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Abstract— Efficient implementation of algorithms for kernel-
based regularized system identification is an important issue.
The state of art result is based on semiseparable kernels and a
class of commonly used test input signals in system identification
and automatic control, and with such input signals, the output
kernel is semiseparable and exploring this structure gives rise to
very efficient implementation. In this paper, we consider instead
the periodic input signals, which is another class of commonly
used test input signals. Unfortunately, with periodic input
signals, the output kernel is NOT semiseparable. Nevertheless,
it can be shown that the output kernel matrix is hierarchically
semiseparable (HSS). Moreover, it is possible to develop efficient
implementation of algorithms by exploring the HSS structure
of the output kernel matrix and the periodic structure of the
regression matrix. The efficiency of the proposed implementa-
tion of algorithms is demonstrated by Monte Carlo simulations.

I. INTRODUCTION

In the past decade, kernel-based regularized system iden-
tification has been one of the major advances in system
identification, achieved many important results and become
an emerging new system identification paradigm, see e.g., the
survey papers [1], [2] and the book [3]. The key difference
between this new paradigm and the classical paradigm based
on the maximum likelihood/prediction error methods [4] is
two fold. Firstly, the new paradigm finds a systematic way
to embed the prior knowledge on the underlying system to
be identified in the model structure through a well designed
kernel. Secondly, the model complexity can be tuned through
the hyper-parameter used to parameterize the kernel in a
continuous and more reliable way.

The recent advance on kernel-based regularized system
identification includes the kernel design and analysis [5], [6],
[7], [8], efficient implementation [9], asymptotic theory [10],
[11], [12], and its application in various contexts, e.g., spatial
temporal data processing [13] and iterative learning control
[14]. In particular, efficient implementation has been an
important issue, because it is the key to apply this emerging
new system identification in the engineering practice. The
most widely used implementation [15] has a computational
complexity of O(Nn2+n3), where N is the number of data
and n is the order of the finite impulse response (FIR) model,
and thus is not efficient if n is large, i.e., the underlying
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system to be identified has a slow dynamics. Recently,
an efficient implementation was proposed in [9], based on
semiseparable kernels and a class of commonly used test
input signals in system identification and automatic control.
With such input signals, the output kernel is semiseparable
and exploring this structure gave rise to implementation with
computational complexity of O(Np2 + p3), where p is the
semiseparability rank of the output kernel.

Unfortunately, the implementation proposed in [9] cannot
be applied to general periodic input signals, which is another
class of commonly used test input signals, because the
output kernel with general periodic input signals is NOT
semiseparable. In this paper, we consider the case with
semiseparable kernels and periodic input signals. It will
be shown that the output kernel matrix is hierarchically
semiseparable (HSS). Moreover, it is possible to develop
efficient implementation of algorithms by exploring the HSS
structure of the output kernel matrix and the periodic and
Toeplitz structure of the regression matrix. The efficiency of
the proposed implementation of algorithms is demonstrated
by Monte Carlo simulations.

The remaining parts of this paper are organized as follows.
In Section II, we introduce some background materials and
the problem statement. In Section III, we give the details
of our proposed implementation and then in Section IV, we
illustrate our implementation by Monte Carlos simulations.
Finally, we conclude this paper in Section V.

II. BACKGROUND AND PROBLEM STATEMENT

A. Kernel-based Regularized System Identification with pe-
riodic Inputs and Semiseparable Kernels

In this paper, we consider the identification of linear time-
invariant (LTI), discrete-time, causal, and bounded-input
bounded-ouptut (BIBO) stable systems described by

y(t) = G0(q)u(t) + v(t), t = 1, · · · ,M, (1)

where t is the time index, M ∈ N is the number of data,
y(t), u(t) and v(t) are the measurement output, input and
measurement noise of the system at time t, respectively, and
G0(q) is the unknown transfer function of the system with q
being the forward shift operator such that qu(t) = u(t+ 1),
and v(t) is assumed to be white noise with mean zero and
variance σ2.

Since the system is LTI, causal and BIBO stable, its
transfer function G0(q) has the following expansion

G0(q) =

∞∑
k=1

g0kq
−k, (2)
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where g0k, k = 1, · · · ,∞, are the so-called impulse re-
sponse coefficients of G0(q) and absolutely summable, i.e.,∑∞

k=1 |g0k| < ∞. Therefore, the identification of G0(q) is
equivalent to the estimation of the impulse response g0k, k =
1, · · · ,∞, which is, however, an intrinsically ill-conditioned
problem with finite number of data. One way to overcome
this problem is to first propose a parametric model G(q, θ)
with the parameter θ ∈ Rn and then estimate G(q, θ) based
on the data {y(t), u(t)}Nt=1 with M ≥ n.

For the kernel-based regularization method (KRM), it
chooses G(q, θ) as the finite impulse response (FIR) model,
which is obtained by truncating the infinite impulse response
of G0(q) at a sufficiently high order n as follows

G(q, θ) =

n∑
k=1

gkq
−k, θ = [g1, · · · , gn]T , (3)

where gk, k = 1, · · · , n, are called the finite impulse
response coefficients, and then yields

y(t) =

n∑
k=1

gku(t− k) + v(t), t = 1, · · · , N. (4)

More specifically, (4) can be rewritten in the following linear
regression form

YN = ΦNθ + VN (5)

where N = M − n, YN = [y(n + 1), · · · , y(M)]T , ΦT
N =

[ϕ(n)T , · · · , ϕ(M)T ] with ϕ(k) = [u(k), · · · , u(k−n+1)],
k = n, n + 1, · · · ,M , and VN = [v(n + 1), · · · , v(M)]T .
Then θ can be estimated by minimizing the following kernel-
based regularized least squares (RLS) criterion:

θ̂N = argmin
θ
∥YN − ΦNθ∥2 + γθTK(α)−1θ

=
(
ΦT

NΦN + σ2K(α)−1
)−1

ΦT
NYN

(6)

where ∥·∥ is the Euclidean norm, γ > 0 is the regularization
parameter, K(α) ∈ Rn×n is the so-called kernel matrix and
defined through a positive semidefinite kernel [16] κ(t, s;α) :
N × N → R, and α ∈ Rp is the so-called hyper-parameter
used to parameterize the kernel κ(t, s;α).

In practice, one needs to first design a suitable kernel
κ(t, s;α), then estimate both γ and α, and finally, get the
RLS estimate θ̂N . By far the most effective method to
estimate α is the so-called empirical Bayes method. This
method further assumes that the measurement noise v(t) is
Gaussian, θ ∼ N(0,K(α)), and moreover, θ is independent
of v(t), t = 1, · · · , N , and γ = σ2. Under these assumptions,
it is easy to verify that the RLS estimate θ̂N in (6) is also the
maximum a posterior estimate of θ and the hyper-parameter
α is estimated by maximizing the marginal likelihood of α,
i.e., α̂ ≜ argmax

α
p (YN | α) or equivalently,

α̂ = argmin
α

Y T
N H(α)−1YN + log |H(α)|

H(α) = ΦNK(α)ΦT
N + σ2IN ,

(7)

where | · | is the determinant of a matrix, IN is the N -
dimensional identity matrix, and H(α) is often called the
output kernel matrix.

The straightforward computation of θ̂N in (6) and α̂ in
(7) has computational complexity of O(N3). In order to
apply the KRM in practice with large N , several efficient
implementations have been developed over the past decade,
e.g., [17], [15], [9]. In this paper, we focus on this topic
under the following assumption.

Assumption 1. Assume that the input signal u(t) is periodic
with period p ∈ N, and the kernel matrix K(α) is extended
{k}-generator representable semiseparable with k ∈ N, and
moreover, N ≥ n ≥ p.

1) periodic Input Signals: On the one hand, it is worth
to mention that periodic input signals are one class of most
widely used test signals in system identification and control,
see e.g., [4]. Under Assumption 1, ΦN in (5) has a periodic
structure with period p ∈ N, i.e.,

ΦN (i, j) = ΦN (i+ t1p, j + t2p) (8)

for all 1 ≤ i, i+t1p ≤ N , 1 ≤ j, j+t2p ≤ n, and t1, t2 ∈ Z,
and ΦN can be rewritten as follows

ΦN =


Φb Φb . . . Φbc

Φb Φb
. . . Φbc

...
...

...
...

Φbr Φbr . . . Φbb

 (9)

where Φb = ΦN (1 : p, 1 : p), Φbr = ΦN (1 : N%p, 1 :
n%p), Φbc = ΦN (1 : p, 1 : n%p),Φbb = ΦN (1 : N%p, 1 :
n%p), ”%” represents the modulo operation, and ΦN (1 :
a, 1 : b) with a, b ∈ N the submatrix of ΦN consisting of the
first a rows and b columns of ΦN .

2) Semiseparable Kernels: On the other hand, most of
the existing kernels proposed in KRM are semiseparable,
see e.g., [9]. As a result, the kernel matrix K(α) is extended
{k}-generator representable semiseparable for some k ∈ N.
Recall that a symmetric matrix K ∈ Rn×n is said to
be extended {k}-generator representable semiseparable [18,
p.304] if there exists k ∈ N, k ≤ n such that

K = S(U, V ) = tril(UV T ) + triu(V UT , 1) (10)

where U, V ∈ Rn×k are called generators of K, tril(UV T )
denotes the lower-triangular matrix generated by UV T by
zeroing all its (i, j) entries with j > i, and triu(V UT , 1) the
upper-triangular matrix generated by V UT by zeroing all its
(i, j) entries with i > j − 1.

B. Problem Statement

In this paper, we study the problem of how to develop
more efficient implementation algorithms for the computa-
tion of α̂ in (7) (and also θ̂N in (6), but it is skipped, because
the space is limited and its computation is a byproduct
of the computation of α̂ in (7)) with lower computational
complexity than the existing ones, e.g., [17], [15], [9], under
Assumption 1 by making use of the structural properties of
ΦN and K(α) as sketched in Sections II-A.1 and II-A.2, and
exploring the structural properties of H(α) defined in (7).
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Remark II.1. As can be seen from [9], the computation of
the cost function of the empirical Bayes method (7) shares
some common elements as that of the other hyper-parameter
estimation methods, such as the Stein’s unbiased risk es-
timation (SURE) method and the generalized cross valida-
tion (GCV) method. Therefore, the proposed implementation
algorithms can be used to develop efficient implementation
algorithms also for the SURE and GCV methods.

C. Fundamentals of Efficient Implementation by Exploring
HSS Matrix

In this subsection, we introduce some fundamentals of
efficient implementation by exploring the structure of HSS
matrix.

As will be shown shortly in Proposition 2, H(α) in (7)
is actually an HSS matrix. HSS matrices are a general-
ization of semi-separable matrices, and also a special case
of hierarchically off-diagonal low-rank (HODLR) matrices
[19], [20], [21]. HODLR matrices have low-rank off-diagonal
blocks, while the diagonal blocks can be subdivided into
the same form recursively, i.e., they also have low-rank
off-diagonal blocks. The HSS matrices have the additional
property that the off-diagonal blocks can depend on the off-
diagonal blocks in the deeper level’s diagonal blocks [21].
More specifically, if A ∈ RN×N is a two-level HODLR
matrix, then A can be represented as

A =

[
A

(1)
1 U

(1)
1 K

(1)
12 V

(1)
2

T

U
(1)
2 K

(1)
21 V

(1)
1

T
A

(1)
2

]
(11)

where the off-diagonal blocks U
(1)
1 K

(1)
12 V

(1)
2

T
and

U
(1)
2 K

(1)
21 V

(1)
1

T
are of low-rank, and A

(1)
1 , A

(1)
2 can

be further divided into

A
(1)
1 =

[
A

(2)
1 U

(2)
1 K

(2)
12 V

(2)
2

T

U
(2)
2 K

(2)
21 V

(2)
1

T
A

(2)
2

]

A
(1)
2 =

[
A

(2)
3 U

(2)
3 K

(2)
34 V

(2)
4

T

U
(2)
4 K

(2)
43 V

(2)
3

T
A

(2)
4

] (12)

which is in the same structure as A until it reaches the
size or rank threshold [22]. For HSS matrices, the matrices
U

(1)
1 , U

(1)
2 , V

(1)
1 , V

(1)
2 can further depend on U

(2)
i and V

(2)
j

recursively through the so-called translation operators. For
example, there are translation operators R

(2)
k ,W

(2)
k , k =

1, 2, 3, 4 such that

U
(1)
i =

[
U

(2)
2i−1R

(2)
2i−1

U
(2)
2i R

(2)
2i

]
, V

(i)
i =

[
V

(2)
2i−1W

(2)
2i−1

V
(2)
2i W

(2)
2i

]
, i = 1, 2

(13)
It is similar for other Ui, Vi’s at each level [19].

The HODLR and HSS matrices allow efficieent imple-
mentation of algorithms for arithmetical operations [23], e.g.,
addition, inversion, and QR decomposition.

III. HOW TO EXPLORE THE STRUCTURE

We show how to develop efficient algorithms by explor-
ing the structure of H(α) to compute Y T

N H(α)
−1

YN and
log |H(α)| efficiently.

A. Preamble

The key idea is sketched below. First, we show that when
ΦN is periodic, the output kernel matrix H(α) has a HSS
structure. Then by referring to [19], [23], we modify a fast
full QR decomposition to factorize H(α) into different levels
such that for k = l − 1, l − 2, . . . , 2, 1, we have

H(k)(α) = W (k)P (k)diag(H(k−1), σ2I2kp)P
(k)TW (k)T ,

(14)
where k is the level index, l is the deepest level chosen for
optimal computational complexity, W (k) is an orthogonal
matrix, P (k) is a permutation matrix, and diag(A,B) means
the diagonal matrix generated by square blocks A and B.
When the factorization is finished at the lth step,

H(0) = W (0)P (0)diag(D(α), σ2Ip)P
(0)TW (0)T ∈ R2p×2p

(15)
where D(α) = R(0)K(α)R(0)T + σ2Ip ∈ Rp×p, which
can be computed efficiently by exploring the semi-separable
structure of K(α). In H(α), only D(α) changes as
α changes. Since YN is fixed, all the computations in
Y T
N H(α)

−1
YN except the one related to D(α) are only

needed to be done once; since the determinant of W (·) and
P (·) is either 1 or -1, the computation of log |H(α)| is almost
about that of |D(α)| . The cost for computing |D(α)| is free
of N , which is much smaller when N ≫ n, p.

B. Efficient implementation by exploring HSS structure of
H(α) and periodic structure of ΦN

1) HSS Structure: We first show that H(α) is an HSS
matrix. Since ΦN is periodic, let the deepest level be l (the
choice for l will be discussed later), divide it into 2l parts
according to rows:

ΦN =
[
Φ

(l)
1

T
Φ

(l)
2

T
· · · Φ

(l)

2l

T
]T

(16)

where for i = 1, . . . , 2l − 1,

Φ
(l)
i =

Φb · · · Φbc

...
...

...
Φb · · · Φbc


m×n

,Φ
(l)

2l
=

Φb · · · Φbc

...
...

...
Φbr · · · Φbb


r×n

,

m is a multiple of p, r satisfies 2l−1m + r = N , normally
m ≈ r, 2lm ≈ N , and m is not necessarily larger than n.
Then H (α is sometimes omitted for simplicity) becomes

H =


Φ

(l)
1 KΦ(l)T Φ

(l)
1 KΦ

(l)
2

T
· · · Φ

(l)
1 KΦ

(l)

2l

T

Φ
(l)
2 KΦ

(l)
1

T
Φ

(l)
2 KΦ

(l)
2

T
· · · Φ

(l)
2 KΦ

(l)

2l

T

...
...

. . .
...

Φ
(l)

2l
KΦ

(l)
1

T
Φ

(l)

2l
KΦ

(l)
2

T
· · · Φ

(l)

2l
KΦ

(l)

2l

T


+ σ2diag(Im, Im, . . . , Ir),

(17)
which is an HSS matrix, as shown in the proposition below.

Proposition 2. Suppose that Assumption 1 holds. Then H in
(7) or (17) is a HSS matrix with identity translation operator.
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According to [20], [21], [23], it is possible to develop fast
factorization for HSS H based on full QR decomposition for
ΦN . An efficient QR decomposition for ΦN will be proposed
in the next section.

2) Efficient QR Decomposition for periodic ΦN : We first
consider the QR decomposition:

ΦN (1 : N, 1 : p) =
[
ΦT

b · · · ΦT
b ΦT

br

]T
= Q

[
RT

b 0
]T

,
(18)

where Q ∈ RN×N is orthogonal, Rb ∈ Rp×p. Then QT can
be applied to the whole ΦN :

QTΦN =

[
Rb .. Rb Rbc

0(N−p)×p .. 0(N−p)×p 0(N−p)×(n%p)

]
≜

[
R
0

]
(19)

where Rbc =

[
Rb(1 : n%p, 1 : n%p)

0(p−n%p)×(n%p)

]
, R ∈ Rp×n. In the

following, we consider the QR decomposition based on the
Householder transformation because of its nice properties
when factorizing periodic ΦN .

By referring to [24, Algorithms 5.1.1 and 5.2.1], we pro-
pose an adapted algorithm to compute the QR decomposition
in (18):

1) Algorithm 1 computes the Householder transforma-
tion Hv ∈ RN×N of a given periodic vector x ∈ RN .
Since the Householder vector v ∈ RN is periodic
except the first entry, we set vb and constant β as
outputs such that

• ṽb = vb(2 : p+ 1);
• v = [vb(1) ṽT

b · · · ṽT
b︸ ︷︷ ︸

m times

ṽT
b (1 : r)]T , where m =

⌊(N − 1)/p⌋, r = (N − 1)%p.
• The transformation can be expressed as Hv =

IN − βvvT .
2) Algorithm 2 computes the Householder QR decompo-

sition of the given periodic matrix ΦN (1 : N, 1 : p) ∈
RN×p. The outputs are: upper triangular matrix Rb ∈
Rp×p; vectors v

(k)
b and constants β(k), k = 1, . . . , p.

Then the Q in (18) can be represented by following:

• ṽ
(k)
b = v

(k)
b (2 : p+ 1).

• v(k) = [v
(k)
b (1) ṽ

(k)T
b · · · ṽ(k)T

b︸ ︷︷ ︸
m(k) times

ṽ
(k)T
b (1 :

r(k))]T , where m(k) = ⌊(N − k)/p⌋, r(k) =
(N − k)%p.

• Hvk
= IN−k+1 − β(k)(v(k))(v(k))T

• Q =
∏p

k=1 diag(Ik−1, Hvk
).

All the outputs in both algorithms are represented using
their periodic part, as we use Φb to represent ΦN . The
computational costs of the two algorithms as well as matrix-
vector product are shown in the following proposition.

Proposition 3. Given a periodic matrix ΦN ∈ RN×n with
period p, the cost of doing Householder QR decomposition
for ΦN with periodic part-only outputs (i.e., Rb in (19), v(k)

b

and β(k) above) is about 2p2(p−1) = O(p3) flops. Besides,
given a vector x ∈ RN , QTx costs about 3Np = O(Np)
flops.

Algorithm 1 Householder transformation for a periodic
vector (House)

Input: periodic part xb = x(1 : p), size N .
Output: First p + 1 elements of Householder vector vb =

v(1 : p+ 1), β.

1: x′
b ←

[
xb(2 : p)
xb(1)

]
;

2: m←
⌊
N−1
p

⌋
; r ← (N − 1)%p;

3: σ ← m(x′
b)

Tx′
b + (x′

b)
T (1 : r)x′

b(1 : r);

4: vb ←
[
1
x′
b

]
;

5: if σ = 0 then
6: β ← σ;
7: else
8: µ←

√
(xb(1))2 + σ;

9: if xb(1) ≤ 0 then
10: vb(1)← xb(1)− µ
11: else
12: vb(1)← −σ

xb(1)+µ ;
13: end if
14: β ← 2(vb(1))

2

σ+(vb(1))2
;

15: vb ← vb

vb(1)
;

16: end if
17: ṽb ← vb(2 : p+ 1);
18: v← [vT

b (1) ṽT
b · · · ṽT

b︸ ︷︷ ︸
m times

ṽT
b (1 : r)]T .

Algorithm 2 Householder QR decomposition for a periodic
matrix
Input: periodic part Φb = Φtrun(1 : p, 1 : p), size N .
Output: First p + 1 elements of each Householder vector

v
(k)
b = v(k)(1 : p+ 1), β(k), Rb.

1: Φ
(1)
b ← Φb;

2: for k := 1 to p do
3: n(k) ← p− (k − 1);
4: m(k) ←

⌊
N−k
p

⌋
; r(k) ← (N − k)%p;

5: [v
(k)
b , β(k)]← House(Φ(k)

b (1 : p, 1), N − (k − 1));

6: Φ
′(k)
b ←

[
Φ

(k)
b (2 : p, 1 : n(k))

Φ
(k)
p (1, 1 : n(k))

]
;

7: S
(k)
f ← v

(k)
b (1)Φ

(k)
b (1, 1 : n(k));

8: S
(k)
m ← m(k)(v

(k)
b )T (2 : p+ 1)Φ

′(k)
b ;

9: S
(k)
r ← (v

(k)
b )T (1 : r + 1)Φ

′(k)
b (1 : r, 1 : n(k));

10: S(k) ← S
(k)
f + S

(k)
m + S

(k)
r ;

11: T
(k)
b ← β(k)v

(k)
b S(k);

12: Φ̃
′(k)
b ←

[
Φ

(k)
b (1, 1 : n(k))− T

(k)
b (1, 1 : n(k))

Φ
′(k)
b − T

(k)
b (2 : p+ 1, 1 : n(k))

]
;

13: Rb(k, k : p)← Φ̃
′(k)
b (1, 1 : n(k));

14: if k ̸= p then
15: Φ

(k+1)
b ← Φ̃

′(k)
b (2 : p+ 1, 2 : n(k));

16: end if
17: end for
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3) Computational Complexity by Exploring the HSS struc-
ture: By [20], [21], [23], the cost for computing α̂ in
(7) by exploring the HSS structure and Householder QR
decomposition using Algorithm 1 and Algorithm 2 is given
in the theorem below.

Theorem 4. Suppose that Assumption 1 holds and the deep-
est level of H(α) is l. Then the computational complexity of
computing both Y T

N H(α)−1YN and log |H(α)| is

[3Np+ (
7

3
+

5

3
l)p3 + (12 · 2l − 2l − 8)p2]︸ ︷︷ ︸
irrespective of α

+ f(n, p, k)︸ ︷︷ ︸
dependent on α

(20)
where f(n, p, k) is the cost of computing the part dependent
on α, and the lower-order terms such as O(p) are ignored.
Moreover, the computational complexity (20) is minimized at
l = 0, and the cost becomes [3Np+ 7

3p
3+4p2]+f(n, p, k).

Theorem 4 shows that to have the most efficient implemen-
tation, it is enough to keep H(α) as a whole and just compute
the full Householder QR decomposition for ΦN . As a result,
we propose to compute Y T

N H(α)−1YN and log |H(α)| in
the following four steps:

i) Compute full QR decomposition of ΦN = Q

[
R
0

]
using

Algorithm 2, Q ∈ RN×N , R ∈ Rp×n is periodic. Then

H(α) = Q[diag(D(α), σ2IN−p)]Q
T (21)

where D(α) = RK(α)RT + σ2Ip.
ii) Compute ȲN = QTYN . Let ȲN =

[
Y T
1 Y T

2

]T
, Y1 =

ȲN (1 : p), Y2 = ȲN (p + 1 : N). Then compute S2 =
σ−2Y T

2 Y2.
iii) Compute explicit D(α) using the semiseparable struc-

ture of K(α):
– Compute KRT , each matrix-vector multiplication

of KRT (1 : n, i), i = 1, . . . , p is obtained by [25,
Algorithm 4.1.], which provides an efficient way to
calculate semiseparable matrix-vector product.

– Compute R(KRT ) + σ2Ip using the normal com-
putation way.

Then compute the inverse D(α)
−1. We have

S1(α) = Y T
1 D(α)

−1
Y1 (22)

The result of Y T
N H(α)YN = S1(α) + S2.

iv) Compute

log |H(α)| = (N − p) log(σ2) + log |D(α)| (23)

directly using explicit D(α).
It is worth to note that the first two steps, i.e., i)-ii), are
irrespective of α, but the last two steps depend on α. The
computational cost f(n, p, k) in Theorem 4 of the last two
steps, i.e., iii)-iv), is shown in the next section.

4) Computation Complexity f(n, p, k) of (22) and (23):
Each update of α in the solution of (7) requires the re-
computation of (22) and (23) with fixed R, where the
computational complexity can be reduced by exploring the
semiseparable structure of K.

Proposition 5. Suppose that Assumption 1 holds and let
K ∈ Rn×n be a semiseparable matrix in the form of (10)
with the semiseparability rank k, and R ∈ Rp×n be the QR
decomposition of ΦN . Then, it holds that

• the computation cost of (22) is 8npk + np2 + 4
3p

3;
• the computation cost of (23) is O(p3);

and hence

f(n, p, k) = [8npk + np2 +
4

3
p3] + [O(p3)]. (24)

5) Overall Computational Complexity:

Theorem 6 (Complexity). Following Theorem 4, the total
cost for both Y −1

N H(α)
−1

YN and log |H(α)| is

[3Np+
7

3
p3 + 4p2]︸ ︷︷ ︸

i), ii): irrespective of α

+ [8npk + np2 +
4

3
p3] + [O(p3)]︸ ︷︷ ︸

iii), iv): dependent on α, i.e., f(n,p,k)

.

(25)

IV. NUMERICAL SIMULATION

In this section, we run numerical simulations to test the
efficacy of the proposed method. In particular, we compare
the performances between the proposed implementation (de-
noted by RFIR-hss) and Algorithm 2 in [15] (denoted by
RFIR), which is matrix-inversion-free and based on QR fac-
torization. We test the KRM with the Tuned-Correlated (TC)
kernel which is extended 1-semiseparable [9]. In particular,
we estimate the hyper-parameters and the noise variance
σ2 by maximizing the marginal likelihood (7), which is
computed by RFIR and RFIR-hss. Then the corresponding
regularized impulse response estimates (6) are computed.
The numerical optimization of (7) is as follows: first we
choose an initial point of the hyper-parameters by grid search
and then optimization is implemented by the MATLAB
function fmincon with the interior-point algorithm.

The input signal is a periodic random Gaussian signal
using the entire frequency range with period p and the output
additive white Gaussian noise v(t) is generated with variance
one tenth of the variance of the noise-free output.

A. Accuracy test

In this test, we run Monte Carlo simulations to test the
accuracy of the proposed method. Specifically, we generate
80 discrete-time linear systems of 10th order with the moduli
of all the poles within [0.1, 0.9]. The number of data points
M is chosen to be 600, the FIR model order n is chosen
to be 50 and the period p is chosen to be 40. To assess the
estimation performance, we define the model fit:

fit = 100

(
1−

[∑n
k=1 |g0k − ĝk|∑n
k=1 |g0k − ḡ0|

]1/2)
, ḡ0 =

1

n

n∑
k=1

g0k,

(26)
where g0k and ĝk are the true and the estimated impulse
response at the kth order, respectively. The averaged model
fits for RFIR and RFIR-hss are 86.326354 and 86.326355
respectively. The distribution of the model fit difference
between RFIR and RFIR-hss is shown in Fig. 1. We
observe that RFIR-hss gives almost the same accuracy
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Fig. 1: The model fit difference between RFIR and
RFIR-hss.

n = 300 n = 600 n = 1200 n = 2400 n = 4800
RFIR 2.471 15.583 75.227 372.419 2327.687
RFIR-hss 0.953 1.219 1.761 3.005 7.298

TABLE I: The averaged computation time (in sec-
onds) by RFIR and RFIR-hss with respect to n =
300, 600, 1200, 2400 and 4800.

performance as RFIR, which justifies the correctness of our
derivations.

B. Efficiency test

In this test, we generate a data set from a fixed system

G(q) =
−0.3377q

(q − 0.9542)(q − 0.9758)
. (27)

The number of data points M is chosen to be 10000 and
the period p is chosen to be 200 while we choose the FIR
model order n to be 300, 600, 1200, 2400 and 4800. For
each n, we identify the system for 10 times and measure the
corresponding averaged computation time for evaluating the
marginal likelihood (7) 567 times (in the initial grid search)
by RFIR and RFIR-hss. The averaged computation time
with respect to the FIR model n is shown in TABLE. I, which
indicates that RFIR-hss is significantly faster than RFIR
as n grows larger. The averaged model fits by RFIR and
RFIR-hss are 94.1835425 and 94.1835434, respectively.

V. CONCLUSION

In this paper, we proposed an efficient implementation for
kernel-based regularized system identification with semisep-
arable kernels and periodic input signals. The proposed
implementation, as illustrated by the simulation results, is
more efficient than the existing one and thus offers the users
more efficient implementations of algorithms in practice.
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