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Abstract— A new notion of phase of multi-input multi-output
(MIMO) systems was recently defined and studied, leading to
new understandings in various fronts including a formulation
of small phase theorem, a performance criterion named H∞
phase sector, and a sectored real lemma, etc. In this paper, we
define a new notion of HT

2 -dissipativity and show the connection
between the phase of a multivariable linear time-invariant (LTI)
system and the HT

2 -dissipativity. The HT
2 -dissipativity, roughly

speaking, is dissipativity restricted to the time-domain H2

space which consists of L2 signals with only positive frequency
components. In addition, by exploiting the newly defined HT

2 -
dissipativity, we also study the phase of a feedback system and
provide a physical interpretation of the sectored real lemma.

I. INTRODUCTION

The concepts of magnitude and phase play equally impor-
tant roles in classical frequency-domain single-input single-
output (SISO) feedback control system theory. The magni-
tude response and phase response combined together are es-
sential in understanding how the system responds to different
types of input signals. Moreover, the notions of gain margin
and phase margin are widely used in characterizing closed-
loop stability and performance.

As for MIMO LTI systems, the magnitude-based control
theory has been well-developed. Particularly, the H∞ norm
and the well-known small gain theorem lays the foundation
of the H∞ optimal control theory. However, the development
of a phasic counterpart has fallen behind. How to define the
phase of a MIMO LTI system has been an unsettled issue
for a long time. Several notable attempts along this direction
have been made, such as introducing the notion of principal
phase that resulted in an early version of small phase theorem
[1], extending Bode gain-phase relation to MIMO systems
[2]–[4], and developing phase-related notions based on the
numerical range [5]–[7].

Recently, a new definition of phase response of frequency-
wise semi-sectorial MIMO LTI systems was proposed [8]–
[10]. The H∞ phase sector, as a counterpart to the H∞ norm,
was also defined, which measures the range of phase shift
between the output signal and input signal over all directions
and all nonnegative frequencies. A small phase theorem was
developed as a counterpart of the small gain theorem. Also,
the phase concept extends the well-known notion of passivity.
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It is well known that both the gain and passivity is closely
connected to the dissipativity theory. Dissipativity, a concept
emerged in many subjects including thermodynamics, circuit,
and mechanical theories, has undergone extensive develop-
ments in the control field and evolved into a comprehensive
dissipativity theory over the past half century [11]–[13]. It
is naturally expected that the phase of a MIMO LTI system,
as a sister notion of gain, is also connected to some kind of
dissipativity. It is the purpose of this paper to explore such
connection and its implications.

In this paper, we define a constrained dissipativity called
HT

2 -dissipativity, i.e., dissipativity restricted to time domain
H2 space that consists of L2 signals containing only positive
frequency components. We show that phase bounded systems
can be described by such HT

2 -dissipativity. This is done by
first showing that the H∞ phase sector of a MIMO LTI
system coincides with the phase of its associated time domain
operator restricted to the invariant subspace HT

2 . Moreover,
by using the newly defined HT

2 -dissipativity, the phase of a
feedback system is studied. A physical interpretation of the
sectored real lemma established in [9] is also provided.

The rest of this paper is organized as follows. Section 2
introduces preliminaries on phases of bounded linear opera-
tors and phases of MIMO LTI systems. Time domain inter-
pretation of the H∞ phase sector and its connection to HT

2 -
dissipativity are established in Section 3. Section 4 discusses
the phase of a feedback system and presents an interpretation
of the sectored real lemma. Section 5 concludes this paper.
The notation used in this paper is more or less standard and
will be made clear as we move forward.

II. PRELIMINARIES

In this section, we briefly review some basics of the phases
of bounded linear operators and phase response of MIMO
LTI systems. One can refer to [8]–[10], [14] for more details.

A. Phases of bounded linear operators

Let T be a bounded linear operator on a complex Hilbert
space X . The numerical range of T is given by [15]

W (T ) = {⟨x,Tx⟩ : x ∈ X , ∥x∥ = 1}. (1)

In the finite-dimensional vector space Cn, it reduces to the
numerical range of a complex matrix C ∈ Cn×n [16]

W (C) = {x∗Cx : x∈Cn, ∥x∥ = 1}.

According to the Toeplitz-Hausdorff theorem, W (T ) is al-
ways a convex set [15]. In general W (T ) may not be closed.
An important property of T is that its spectrum is included
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in the closure of its numerical range, i.e., σ(T )⊂cl{W (T )},
where cl denotes closure [15].

If 0 /∈ cl{W (T )}, then cl{W (T )} is contained in an open
half complex plane due to its convexity. In this case, T is
said to be a sectorial operator [14]. Given a sectorial T ,
there exist two unique supporting rays of cl{W (T )} that
subtend an angle less than π at the origin, called the field
angle of T and denoted by δ(T ). An illustration is in Fig. 1.
The angles from the positive real axis to the two supporting
rays correspond to the supremum and infimum phases of
T , denoted by ϕ(T ) and ϕ(T ) respectively. Mathematically,
ϕ(T ) and ϕ(T ) are defined as

ϕ(T ) = sup
x∈X ,∥x∥=1

∠⟨x,Tx⟩, ϕ(T ) = inf
x∈X ,∥x∥=1

∠⟨x,Tx⟩

such that ϕ(T ) − ϕ(T ) < π. Note that ϕ(T ) and ϕ(T ) are
not uniquely determined, but are rather determined modulo
2π. After one selects a value of γ(T ) = [ϕ(T ) + ϕ(T )]/2,
called the phase center of T , in R, then one can uniquely
determine the values of ϕ(T ) and ϕ(T ), respectively. The
phases ϕ(T ) and ϕ(T ) are said to take the principal values
if γ(T ) takes the principal value in [−π, π).

𝜙 𝑻

𝜙 𝑻

Re

Im

0

cl{𝑊 𝑻 }

Fig. 1. The phases of a sectorial operator.

Now we extend the phase definition to a broader class
of operators. A bounded linear operator T is said to be
semi-sectorial if cl{W (T )} is contained in a closed half
complex plane. Fig. 2 shows the numerical range of a typical
semi-sectorial operator. One can see that the origin is on the
boundary of cl{W (T )}. Clearly, positive semidefinite linear
operators are semi-sectorial. We define the supremum and
infimum phases of a semi-sectorial T as

ϕ(T ) = sup
x∈X ,∥x∥=1,⟨x,Tx⟩̸=0

∠⟨x,Tx⟩

ϕ(T ) = inf
x∈X ,∥x∥=1,⟨x,Tx⟩̸=0

∠⟨x,Tx⟩.

We view the set of sectorial operators as a subset of that of
semi-sectorial operators.

For operators on Cn, the supremum and infimum phases
defined above coincide with those of (semi-)sectorial matri-
ces [9], [17]–[19].

B. Phases of MIMO LTI systems

Here we review the phase response of MIMO LTI systems
recently developed in [8]–[10]. Let G be an m × m real
rational proper stable transfer matrix, i.e., G ∈ RHm×m

∞ .
Then, G is said to be frequency-wise semi-sectorial if

𝜙𝜙 𝑻𝑻

𝜙𝜙 𝑻𝑻
Re

Im

0

cl{𝑊𝑊 𝑻𝑻 }

Fig. 2. The phases of a semi-sectorial operator.

1) G(jω) is semi-sectorial for all ω ∈ [−∞,∞];
2) there exists an ϵ∗ > 0 such that for all ϵ ≤ ϵ∗, G(s) has

a constant rank and is semi-sectorial along the indented
imaginary axis shown in Fig. 3, where the half-circle
detours with radius ϵ are taken at the finite zeros of
G(s) at the frequency axis and a half-circle detour with
radius 1/ϵ is taken if infinity is a zero of G(s).

Furthermore, G ∈ RHm×m
∞ is said to be frequency-wise

sectorial if G(jω) is sectorial for all ω ∈ [−∞,∞]. Clearly,
a frequency-wise sectorial system does not have transmission
zeros on the imaginary axis.

Re

Im

0

𝜖 1/𝜖

Fig. 3. Indented jω-axis: “o” denote the jω-axis zeros.

Let G be frequency-wise semi-sectorial. If 0 is not a zero
of G, then G(0) can be accretive, i.e., G(0) + G∗(0) ≥
0, anti-accretive, or indefinite Hermitian. For simplicity, we
assume in this paper that G(0) is accretive such that the
DC phase center γ(G(0)) = 0. We let γ(G(s)) be defined
continuously along the indented imaginary axis. If 0 is a
zero of G, we look at G(ϵ) instead. Again, we assume that
G(ϵ) is accretive and define γ(G(s)) continuously along the
indented imaginary axis. With this construction, ϕ(G(s)) is
odd with respect to the indented imaginary axis. Hence we
can focus on the part of the phase response corresponding
to the upper half of the indented imaginary axis.

For frequency-wise semi-sectorial G, its maximum and
minimum phases are defined to be

ϕ(G) = sup
ω∈[0,∞]

ϕ(G(jω)), ϕ(G) = inf
ω∈[0,∞]

ϕ(G(jω))

and its H∞ phase sector, also called Φ∞ sector, is defined
to be

Φ∞(G) = [ϕ(G), ϕ(G)].

We say G ∈ RH∞ is semi-sectorial if Φ∞(G) ⊂ [α, α+ π]
for some α and it is sectorial if Φ∞(G) ⊂ (α, β) with 0 <
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β − α ≤ π. Note that the twisted positive-real system with
twisting angle ψ defined in [20] is a SISO sectrorial system
with Φ∞ sector (ψ − π

2 , ψ + π
2 ).

III. PHASE AND HT
2 -DISSIPATIVITY

A system G ∈ RHm×m
∞ corresponds in time domain to a

bounded linear causal operator G mapping an input signal
space to an output signal space. It is well-known that the
H∞ norm of G coincides with the operator norm of G [21].
In this section, we will show that similar things can be said
for Φ∞ sector.

Denote by LT
2 (−∞,∞) the Hilbert space of complex-

valued bilateral time functions. Recall that Fourier transform
on LT

2 (−∞,∞) is an isometry onto LΩ
2 (−∞,∞), i.e., the

Hilbert space of complex-valued bilateral frequency func-
tions with the inner product

⟨u(jω), v(jω)⟩ = 1

2π

∫ ∞

−∞
u∗(jω)v(jω)dω

for u(jω), v(jω) ∈ LΩ
2 (−∞,∞). Decompose LΩ

2 (−∞,∞)
into

LΩ
2 (−∞,∞) = LΩ

2 (0,∞)⊕ LΩ
2 (−∞, 0).

This is clearly an orthogonal decomposition, which in turn
leads to a natural orthogonal decomposition in LT

2 (−∞,∞)

LT
2 (−∞,∞) = F−1LΩ

2 (0,∞)⊕ F−1LΩ
2 (−∞, 0),

where F denotes the Fourier transform and F−1 denotes the
inverse Fourier transform.

The time functions in the first subspace contain only pos-
itive frequency component and can be analytically extended
to the upper half complex plane [22], i.e., the first subspace
is the H2 space in time domain. Correspondingly, the time
functions in the second subspace contain only negative
frequency component and can be analytically extended to the
lower half complex plane. We denote the first subspace by
HT

2 and consequently the second subspace by HT⊥

2 . Denote
by P the orthogonal projection onto LΩ

2 (0,∞) and Q be
the orthogonal projection onto HT

2 . A full picture of the
relationships among these signal spaces is summarized in
the commutative diagram in Fig. 4.

�-

PQ
6

LΩ
2 (0,∞)

F

F−1
HT

2

6

LT
2 (−∞,∞)

?
I −Q

HT⊥

2

�-F

F−1

�-F

F−1

LΩ
2 (−∞,∞)

?
I − P

LΩ
2 (−∞, 0)

Fig. 4. A commutative diagram.

Now let G : LT
2 (−∞,∞)→LT

2 (−∞,∞) be the bounded
linear operator corresponding to G(s) ∈ RH∞. Since HT

2

is an invariant subspace of G, the restriction of G to HT
2 ,

denoted by G|HT
2

, is a bounded linear operator on HT
2 .

The following theorem provides a connection between
Φ∞(G) defined in frequency domain and the phases of G|HT

2

defined in time domain.
Theorem 1: For a semi-sectorial G, it holds that

Φ∞(G) =
[
ϕ(G|HT

2
), ϕ(G|HT

2
)
]
.

Proof: The result follows from the fact that

cl conv {W (G(jω)) : ω ∈ [0,∞]} = cl
{
W (G|HT

2
)
}
,

which was shown in [9].
We wish to emphasize the advantage of considering G|HT

2

instead of G. For a real system, W (G) is symmetric over
the real axis. This means that if G is required to be semi-
sectorial, then cl{W (G)} is contained in either the right
half or the left half complex plane, and [ϕ(G), ϕ(G)] is a
symmetric interval and could only be a subset of [−π/2, π/2]
or [−3π/2,−π/2]. This limits the applicability of phase
theory. Nevertheless, considering G|HT

2
can diminish this

issue, as HT
2 contains signals with only positive frequency

components and W(G|HT
2
) is not necessarily symmetric

with respect to the real axis. When G|HT
2

is semi-sectorial,
[ϕ(G|HT

2
), ϕ(G|HT

2
)] is possibly asymmetric and could be

any subset of [−3π/2, 3π/2] with length no larger than π
and containing 0 or −π.

Note that such understanding for phase delivered by The-
orem 1 is in parallel with the understanding for gain. To be
specific, it is known that for system G ∈ RH∞, it holds that
∥G∥∞ = ∥G∥. In fact, there holds further that

∥G∥∞ = ∥G∥ = ∥G|HT
2
∥,

where the second equality is due to the conjugate symmetry
of the LTI system, i.e., G(−jω) = G(jω).

With Theorem 1, we are able to establish the connection
between the Φ∞ sector of LTI systems and the concept
of dissipativity. A stable system with associated bounded
operator G is said to be ultimately dissipative with respect
to the (Q,S,R)-supply rate, where Q and R are Hermitian
matrices, if ∫ ∞

−∞

[
y
u

]∗ [
Q S
S∗ R

] [
y
u

]
dt ≥ 0 (2)

for all u ∈ LT
2 (−∞,∞) [11].

In the classical definition of dissipativity, it is required
that the inequality (2) holds for all u ∈ LT

2 (−∞,∞). Now
we introduce a new notion called HT

2 -dissipativity. A stable
system is said to be ultimately HT

2 -dissipative with respect
to the (Q,S,R)-supply rate if the dissipation inequality (2)
holds for all u ∈ HT

2 . The HT
2 -dissipativity can be viewed

as a constrained dissipativity where u is restricted to be in
the subspace HT

2 in the dissipation inequality.
The next theorem builds the connection between Φ∞(G)

and the ultimate HT
2 -dissipativity for sectorial system G.

Theorem 2: Let G be sectorial. Then Φ∞(G)⊂(α, β) for
0<β−α≤π if and only if G is ultimately HT

2 -dissipative
with respect to the (−ϵI, ej(α+π

2 )I,−δI)-supply rate and
(−ϵI, ej(β−π

2 )I,−δI)-supply rate for some ϵ, δ > 0.
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Proof: According to Theorem 1, Φ∞(G) ⊂ (α, β) is
equivalent to [

ϕ(G|HT
2
), ϕ(G|HT

2
)
]
⊂ (α, β). (3)

From the definition of phases of G|HT
2

, we know that (3)
holds if and only if for all u ∈ HT

2 , u ̸= 0, there holds

α < ∠
⟨u,G|HT

2
u⟩

∥u∥22
= ∠

⟨u,Gu⟩
∥u∥22

< β,

which is equivalent to that there exists δ > 0 such that

Re

{
e−j(π

2 +α) ⟨u,Gu⟩
∥u∥22

}
≥ δ, (4)

Re

{
e−j(β−π

2 ) ⟨u,Gu⟩
∥u∥22

}
≥ δ. (5)

Let σ = ∥G∥2∞. Then ∥Gu∥22≤σ∥u∥22. Let ϵ= δ
σ . Then

δ∥u∥22 =
δ

2σ
σ∥u∥22 +

δ

2
∥u∥22 ≥ ϵ

2
∥Gu∥22 +

δ

2
∥u∥22.

Combined with inequalities (4) and (5), we have

Re
{
e−j(π

2 +α)⟨u,Gu⟩
}
≥ ϵ

2
∥Gu∥22 +

δ

2
∥u∥22,

Re
{
e−j(β−π

2 )⟨u,Gu⟩
}
≥ ϵ

2
∥Gu∥22 +

δ

2
∥u∥22.

These two inequalities can be rewritten as∫ ∞

−∞

[
Gu
u

]∗ [ −ϵI ej(α+
π
2 )I

e−j(α+π
2 )I −δI

] [
Gu
u

]
dt ≥ 0, (6)∫ ∞

−∞

[
Gu
u

]∗ [ −ϵI ej(β−
π
2 )I

e−j(β−π
2 )I −δI

] [
Gu
u

]
dt ≥ 0, (7)

which completes the proof.
Such connection between Φ∞ sector and HT

2 -dissipativity
can be extended to semi-sectorial systems. See the theorem
below. The proof is similar to Theorem 2 and is omitted for
brevity.

Theorem 3: Let G be semi-sectorial. Then Φ∞(G) ⊂
[α, α+π] if and only if G is ultimately HT

2 -dissipative with
respect to the (0, ej(α+

π
2 )I, 0)-supply rate.

Theorems 2 and 3 convey a message that in general the
phase of an LTI system is connected to HT

2 -dissipativity
rather than the classical dissipativity. This is in fact very
intuitive as Φ∞(G) concerns only the phase over the positive
frequency, thereby only signals in the subspace HT

2 need to
be considered in the dissipation inequality.

Nevertheless, we wish to mention that in the special case
where α=−β in Theorem 2, a sectorial G with Φ∞(G)⊂
(−β, β) is in fact connected to the classical dissipativity. See
the following theorem.

Theorem 4: Let G be sectorial. Then Φ∞(G)⊂ (−β, β),
β ∈ (0, π2 ] if and only if G is ultimately dissipative with
respect to the (−ϵI, ej(β−π

2 )I,−δI)-supply rate.
Proof: We first show the sufficiency. If G is ultimately

dissipative with the (−ϵI, ej(β−π
2 )I,−δI)-supply rate, then

it is ultimately HT
2 -dissipative with the same supply rate.

This means that (7) holds for all u ∈ HT
2 , u ̸= 0. Thus,

Re
{
e−j(β−π

2 )⟨u,G|HT
2
u⟩
}
= Re

{
e−j(β−π

2 )⟨u,Gu⟩
}

≥ ϵ

2
∥Gu∥22 +

δ

2
∥u∥22 ≥ δ

2
∥u∥22.

Then we have −β<∠
⟨u,G|HT

2
u⟩

∥u∥2
2

<β. In view of Theorem 1,
G is sectorial and Φ∞(G) ⊂ (−β, β).

Next we show the necessity. Since Φ∞(G) ⊂ (−β, β),
from Theorem 2, G is ultimately HT

2 -dissipative with the
(−ϵI, ej(β−π

2 )I,−δI)-supply rate. Then, it suffices to show
G is ultimately HT⊥

2 -dissipative with the same supply rate,
i.e., (7) holds for all u∈HT⊥

2 , u ̸=0. In view of the conjugate
symmetry of G, we know that W (G(jω)) and W (G(−jω))
are symmetric over the real axis. Thus,[

inf
ω∈[−∞,0]

ϕ(G(jω)), sup
ω∈[−∞,0]

ϕ(G(jω))

]
⊂ (−β, β). (8)

On the other hand, by applying the same techniques used in
[9, Proposition 5.1], it can be shown that

cl conv {W (G(jω)) : ω ∈ [−∞, 0]} = cl
{
W (G|HT⊥

2
)
}
.

Together with (8), we have
[
ϕ(G|HT⊥

2
), ϕ(G|HT⊥

2
)
]

⊂
(−β, β). Hence, similar to Theorem 2, it can be shown that
(7) holds for all u∈HT⊥

2 , u ̸=0. The proof is complete.
When β = π

2 , Theorem 4 reduces to the known fact that a
stable G is very strictly passive if and only if it is ultimately
dissipative with respect to the (−ϵI, I,−δI)-supply rate [23].

IV. IMPLICATIONS AND DISCUSSIONS

A. Phases of feedback systems
By exploiting the HT

2 -dissipativity introduced in the last
section, we study the phase of feedback systems.

- j - G

?
� j�H

6y1 y2

r1

r2

u1

u2

−

Fig. 5. A standard feedback system.

Consider the feedback interconnections of G and H shown
in Fig. 5. Denote by S=(I+GH)−1 the sensitivity function.
Then we have the following result.

Theorem 5: Let G,H be sectorial with Φ∞(G) ⊂ (α, β)
and Φ∞(H) ⊂ (−β,−α) with β−α ≤ π respectively. Then
Φ∞(SG) ⊂ (α, β) and Φ∞(HS) ⊂ (−β,−α).

Proof: We will show that Φ∞(SG) ⊂ (α, β). The
validity of Φ∞(H)⊂(−β,−α) can be shown similarly.

Let r2 = 0 in Fig. 5. Then u2 = y2. Next we show
that ϕ(SG) > α. Since ϕ(G) > α and ϕ(H) < −α, from
Theorem 2, we have

ej(
π
2 +α)⟨y2, u1⟩+ e−j(π

2 +α)⟨u1, y2⟩ ≥ ϵ1∥y2∥22 + δ1∥u1∥22,
ej(−α−π

2 )⟨y1, y2⟩+ ej(α+
π
2 )⟨y2, y1⟩ ≥ ϵ2∥y1∥22 + δ2∥y2∥22,
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for some ϵ1, ϵ2, δ1, δ2 > 0. Adding both sides of these two
inequalities yields

ej(
π
2 +α)⟨y2, u1 + y1⟩+ e−j(π

2 +α)⟨u1 + y1, y2⟩
≥ ϵ1∥y2∥22 + δ1∥u1∥22 + ϵ2∥y1∥22 + δ2∥y2∥22. (9)

Let δ = min{δ1, ϵ2}. Then, due to the parallelogram law of
norm, we have

δ1∥u1∥22 + ϵ2∥y1∥22 ≥ δ(∥u1∥22 + ∥y1∥22)

=
δ

2
(∥u1+y1∥22+∥u1−y1∥22) ≥

δ

2
∥u1+y1∥22 =

δ

2
∥r1∥22.

Let ϵ = ϵ1 + δ2. In view of (9), it holds

ej(
π
2 +α)⟨y2, r1⟩+ e−j(π

2 +α)⟨r1, y2⟩ ≥ ϵ∥y2∥22 +
δ

2
∥r1∥22.

Again, by Theorem 2, it follows that ϕ(SG) > α. Similarly,
it can be shown that ϕ(SG) < β. The proof is complete.

When α = −β, Theorem 5 becomes that if both Φ∞(G)
and Φ∞(H) are subsets of (−β, β), then Φ∞(SG) and
Φ∞(HS) are also subsets of (−β, β), which means that
phase is preserved under the feedback interconnection. Fur-
ther, when β = π/2, Theorem 5 reduces to a known fact
that if both G and H are strongly positive real, then SG and
HS are strongly positive real as well [13].

Example 1: Let

G =

[
9s3+17s2+23s+5
2s3+15s2+19s+6

4s2+s+2
s2+7s+6

4s2+2s+1
s2+7s+6

4s2+s+1
s2+7s+6

]
,

H =

[
s3+3s2+9s+13
s3+5s2+5s+4

s3+3s2+15s+25
s3+5s2+5s+4

s3+4s2+16s+24
s3+5s2+5s+4

s3+6s2+30s+49
s3+5s2+5s+4

]
.

We can see from Fig. 6 (a)-(b) that Φ∞(G) ⊂ (−20◦, 115◦)
and Φ∞(H) ⊂ (−115◦, 20◦). By Theorem 5, we should have
Φ∞(SG) ⊂ (−20◦, 115◦) and Φ∞(HS) ⊂ (−115◦, 20◦).
This is indeed the case, as is shown in Fig. 6 (c)-(d).

B. Interpretation of sectored real lemma via HT
2 -dissipativity

A sectored real lemma was devised in [9], which provides
a state-space characterization of a sectorial system G satisfy-
ing Φ∞(G)⊂(α, β) with 0<β−α≤π. Therein the sectored
real lemma was obtained by applying the generalized KYP
lemma, which connects frequency domain inequalities to
time domain linear matrix inequalities. Here we will give
an interpretation of the sectored real lemma by exploiting
the connections between Φ∞ sector and HT

2 -dissipativity.
Lemma 1 ([9]): Let G be sectorial with a minimal real-

ization
[
A B
C D

]
. Then Φ∞(G)⊂(α, β), 0<β−α≤π, if

and only if there exist Hermitian matrices Xi, Yi, i = 1, 2,
such that Yi ≥ 0 and[

AT (Xi+jYi)+(Xi−jYi)A (Xi−jYi)B
BT (Xi+jYi) 0

]
−Mi<0,

(10)

where

M1 =

[
0 ej(α+

π
2 )CT

e−j(α+π
2 )C e−j(α+π

2 )D + ej(α+
π
2 )DT

]
, (11)

M2 =

[
0 ej(β−

π
2 )CT

e−j(β−π
2 )C e−j(β−π

2 )D + ej(β−
π
2 )DT

]
. (12)

A physical interpretation of the sectored real lemma is
given below. Assume u(t) is an arbitrary signal in HT

2 . Since
HT

2 is an invariant subspace of G, it follows that both x(t)
and y(t) are in HT

2 as well. In view of (10), there exists
ϵ > 0 such that[
AT (Xi+jYi)+(Xi−jYi)A (Xi−jYi)B

BT (Xi+jYi) 0

]
−Mi≤−ϵI.

Left-multiplying and right-multiplying both sides of the

above inequality by
[
x(t)
u(t)

]∗
and

[
x(t)
u(t)

]
and integrating both

sides yields∫ ∞

−∞

[
x
u

]∗
Mi

[
x
u

]
dt ≥ ϵ(∥u∥22 + ∥x∥22)

+

∫ ∞

−∞
(x∗Xiẋ+ ẋ∗Xix+ j(ẋ∗Yix− x∗Yiẋ)) dt.

Since G is stable, x(−∞) = x(∞) = 0, and thus∫ ∞

−∞
(x∗Xiẋ+ ẋ∗Xix)dt = x∗Xix|∞−∞ = 0.

Therefore, we have∫ ∞

−∞

[
x
u

]∗
Mi

[
x
u

]
dt≥ϵ(∥u∥22+∥x∥22)+

∫ ∞

−∞
j(ẋ∗Yix−

x∗Yiẋ)dt=ϵ(∥u∥22+ ∥x∥22)+
∫ ∞

−∞
2wX∗(jω)YiX(jω)dω,

where X(jω) is the Fourier transform of x(t). Since x(t)∈
HT

2 , it follows that X(jω) = 0 for all ω < 0. Therefore,∫ ∞

−∞
2wX∗(jω)YiX(jω)dω=

∫ ∞

0

2wX∗(jω)YiX(jω)dω≥0,

and then we have∫ ∞

−∞

[
x
u

]∗
Mi

[
x
u

]
dt ≥ ϵ(∥u∥22 + ∥x∥22).

Since G is stable, there exists δ > 0 such that∫ ∞

−∞

[
x
u

]∗
Mi

[
x
u

]
dt ≥ 2δ(∥u∥22 + ∥y∥22).

Substituting Mi with (11) and (12), we obtain the inequalities
(6) and (7) for δ > 0. In view of Theorem 2, we know G is
sectorial with Φ∞(G)⊂(α, β).

V. CONCLUSION

In this paper, we defined the notion of HT
2 -dissipativity

and built its connection to Φ∞ sector of a stable phase-
bounded system, which was shown coinciding with the
phases of the operator associated with the system being
restricted to HT

2 . By exploiting the HT
2 -dissipativity, we

studied the phase of a feedback system and provided a
physical interpretation of the sectored real lemma.
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In the future, we will extend the HT
2 -dissipativity to un-

stable systems, especially semi-stable systems, and establish
its connections to phase-bounded systems. We will also
explore connections between our work and other phase-
related works, e.g., scaled relative graph [24], incremental
dissipativity [25], etc.
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Fig. 6. Phase of feedback systems.
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