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Abstract— Control problems with Finite-State Machines
(FSM) are often solved using integer variables, leading to a
mixed-integer optimal control problem (MIOCP). This paper
proposes an alternative method to describe a subclass of FSMs
using complementarity constraints and time-freezing. The FSM
from this subclass is built up by a sequence of states where a
transition between the states is triggered by a single switching
function. This can be looked at as a cascade of hysteresis loops
where a memory effect is used to maintain the active state of the
state machine. Based on the reformulation for hybrid systems
with a hysteresis loop [13], a method is developed to reformulate
this subclass in a similar fashion. The approach transforms the
original problem into a Piecewise Smooth System (PSS), which
can be discretized using the recently developed Finite Elements
with Switch Detection [15], allowing for high-accuracy solutions.
The reformulation is compared to a mixed-integer formulation
from the literature on a time-optimal control problem. This
work is a first step towards the general reformulation of FSMs
into nonsmooth systems without integer states.

I. INTRODUCTION

A Finite-State Machine (FSM) or a hybrid automaton can
be found in many control applications such as traffic control,
heating systems [12], [19], and other energy management
systems [8]. Additionally, FSMs are often used for formulat-
ing piecewise smooth systems (PSS) with smooth continuous
motions that are interrupted by discrete events [17]. For these
FSMs, there exist several specification formalisms whose
semantics are clearly described and can serve as operational
models for these hybrid systems, such as hybrid automata
[3] and hybrid problems [16]. These formalisms provide an
easy-to-understand and clearly defined modelling framework.

This paper focuses on a special form of FSM with cas-
caded hystersis cycles. The general FSM in this framework
has ns modes. The FSM and the cascaded hysteresis for
such an automation with ns = 3, is given in Figure 1. The
active mode is modelled using an auxiliary variable w(t) ∈
{0, 1, ..., ns− 1} going from 0 to ns− 1. If the system is in
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ψ(x) ≥ U1
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(b) Example cascaded hysteresis (w,ψ(x))

Fig. 1. Example FSM.

operating mode i, the ODE is given by ẋ = f sysi (x). When
the system reaches a upper limit given by ψ(x) ≥ Ui+1, it
switchs to a higher mode i+1, if it exist. In the same fashion,
the system also switches to a lower mode i − 1 when the
lower limit ψ(x) ≤ Li−1. For these systems, the bounds are
ordered so that Ui < Ui+1, Li < Li+1∀i ∈ {0, 1, ..., ns−2}
and Li < Ui,∀i ∈ {0, 1, ..., ns − 1}.

In the context of optimal control problems (OCPs), this
kind of system leads to a mixed-integer optimization prob-
lem. In the case of linear systems in discrete time, these
problems can be solved efficiently using mixed-integer lin-
ear programming or mixed-integer quadratic programming
solvers such as Gurobi [10], or CPLEX [11]. However, when
nonlinearities are present, e.g. for time-optimal control, this
OCP becomes a Mixed-Integer Nonlinear Program (MINLP),
which can be arbitrarily difficult to solve in practice due
to the combination of integer variables, nonlinearities and
nonconvexities.

This paper proposes a method that converts a FSM into
a PSS. We discretize the OCP subject to this PSS with
the Finite Elements with Switch Detection (FESD) method
[15] to obtain high-accuracy solution approximations. The
conversion from the FSM to a PSS is based on the hysteresis
characteristics that occur when looking at two adjacent
modes of the FSM. This hysteresis characteristic can be
reformulated into a PSS using time-freezing [13]. This ap-
proach converts the auxiliary state w(t) into a continuous-
time differential state, which exhibits jump discontinuities
in physical time. This jump is interpreted as a state jump
law. Time-freezing introduces auxiliary dynamics and a clock
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state to handle the state jump. The main idea is to define
auxiliary dynamics in the regions of the state space that
are otherwise prohibited for the system and freeze the clock
state evolution. The auxiliary state variable w(t) is frozen in
the regions where the actual dynamics are present, but the
clock state does evolve. The solution for the problem can be
reconstructed by only looking at the regions where the clock
state evolves.

Contribution: We extend the system with hysteresis
[13] to a limited class of hybrid systems. The hybrid systems
should consist of a finite number of ordered states where
there is a single switch function to transition between the
states. For these systems, we introduce two novel time-
freezing reformulations with one and with two auxiliary
variables, respectively. We propose a slight adaptation for
the auxiliary Ordinary Differential Equation (ODE) that
was suggested by [13] to improve numerical stability. A
time-optimal control problem illustrates the approach. The
numerical efficiency as well as the accuracy are compared
with state-of-the-art mixed-integer solution strategies. This
work is a first step towards a general method to describe
general FSM as a PSS system. It allows studying these
problems using the tools developed for Filippov systems
[9]. The examples in this paper are provided in the software
package nosnoc py [1], [2], [14].

Outline: Section II gives some basic definitions of PSS
and time-freezing. Section III develops the time-freezing
reformulation for a class of hybrid systems with a sequence
of states using two different approaches. Section IV com-
pares the two approaches with approaches from the literature.
Section V concludes the paper and highlights the advantages
and disadvantages of the proposed approach.

Notation: The physical time derivative of a function
x(t) is given by ẋ(t) := dx

dt (t). For the numerical time
derivative of y(τ), we use y′(τ) := dy

dτ (τ). For a given set
C, the closure is denoted by C, its boundary by ∂C and
its convex hull by conv(C). All vector inequalities are to be
understood element-wise. The regions of a PSS are denoted
by Ri,j , and Bi corresponds to the parts of the state space
where the FSM dynamics f sysi (x) evolve. This corresponds
to the sliding modes of the PSS.

II. FILIPPOV SYSTEMS AND TIME-FREEZING

This section explains the required background information
regarding Filippov systems and time-freezing reformulations
for a hybrid system with a hysteresis.

A. PSS and Filippov Systems

A general PSS is given by the set of ODEs

ẋ = fi(x), if x ∈ Ri ⊂ Rnx , i ∈I :={1, . . . , nf}, (1)

with nf a positive integer, the regions Ri ⊂ Rnx and asso-
ciated dynamics fi(·). These dynamics are smooth functions
on an open neighborhood of Ri. The regions are disjoint,
nonempty and open sets. It is assumed that

⋃
i∈I

Ri = Rnx

holds and Rnx \
⋃
i∈I

Ri is a set of measure zero.

Since the dynamics for this PSS are undefined on ∂Ri
and to achieve a meaningful solution, a Filippov Differential
Inclusion (DI) [9] treats the discontinuities. The Filipov DI
[15] is given by:

ẋ ∈ FF(x) =
{∑
i∈I

fi(x) θi |
∑
i∈I

θi = 1, θi ≥ 0,

θi = 0 if x /∈ Ri, ∀i ∈ I
}
,

(2)

where θ = (θ1, ..., θnf
) ∈ Rnf are the Filippov mutltipliers.

The r.h.s. of Eq. (2) is a convex and bounded set. The
resulting dynamics on ∂Ri are now defined as a convex
combination of the dynamics from the neighboring regions
and are called Sliding Modes. For the interior of a region Ri,
the Filippov set FF(x) is equal to {fi(x)}. Using Stewart’s
approach [18], this Filippov system is reformulated into a
Dynamic Complementarity System (DCS).

B. Time-Freezing Reformulation for Hybrid System with a
single Hysteresis characteristic

This subsection summarizes the reformulation of a hybrid
system with a hysteresis into a PSS, as introduced in [13],
and gives an improvement on defining the auxiliary dynam-
ics. The main idea for this reformulation is transforming the
integer state w(t) into a continuous differential state w(τ) on
a new time domain τ , the numerical time. This is the time
of the PSS as the original time is retrieved from a clock
state t(τ), the physical time. When the system evolves, this
clock state is evolving as well, i.e., dt

dτ (τ) = 1. The (usually)
discrete state w(t), evolves continuously in numerical time
w(τ) in parts of the state space via auxiliary dynamics, in this
regions of the state space the evolution of the clock state is
frozen, i.e. dt

dτ (τ) = 0. The state vector for the time-freezing
PSS is thus y := (x,w, t) ∈ Rny with ny = nx + 2.

For this application, the Voronoi regions of the PSS are
defined in a new space using a projection Π(y) = (ψ(x), w).
The regions have piecewise smooth boundaries ∂Ri and are
given by

Ri = {y ∈ Rny |gi(y) ≤ min
j∈I,j ̸=i

gj(y)}, (3)

with discriminant function gi(·), defined as the distance to a
point zi:

gi(y) = ∥Π(y)− zi∥. (4)

For the hysteresis, four different regions are defined with
the points z1 = (14 ,−

1
4 ), z2 = ( 14 ,

1
4 ), z3 = (34 ,

3
4 ) and

z4 = ( 34 ,
5
4 ). The original system only evolves along the

boundaries B0 := {y ∈ Rny | w = 0, ψ(x) ≤ 1} =
∂R1 ∩ ∂R2 for f sys0 (x) and B1 := {y ∈ Rny | w =
1, ψ(x) ≥ 0} = ∂R3 ∩ ∂R4 for f sys1 (x). These are the
sliding modes of the PSS and are defined by the Filippov’s
convexification [9] using Eq. (2). Figure 2 illustrates the
vector fields for this system.

For clarity, the ODEs have the notation
¯
f for the equations

governing the lower part of the hysteresis when w = 0 and
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Fig. 2. Partitioning of the (ψ(x), w)-plane of a time-freezing PSS obtained
by reformulating a hybrid system with a single hysteresis characteristic as
proposed in [13]. The Voronoi points z1, . . . , z4, are marked as crosses.

have the notation f̄ for the upper part of the hysteresis when
w = 1. The regions R2 and R3 are equipped with auxil-
iary dynamics

¯
faux(y) and f̄aux(y), respectively, transition

between the two modes of the system. Their auxiliary ODEs
are defined as:

¯
faux(y) := (0nx,1,−γ(ψ(x)− 1), 0), (5)

f̄aux(y) := (0nx,1, γ(ψ(x)), 0), (6)

where γ : R → R and γ(x) = ax2

1+x2 with a > 0 as proposed
by [13]. This function is zero at x equal to 0 and smoothly
transitions to 1 further away from zero.

As the auxiliary dynamics on the boundaries of the sliding
mode, i.e. B0 and B1, should vanish, the ODEs for R1 and
R4 are defined as

¯
fDF(y) and f̄DF(y) respectively by

¯
fDF(y) := 2(f sys0 (x), 0, 1)−

¯
faux(y), (7)

f̄DF(y) := 2(f sys1 (x), 0, 1)− f̄aux(y). (8)

This set of ODEs has some favorable properties. First, the
set of vector fields points to the manifold defined by M =
{y ∈ Rny |w + ψ(x) − 1 = 0} apart from the points (0, 1)
and (1, 0), where a linear combination of the ODEs can
be made to leave the points and transition to another state.
Second, wrong initializations for w(·) when ψ(x) /∈ (0, 1)
will be corrected via to the auxiliary ODE while the physical
time is frozen. Third, the sliding mode Differential Algebraic
Equation (DAE) is not arbitrarily stiff since w′(τ) is bounded
by a > 0. This property is important when constraint drift
occurs. This is the drift between the physically invariant
motion constraints and the numerical results due to the
integration method.

Note that for y ∈ B0 = {y | c(y) := w = 0, ψ(x) < 1},
the system has ∇c(y)⊤

¯
faux(y) < 0 and ∇c(y)⊤

¯
fDF(y) > 0.

This results in a sliding mode on w = 0 with dw
dτ = 0.

From Eq. (2), the system equations result in FF(y) =
{θ1(2(f sys0 (x), 0, 1) −

¯
faux(y)) + θ2

¯
faux(y) | θ1 + θ2 =

1, θ1, θ2 ≥ 0}. As w′ = 0, we obtain γ(ψ(x) − 1)θ1 −
γ(ψ(x)−1)θ2 = 0. Solving these equations normally results
in FF(y) = (f sys0 (x), 0, 1) and θ1 = θ2 = 1

2 . This leads to
a unique sliding mode. However, when γ(ψ(x) − 1) → 0,
numerical issues might appear when solving this system.
Therefore, we propose to change γ(x) = ax2

1+x2 + b with
0 < b << 1. This small change improved numerical stability
without affecting the theorems from [13].

III. TWO FINITE-STATE MACHINE REFORMULATIONS

The previous approach can be extended to the FSM from
the introduction that consist of a sequence of ns states with a
single switching function ψ(x). This section introduces two
variants to model such an FSM.

A. Variant 1: With one auxiliary variable

If ψ(x) ≥ Ui, the system transitions from state i − 1 to
i and when ψ(x) ≤ Li, the system transitions from i + 1
to i, given the system is in state i. Each transition between
two states can be seen as a hysteresis curve with the levels
Li and Ui. If Ui−1 < Li for all i = 2, . . . , ns, a minor
extension to the previous formulation can be made, where a
similar set of ODE equations and Voronoi regions are created
by introducing multiple hysteresis characteristics. The points
for each hysteresis i can be reconstructed using a linear
translation with (Li, i) and a scaling of Ui − Li. They are
thus given as:

zi,1=

(
ai−bi, i−

5

4

)
, zi,2=

(
ai−bi, i−

3

4

)
,

zi,3=

(
ai+bi, i−

1

4

)
, zi,4=

(
ai+bi, i+

1

4

)
,

(9)

with ai = Ui−Li

2 + Li and bi = 1
4(Ui−Li)

. The regions
Ri,1, Ri,2, Ri,3 and Ri,4, created using Eq. 3 and Eq. 4,
correspond to the ODEs

¯
fDF,i(y),

¯
faux,i(y), f̄aux,i(y) and

f̄DF,i(y), respectively. These ODEs are similar to the case
with one hysteresis-loop and given by,

¯
fDF,i(y) :=2(f sysi−1(x), 0, 1)−

¯
faux,i(y), (10a)

¯
faux,i(y) :=

(
0nx,1,−γ

(
ψ(x)− Ui
Ui − Li

)
, 0

)
, (10b)

f̄aux,i(y) :=

(
0nx,1, γ

(
ψ(x)− Li
Ui − Li

)
, 0

)
, (10c)

f̄DF,i(y) :=2(f sysi (x), 0, 1)− f̄aux,i(y), (10d)

where f sysi (x) is the ODE of FSM state i.

B. Variant 2: Reformulation with two auxiliary state vari-
ables for overlapping hysteresis curves

If [Li, Ui] ∩ [Li+1, Ui+1] ̸= ∅, the transition hysteresis
characteristic between three subsequent states overlap. For
x ∈ Ri,4 ∩Ri+1,4, the established PSS reformulation would
result in a sliding mode that is a convex combination of the
dynamics f sysi−1(x) and f sysi (x). This cannot be related to the
original system, thus the equivalence does not hold anymore,
and we need to adapt the reformulation.

We suggest to mitigate this issue by separating the hys-
teresis curves in different planes. Therefore, we introduce
two discrete variables w1 and w2 representing the original
discrete variable w. When the state of the FSM changes,
the discrete variables alternatingly change while the other
one stays constant. The projection Π(y) is now redefined as
Π(y) = (ψ(x), w1, w2) to create a three dimensional space.
Figure 3 illustrates the change from the (ψ(x), w)-space to
the (ψ(x), w1, w2)-space for an FSM with three states. Note
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(a) Variant 1 - Partitioning in the (ψ(x), w)-space for
non-overlapping hysteresis characteristics.

(b) Variant 2 - Partitioning in the (ψ(x), w1, w2)-
space to handle overlapping hysteresis characteristics.
This approach can also be applied to non-overlapping
hysteresis characteristics.

Fig. 3. Illustration of the partitioning of the state space for a FSM with
three states within different spaces for the time-freezing PSS via Voronoi
regions with their corresponding auxiliary and DAE-forming dynamic’s
vector fields. The Voronoi points zi,j are marked with a cross.

that the points z1,3 and z2,1 would coincide in the (ψ(x), w)-
plane for this example. For the (ψ(x), w1, w2)-hyperplane,
the hysteresis is alternatingly placed in the plane w2 for the
even numbers i and in the plane w1 for the uneven numbers
of i. Visually, these planes create a ’staircase’. At every time
point, the projection of the system dynamics and the states
to this space should fall on these planes and thus follow the
’staircase’.

For the definition of the Voronoi regions, there is no unique
expression. However, once the points are constructed in the
two-dimensional (2D) (ψ(x), w)-space, they can be con-
verted to the three-dimensional (3D) (ψ(x), w1, w2)-space.
Constructing the points in the two-dimensional space needs
some attention. There are two different cases. When the
transitions do not overlap, Eq. (9) can be reused. Otherwise,
when there is overlap, i.e. ∃i ∈ {0, 1, ..., ns−1} : Li < Ui−1,
the 2D Voronoi regions should be constructed such that the
points zi,3 and zi+1,1 coincide as well as zi,4 and zi,2.

Once these points are defined in two dimensions, convert-
ing them to three dimensions can be done by applying the
transformations

ẑi,j = (zi,j,1, zi,j,2 −
⌊
i

2

⌋
,

⌊
i

2

⌋
), (11)

for i = 2n+ 1, n = 0, ...,

⌊
ns − 1

2

⌋
, j ∈ {1, ..., 4},

ẑi,j = (zi,j,1, zi,j,2 −
⌊
i+ 1

2

⌋
,

⌊
i+ 1

2

⌋
), (12)

for i = 2n, n = 0, ...
⌊ns
2

⌋
, j ∈ {1, ..., 4},

with ẑi,j the j-th points of the transition between state i and
i + 1 in the (ψ(x), w1, w2)-space. This projection folds the
original 2-D plane upon the ’staircase’ and adds auxiliary
points around each edge to achieve sliding modes. The
ODEs that belong to these Voronoi regions are alternatingly
defining dynamics in the horizontal plane and the vertical
plane. The next theorem allows constructing the ODEs for
the Voronoi regions.

Theorem 1 (ODEs for an FSM with two state variables w1

and w2). Let us define regions Ri,j as
Ri,j = (13)

{y ∈ Rnx+3 | Π(y)− ẑi,j ≤ min
k∈{1,...,ns−1},
l∈{1,...,4}

(Π(y)− ẑk,l)},

with Π(y) = (ψ(x), w1, w2) and the points ẑi,j from Eq. (11)
and (12) equipped with the following ODEs

¯
fDF,i(y) :=2(f sysi−1(x), 0, 0, 1)−

¯
faux,i(y), (14a)

¯
faux,i(y) :=

(
0nx,1,−Miγ

(
ψ(x)− Ui
Ui − Li

)
, 0

)
, (14b)

f̄aux,i(y) :=

(
0nx,1,Miγ

(
ψ(x)− Li
Ui − Li

)
, 0

)
, (14c)

f̄DF,i(y) :=2(f sysi (x), 0, 0, 1)− f̄aux,i(y), (14d)

where Mi ∈ R2×1 with Mi = [1, 0]⊤ for even i and Mi =
[0, 1]⊤ for odd i.
Then for y ∈ Bi := (Ri,3 ∩ Ri,4) ∪ (Ri+1,1 ∩ Ri+1,2) with
i ∈ {1, ..., ns − 1}, it holds that:

FF(y)={(f sysi (x), 0, 0, 1)} (15)
=conv{f̄aux,i(y), f̄DF,i(y),

¯
fDF,i+1(y),

¯
faux,i+1(y)}

Proof. The region Bi can be divided into three parts:
• y ∈ (Ri,3 ∩Ri,4)\(Ri+1,1 ∩Ri+1,2)
• y ∈ (Ri+1,1 ∩Ri+1,2)\(Ri,3 ∩Ri,4)
• y ∈ (Ri+1,1 ∩Ri+1,2) ∩ (Ri,3 ∩Ri,4).

For the first two regions, the proof is similar to Proposition
2 of [13]. For the last region

y ∈(Ri+1,1 ∩Ri+1,2) ∩ (Ri,3 ∩Ri,4) (16)
={y | c(y) := w1 + w2 = i, ψ(x) ∈ (Li+1, Ui)}

a sliding mode is activate [9], since the following holds

∇c(y)⊤
¯
faux,i+1(y) < 0,

∇c(y)⊤
¯
fDF,i+1(y) > 0,

∇c(y)⊤f̄aux,i(y) < 0,

∇c(y)⊤f̄DF,i(y) > 0
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with w1 = ⌊ i+1
2 ⌋, w2 = ⌊ i2⌋ and dw1

dτ = dw2

dτ = 0. From
Eq. (2), we have

FF(y) ={θ3,i(2(f sysi (x), 0, 0, 1)− f̄aux,i(y))

+ θ4,if̄aux,i(y) + θ2,i+1
¯
faux,i+1(y)

+ θ1,i+1(2(f
sys
i (x), 0, 0, 1)−

¯
faux,i+1(y))

with θ3,i + θ4,i + θ1,i+1 + θ2,i+1 = 1,

θ3,i, θ4,i, θ1,i+1, θ2,i+1 > 0}.

From this relation, w′
1 = 0 and w′

2 = 0, we obtain that
θ3,i−θ4,i = 0 and θ1,i+1−θ2,i+1 = 0. Solving for θ3,i, θ4,i,
θ1,i+1, θ2,i+1 results in θ3,i = 1

2−θ1,i+1 with θ3,i = θ4,i and
θ1,i+1 = θ2,i+1, which yields FF(y) = {(f sysi (x), 0, 0, 1)}.
This completes the proof.

Based on Theorem 1 and [13, Proposition 2], we can
conclude that the system has a uniquely defined sliding mode
for every stage such that the region Bi is equipped with
FF(y) = {(f sysi (x), 0, 0, 1)} for i ∈ {0, ..., ns − 1}. Since
the sliding mode is equal to the original dynamics, Eq. (15)
can be used to model the original system with only continous
variables.

IV. COMPARISON FOR A NUMERICAL EXAMPLE: TIME
OPTIMAL PROBLEM OF A CAR WITH GEARBOX

In this section, we apply the developed methodology to
a numerical example of the time-optimal control problem
of a car with a gearbox using four different gears. The
implementation is based on the double-integrator car model
with turbo from [6]. This OCP is nonlinear and nonsmooth
due to the gearbox together with the time-optimal control.
The car model is described using a position q(t), a velocity
v(t) and a gearbox state w(t) ∈ {0, 1, 2, 3}. The car is
controlled using an accelaration u(t) which is bounded
by |u| ≤ ū, ū = 2.5m/s2. The velocity is bounded by
|v| ≤ v̄, v̄ = 30m/s. The gearbox multiplies the controlled
accelaration and automatically shifts up or down when a
speed limit is reached. These speed limits are given by Ui
and Li for gear i. We consider two operating modes to shift
gears:

• Operating mode (a) has non-overlapping hysteresis
curves and is given by La = [5, 12.5, 20] m/s, and
Ua = [10, 17.5, 25] m/s..

• Operating mode (b) has overlapping hysteresis curves
and is given by Lb = [5, 7.5, 10] m/s and U b =
[10, 12.5, 15] m/s.

The state vector is given by z = (q, v, w) ∈ R3 and the ODE
is given by f sysi (z) = (v, (i+ 1)u, 0) for gear i = 0, 1, 2, 3.
The OCP considers the numerical time interval τ ∈ [0, τf ]
and aims to minimize final physical time t(τf). It uses a
time-freezing PSS associated with the car model based on
the reformulations of Section III-A and III-B. At the end of
the numerical time τ , the car should reach a final position
q(t(τf))= qf = 300 m with v(t(τf))= vf = 0 m/s at τf . The

TABLE I
COMPARISON OF DIFFERENT METHODS FOR (17) OPERATING MODE (a).

Solver Tf CPU Time [s] E(Tf)
nosnoc py Var. 1 21.96 428.69 2.85e-71
nosnoc py Var. 2 16.69 905.84 8.5e-60

Gurobi with bisection 20.00 731.38 0
Bonmin 23.27 7200+ 2.67e-12

OCP is given by

min
y(·),u(·),s(·)

t(τf) (17a)

s.t. y(0) = (z0, 0), (17b)
y′(τ)∈s(τ)FF(y(τ),u(τ)), τ ∈ [0, τf ], (17c)
− ū ≤ u(τ) ≤ ū, τ ∈ [0, τf ], (17d)

s̄−1 ≤ s(τ) ≤ s̄, τ ∈ [0, τf ], (17e)
− v̄ ≤ v(τ) ≤ v̄, τ ∈ [0, τf ], (17f)
(q(τf), v(τf)) = (qf , vf). (17g)

where a variable terminal physical time Tf = t(τf) is
achieved using time transformation. This time transformation
is achieved using a scalar speed-of-time control variable s(·).
This speed-of-time is bounded by Eq. (17e) with s̄ = 20. The
problem is discretized using a FESD Radau-IIA scheme of
order 3 with N = 15 control intervals and NFE = 3 inter-
mediate integration steps. In total, there are 45 grid points
where the gear of the gearbox can change. The discretization
and MPCC homotopy are carried out using the open-source
tool nosnoc py, which uses IPOPT [20] and CasADi [4].
The homotopy mode was ”two-sided elastic” [5].

The two approaches from above are compared to a mixed-
integer formulation based on [6], which results in 16 binary
variables per interval. In order to simplify the problem, a
switch in this formulation is only allowed at the interval
boundaries. For a fair comparison, a lower speed limit for
each gear avoids using a gear together with speed lower than
the lower switching speed with a tolerance vtol = 1m/s. The
problem is solved using a MINLP solver Bonmin [7].

A second method uses a bisection-type search on the opti-
mal time Tf for the shortest feasible time up to the accuracy
of 10−5 s. This method reduces the OCP to a mixed-integer
linear program which is solved by the commercial solver
Gurobi [10].

All algorithms run on a single CPU core to have a fair
comparison and have a calculation time limit of 7200 s.
The source code is located in the example section of the
nosnoc py repository [2]. The results for the two cases
are summarized in Table I and II, which includes the cal-
culation time, the time to reach the endpoint and the termi-
nal constraint satisfaction E(Tf) = ∥xsim(Tf) − (qf , vf)∥2.
Since for both Gurobi and Bonmin the switches need to
coincide with the control interval boundaries, the required
time to achieve the endpoint is always higher than the
result of nosnoc py using two auxiliary variables. The
switch detection within nosnoc py allows computing the
optimal point for a switch between gears resulting in a
lower objective value. The nosnoc py implementation with
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(a) Solution of the OCP in physical time. The top left
and right plots show the velocity and control input
respectively in function of the actual time. The bottom
left and right show the sum of auxiliary variables in
function of time and in function of the velocity. The
arrows indicate the direction in time.

(b) 3D view of the speed and the auxiliary variables
w1 and w2

Fig. 4. Solution of the gearbox example in operating mode (a). The image
below shows a 3D view of the speed and auxiliary variables

TABLE II
COMPARISON OF DIFFERENT METHODS FOR (17) OPERATING MODE (b).

Solver Tf CPU Time [s] E(Tf)
nosnoc py Var. 2 20.80 501.60 2.36e-36

Gurobi with bisection 27.75 3501.44 1.99
Bonmin 34.28 7200+ 7.91e-11

a single auxiliary variable fails to use all existing gears.
The solution is stuck in a local minima that can be caused
by the homotopy iterations. The implementation with two
auxiliary variables is more robust against these local minima.
The results of the nosnoc py implementation with two
auxiliary variables are shown in Figure 4. The computation
time of nosnoc py is similar to Gurobi while Bonmin is
significantly slower and can not reach the global minimum
due to the computation time limit. For operating mode (b),
nosnoc py is faster.

V. CONCLUSION

The paper introduces a novel time-freezing reformulation
for a class of hybrid systems with Finite-state Machines
(FSMs). This class has an ordered set of modes and needs
to be operated using one single switching function. The
reformulation uses state jumps to reformulate the system
into a Piecewise Smooth System (PSS) and leverages the
Finite Elements reformulation with Switch Detection (FESD)
method to achieve an optimal control result where the

transition between modes of the FSM can be determined
accurately.

This approach avoids solving complex mixed-integer iter-
ations and only relies on NLP iterates. The paper gives a
theoretical background on improvements of the hysteresis
reformulation [13] and a theoretical justification for the
Differential Algebraic Equations (DAE)-forming Ordinary
Differential Equations (ODEs). Future work includes gen-
eralizing this approach to a generic FSM and allowing the
solver to handle multiple FSM within a single Optimal
Control Problem (OCP).
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[20] Andreas Wächter and Lorenz T. Biegler. On the implementation of
an interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical Programming, 106(1):25–57, 2006.

6260


