t+ Dwe(t) + v (1 +1)
= k(1) +C(t+ 1)A(1)x (1)
FCE+ D)we(t) +ve(t+1).
Substituting (13) into (12), we have
U 1 (1)
=u14(t) +C(r+1)B(1)
= —C(t+1)B(1)E(r)) 1 k(1)
+C+1)B()E() (ya(t+1) —
—C(t+1)B(1)E(r) (Ct+ 1w

DA(#)x (1)

13)

E(0) (alt +1) =yt +1))
(14)
Cle+ VAWM (1))

k(1) + vt +1)).

—_
)
—
—
)
—

Subtracting yy(t + 1) — C(t + 1)A(¢)xx41 (¢) from both sides
of (14), and then taking the mathematical expectation, yields

B {i1 11 (1) = ya(t +1) +C(t + DA )xe 11 (£) }
= —C(t+1)B(1)E())
x B {ity (t) = ya(t+1) +C(t + DA(1)xc(1) }
FE{C(r+ DA(1)Ax (1)}

15)

We then develop the convergence of ujx(r) in (15) by an
enumerative method. For t = 0, we have

E {ﬁ17k+1(0) —ya(1) +C(1)A(0)X()}
— (- C(BO)K(0))E{i4(0) — ya(1) + C(1AO)x0}.

(16)
With the condition (10), we can derive

lim B {1 4(0) } = #1.2:(0) = ya(1) =C(1)A(0)x0.  (17)
Then, we have ue(0) = S(0) [@1 «(0)T  i2,0(0)T]", and thus
Xoo(1) = A(0)xp + B(0)u(0) can be obtained. Further, we

derive E{Ax.(1)} =0. For t = 1, we have
E {1 x1(1) — ya(2) + CR)A( (1)}
=(I—-C(2)B(1)K(1))
X E {1 4(1) ~ ya(2) + CR)A()xa(1)}
With the condition (10), we can obtain
lim I {iz, 4(1) }
=i1e(1) =ya(2) es(0)).

Similarly, repeating the above steps, we can obtain
limg_eo E {@ £(2) } = i1 (2). Continuing the enumerative
method, we directly present the result for the sake of space
efficiency as:

(18)

(19)
—C(2)A(1) (A(0)xo+ B(0)

klimE{l/,{\Lk(t)*il\]?w(t)} =0, Vt € Zn_ (20)
—So0
where ] o (t) = y4(t +1) — C(t + 1)A(t)x(). Let us denote

T

~

oo (t) = [171,oo(f)T (M(t)uo(t))T]

then we leverage (12) and (20) to obtain

giigoE{ﬁk(t)—ﬁw(t)}ZO, Vi € Zyn-1. (1)
Then we denote
Uoo (1) = S(t) o (1)
= E() (C(t+ 1)BO)E()) ™ 1 1)
+N()M(t)uo (1)
and we utilize u;(t) = S(¢)uy(¢) and (21) to derive
k]gl;loE{uoo(t) — uk(t)} =0, Vt € Zy_1
where u.(t) is given by
e (t) = N ()M (t)uo(t) + E(t) (C(t+ 1)B()E(1)) ! @2)

X (ya(t+1) = C(t+ 1)A(t)x(t))
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with N(t)M(t) = I — Z(1) (C(t 4+ 1)B(t)Z(1)) ' C(r + 1)B(1).
Clearly, we have

11(0) = N(0)M(0)uo(0) + K (0) (C(1)B(0)K(0)) '
x (ya(1) —C(1)A(0)x0)
Then, with (1), we denote
Xoo(1) = A(0)x0 + B(0)110 (0).

By extension, we can obtain uw(t), ¥Vt € Zy_1, and ue(t),
Vt € Zy_y depends on u(t), Vt € Zy_;. [ ]

Remark 1. Thanks to the 2-D system theory [19], the
trackability-based results are developed for the stochastic
ILC system (1) in Theorem 1. Under the condition that
C(t+1)B(t), Yt € Zy_ is of full row rank, the convergence
of both the tracking errors and the input can be guaranteed
under a unified condition. Besides, this class of analysis
methods has not been explored in the existing stochastic ILC
literature.

B. Case: rank(C(t+1)B(t)) = p, Vi € Zy—

We then consider the case where the input-output coupling
matrix C(tr + 1)B(t), Vt € Zy—_; is of full column rank,
namely, rank (C(¢ + 1)B(t)) = p, Vt € Zy_,. The trackability-
based results for the stochastic ILC system (1) are developed
in the following theorem.

Theorem 2. Given the trackable trajectory y,(t), Vt € Zy,
let Assumption Al) and rank (C(t+1)B(t)) = p, ¥t € Zy_1
hold, and the stochastic ILC algorithm (5) be applied to
the stochastic ILC system (1). Then, the asymptotic tracking
objective (3) and the convergence of the input u(t), i.e.,

}E‘L‘QE{W@ —u ()} =0, Vr € Zy_, (23)
can be achieved if and only if
p(I—E(t)C(t+1)B(r)) <1, Vt € Zy_;. (24)
Proof. With (1) and (4), we can obtain
Oxp(t+1) =A(t)6xi (1) + B(t) Suy (t) — wi (1) (25)

where we denote Suy (1) = uy(t) — ui(t) and 6x;(t) = x4(2) —
x () for compactness. Using (1), (4), and (5), we can derive

Oujr1 (1) = Su (1) —E(t)er(t +1)

= Ou(t) — E(t) (ya(t+1) =yt +1))
=0u(t) —E() (C(t + 1)0xp(r + 1) —wi(t + 1))
(26)
which, together with (25), yields
Bug1(1) = (I~ E(1)C(t + 1)B(1)) Sui 1)
(27)

—E()C(t+ 1)A(t)Oxi (1)
+E(1) (C(t+ Dwi(r) vt +1))
Combining (25) and (27) in a 2-D Roesser system as
{Sxk(t + 1)}
Suyey1(t)
A(r)

- [-3(;)C(z+ A(r)

B(t) } [5xk(t)]
I—E()C(t+ DB | |8u(t)

(28)

Then, thanks to Assumption Al) and the tower property of
conditional expectation, we have

|:E{6Xk(l‘+ 1)}]
E{dus1(1)}
_ A1)
- {—E(r)C(hL DA(r)

[BiSmn.

By applying the 2-D system theory from [18, Lemma
2] to (29), we establish that lim; . E{du(¢)} =0, Vr €
Zn-1 and limyg_E{8xx(¢)} =0, V¢ € Zy if and only if
p(I—E(t)C(t+1)B(t)) <1,Vt € Zy_1, where E{dx;(0)} =
0, Vk € Z is inserted. Further, by noting that E {e;(¢)} =
C(t)E{6x(¢)}, the asymptotic tracking objective (3) can be
guaranteed. |

B(t)

-z ci+ 1B

Remark 2. For the stochastic ILC algorithm (5), we can
always choose some learning gain matrix that satisfies
the convergence condition (10) (or (24)), which is due to
rank (C(t+1)B(t)) =m, ¥Vt € Zy_1 (or rank (C(t+1)B(t)) =
p, YVt € Zn—_1). To be specific, the candidate selection of the
gain matrix E(t), Vt € Zy_ can be chosen as

=(1) =
& (o 1)B@)T (Cli+ DB (Cr+ DBW)T) or
3 ((C(t+ I)B(t))TC(l‘ + I)B(t))71

(C(t+1)B(1))"
where 0 < & < 2. Hence, we have 1 —C(t+1)B(t)E(t) =
(1=, YVt €Zy—1 (or I-E@)C(t+1)B(r) =(1-E&)I, Vr €
Zn—1), namely, the condition (10) (or (24)) holds.

IV. SIMULATION EXAMPLE

For illustration, the permanent magnet synchronous mo-
tor (PMSM) example (see also [20]) is considered in this
section. To achieve the tracking objective (3) by applying
our discrete-time stochastic ILC algorithm (5), the sampling
time h = 0.1s is adopted, and then the PMSM system can be
discretized into the system (1) with

[Ls—hR(t) WL
_ L, L,
AD =1 hle L —hR(t) |
L L L
rh
= 0
Bit)=|Ls | andC(t)=1
0 .
L” L,

where L,,L,,R(t), and o are given in Table L

The stochastic disturbances wz(¢) and vz(f) follow nor-
mally distributed white stochastic processes with N(0,0.121).
Hence, Assumptions Al) can be ensured. Clearly, C(r +
1)B(t), Vt € Zy_, is of both full column and row rank. In this
example, we adapt the input voltages to track the prescribed
current

va(t) = [0.03(t =102 0.01(t—10)2]", 1 € Zs.
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TABLE I
PHYSICAL PARAMETERS

Parameter Value
Inductance L, 1.1 H
Inductance L 1.1 H
Resistance R() 0.5(1.4—0.4¢7)Q
Angular velocity (0] 0.1 rad/s

0.5

w o

2 20

U,
Pu 4, I 10
13, C k[[]
3

TINe seep !

Fig. 1. The tracking performance with the prescribed trajectory after k = 50
iterations (top) and k = 100 iterations (bottom).

We perform the simulation for the stochastic ILC system
(1) using ILC algorithm (5) with the initial conditions chosen
asug(t) =0,t € Zjg and x;(0) =0, k € Z,. The learning gain
matrix Z() is given by Z(¢) = 0.7(C(t +1)B(t)) "', 1 € Zo.
Thus, both the convergence conditions (10) and (24) can
be ensured. The tracking performance of the stochastic ILC
system (1) for the 50th and 100th is plotted in Fig. 1. It
is clear to see that the output learned from ILC algorithm
(5) after k = 100 iterations closely tracks the prescribed
trajectory for ¢ € Zy\{0}. Besides, the evolution of the
output error max;cz,\ (0} |[va(t) —yx(t)||2 and the input error
mMax;cz,, ||t (t) — ur(¢)|[2 for the stochastic ILC system (1)
is provided in Fig. 2. Thus, the effectiveness of the stochastic
ILC results developed in Theorems 1 and 2 is validated.

V. CONCLUSIONS

In this paper, we have established a trackability-based
stochastic ILC framework for ILC systems subject to

Output Error

0 20 40 60 80 100
Iteration Number k

10

Tutput Error
3

40 60 80 100
Iteration Number k

Fig. 2. The error evolutions with respect to the iteration axis. Top: the
output error. Bottom: the input error.

stochastic disturbances, which can eliminate the need for
the common realizability assumption. Thanks to the explo-
ration of the trackability property, we have developed the
trackability-based convergence results for the stochastic ILC
systems by using 2-D system method, which can furnish
new insights into the design and analysis of the stochastic
ILC. With the trackability-based stochastic ILC framework,
we have achieved the convergence for both the input and
output errors under a unified condition, avoiding the need for
the common realizability assumption. An example has been
included to illustrate the validity of our proposed framework
for stochastic ILC systems.

In our future work, we will explore the trackability-based
stochastic ILC framework for ILC systems subject to initial
state disturbances. Additionally, we will focus on establish-
ing trackability-based convergence results in the mean-square
sense for stochastic ILC systems.

REFERENCES

[1] H.S. Ahn, Y. Chen, and K. L. Moore, “Iterative learning control: Brief
survey and categorization,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol. 37, no. 6, pp.
1099-1121, Nov. 2007.

[2] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of itera-
tive learning control: A learning-based method for high-performance
tracking control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp.
96114, Jun. 2006.

4155



[3] J.-X. Xu, “A survey on iterative learning control for nonlinear sys-
tems,” International Journal of Control, vol. 84, no. 7, pp. 1275-1294,
Jul. 2011.

[4] D. Meng, “Control analysis and synthesis of data-driven learning for
uncertain linear systems,” Automatica, vol. 148, pp. 1-14, Feb. 2023.

[5] H. Chen, “Almost sure convergence of iterative learning control for
stochastic systems,” Science in China Series F, vol. 46, no. 1, pp.
67-79, Feb. 2003.

[6] D. Shen and S. S. Saab, “Noisy-output-based direct learning tracking
control with Markov nonuniform trial lengths using adaptive gains,”
IEEE Transactions on Automatic Control, vol. 67, no. 8, pp. 4123—
4130, Aug. 2022.

[7]1 D. Shen, W. Zhang, Y. Wang, and C. Chien, “On almost sure and mean
square convergence of P-type ILC under randomly varying iteration
lengths,” Automatica, vol. 63, pp. 359-365, Jan. 2016

[8] S. S. Saab, “A discrete-time stochastic learning control algorithm,”
IEEE Transactions on Automatic Control, vol. 46, no. 6, pp. 877-887,
Jun. 2001.

[9] S. S. Saab, “Selection of the learning gain matrix of an iterative
learning control algorithm in presence of measurement noise,” IEEE
Transactions on Automatic Control, vol. 50, no. 11, pp. 1761-1774,
Nov. 2005.

[10] S. S. Saab, “A stochastic iterative learning control algorithm with
application to an induction motor,” International Journal of Control,
vol. 72, no. 2, pp. 144-163, 2004

[11] X. Li, J.-X. Xu, and D. Huang, “An iterative learning control ap-
proach for linear systems with randomly varying trial lengths,” IEEE
Transactions on Automatic Control, vol. 59, no. 7, pp. 1954-1960, Jul.
2014.

[12] Z.Zhuang, H. Tao, Y. Chen, V. Stojanovic, and W. Paszke, “An optimal
iterative learning control approach for linear systems with nonuniform
trial lengths under input constraints,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 53, no. 6, pp. 3461-3473, Jun.
2023.

[13] M. Butcher, A. Karimi, and R. A. Longchamp, “Statistical analysis of
certain iterative learning control algorithms,” International Journal of
Control, vol. 81, no. 1, pp. 156-166, Jan. 2008

[14] A. Deutschmann-Olek, G. Stadler, and A. Kugi, “Stochastic iterative
learning control for lumped- and distributed-parameter systems: A
Wiener-filtering approach,” IEEE Transactions on Automatic Control,
vol. 66, no. 8, pp. 3856-3862, Aug. 2021.

[15] P. Pakshin, J. Emelianova, E. Rogers, and K. Galkowski, “Iterative
learning control of stochastic linear systems with reference trajectory
switching,” in Proceedings of IEEE 60st Conference on Decision and
Control (CDC), Austin, TX, USA, pp. 6572-6577, Dec.13-15, 2021.

[16] M. Fochesato and J. Lygeros, “Data-driven distributionally robust
bounds for stochastic model predictive control,” in Proceedings of
IEEE 61st Conference on Decision and Control (CDC), Cancun,
Mexico, pp. 3611-3616, Dec. 6-9, 2022.

[17] D. Meng and Y. Wu, “Control design for iterative methods in solving
linear algebraic equations,” IEEE Transactions on Automatic Control,
vol. 67, no. 10, pp. 5039-5054, Oct. 2022

[18] D. Meng, Y. Jia, J. Du, and F. Yu, “Necessary and sufficient stability
condition of LTV iterative learning control systems using a 2-D
approach,” Asian Journal of Control, vol. 13, no. 1, pp. 25-37, Oct.
2010

[19] R.Roesser, “A discrete state-space model for linear image processing,”
IEEE Transactions on Automatic Control, vol. 20, no. 1, pp. 1-10, Feb.
1975.

[20] J.-X. Xu and X. Jin, “State-constrained iterative learning control for
a class of MIMO systems,” IEEE Transactions on Automatic Control,
vol. 58, no. 5, pp. 1322-1327, May 2013.

4156



