
Multi-UUV Dynamic Cooperative Task Planning Method based on
Multi-Objective Genetic Algorithm

Naifu Luo1, Hongjian Wang1, Shuang Huang2, Wei Gao1, Bo Zhong1, Yutong Huang1 and Benyin Li1

Abstract— Aiming at the problems of scattered distribution,
irregular shape, short underwater warning distance, limited
carrying capacity of offshore islands and the inability for long
term garrison, unmanned underwater vehicle (UUV) is used to
search and explore the unknown underwater area near those
islands. With the constraints on number of available UUVs,
detection ability and energy consumption, a task planning
framework of cooperative search and exploration mission of
multi-UUV is urgently required. Meanwhile, in each round
of task assignment, the most current algorithm could not
dynamically assign the different task to corresponding UUV.
For instance, the location and state of each UUV could be
different during the searching and exploration process. In
this paper, regarding the off-shore islands and reefs as the
defense base, the models of UUV and its forward looking
sonar are constructed, and a multi-UUV cooperative regional
search and exploration algorithm is proposed based on multi-
objective genetic algorithm (MGA). Aiming at the irregular
distribution of targets in the search area and the different
proportion of targets found by each UUV in their allocated
search areas, we designed a multi-UUV dynamic cooperative
(MDC) task planning method based on MGA to accomplish
the multi-UUV dynamic scheduling. Finally, the underwater
simulation environment is designed to simulate the distribution
of offshore islands and reefs. The effectiveness of proposed
MGA regional search and exploration algorithm and MDC-
MGA task planning method is verified from the aspects of
platform scale, time consumption and total distance of roadmap
on regional search and exploration.

Index Terms— Multi-UUV; Evolutionary computing; Opti-
mization algorithm; Task planning

I. INTRODUCTION

The offshore islands and reefs are widely distributed and
have the characteristics of scattered distribution, irregular
shape, undeveloped infrastructure and inconvenient person-
nel garrison. Unmanned Underwater Vehicle (UUV) can
navigate and perform tasks independently underwater. It has
the characteristics of small size, strong autonomy and good
concealment. Therefore, for the search and exploration tasks
of remote island reef groups, UUV has broad development
space in the implementation of tasks. Judging from the
current technical level and development of UUV, individual
UUV has made great progress and has been applied to
many projects. However, in some distributed systems, due
to the limited operation ability of individuals, individual
UUV is difficult to meet the large-scale search and detection
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requirements [1, 2]. Therefore, the current research trend has
developed to the technical field of multiple unmanned under-
water vehicles (multi-UUV). The coordination of multiple
UUVs is a key part of the research on underwater unmanned
system. The cooperation of multiple agents can accomplish
many complex tasks [3]. According to the characteristics
of uneven distribution of underwater targets, the optimal
dynamic task planning method of UUVs is designed and
the cooperative operation mode is explored. In addition,
the study of multi-UUV cooperative search and exploration
strategy has important theoretical research significance for
accelerating the practical process of UUV.

When solving the multi-UUV cooperative task planning
method, excellent convergence performance and higher qual-
ity solution set are always the focus of attention. There
are several bio-inspired algorithms applied to this field,
such as ant colony optimization algorithm (ACO) [4-6],
particle swarm optimization algorithm (PSO) [7] and genetic
algorithm (GA) [8, 9] used the analytic hierarchy process
(AHP) to layer the tasks of the UUV cluster. By processing
the sub-tasks, the overall effectiveness is assured while the
quality of result is ensured. [10] obtained Pareto solution
set of multi-objective optimization problem through single
objective optimization of single ant colony system and in-
teraction between different ant systems, which provided a
better solution for UUV cluster reconnaissance task planning.
[11] presented a adaptive genetic algorithm method based on
clustering, uniform cost search, greedy and bionic algorithm.
Compared to single criterion objective function, the proposed
adaptive GA method could find a path with consideration
on travel time, road capacity and elevation, and number
of traffic lights and turns. [12] proposed a dynamic ex-
tended consensus-based bundle algorithm (DECBBA) based
on consistency algorithm. The problem of UUV swarms task
planning under communication constraints is solved with
high effectiveness and good performance. [13] addressed
the dynamic task allocation problem with limited commu-
nication and velocity and proposed an improved evaluation
index for each target to solve the futile selection problem
during k fittest winner participant selection. [14] provided a
distributed immune multi-agent algorithm (DIMAA) based
on an immune multi-agent network framework to solve the
distributed task allocation problems of search and rescue
missions for multiple unmanned aerial vehicles (UAVs). The
task allocation model established under three conditions: (1)
new targets are detected; (2) UAVs break down; and (3)
unexpected threat suddenly occurs.

To sum up, there are some problems in solving swarm task
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planning problems (see e.g. [15-17]), such as low solution
quality, contradictory between randomness and convergence
and weak ability of algorithms to jump out of local optimal,
which greatly affect the global optimization ability and
convergence performance of algorithms. In addition, most
of the above studies focused on the static task planning and
did not take the kinematic properties and sonar detection
characteristics of UUV into account. Because the charac-
teristics of UUV mentioned before, the individuals in UUV
swarm may not start or end the searching process in the same
positions which means most existed method cannot apply to
the practical underwater searching and exploration missions.

To solve the above problems, the main contributions are
follows:

• According to the 3-DOF models of UUV and the
forward looking sonar model, division of search and
exploration area is designed.

• MGA and elite MGA are proposed to solve the multi-
objective optimization in underwater environment.

• MDC-MGA is designed to solve the dynamic coopera-
tion searching process which could adaptively reassign
the task to individual UUV when the detected targets in
one area is higher than average.

The organization of this paper is as follows: In the Section
II, the models of UUV and its forward looking sonar are
constructed. The area division method is proposed based
on these models and environmental characteristics of the
offshore islands and reefs. In the Section III, the multi-
objective genetic algorithm (MGA) of UUV swarm searching
method is designed to improve the solution quality and
convergence performance through the process of selection,
crossover and variation. Considering the irregular distribution
of targets and the UUVs’ dynamic cooperation searching
process, a multi-UUV dynamic cooperative (MDC) task
planning method based on multi-objective genetic algorithm
(MGA) is designed. When the proportion of detected targets
in one individual UUV allocated area is larger than the
average, MGA module, which is in the framework of MDC-
MGA, will be activated which means the UUV swarm will
give priority to search this area and reduce the search path
spacing, meanwhile the new task points assignments will be
republished to each UUV. In the Section IV, the simulation
results are presents to testify the effectiveness of the proposed
methods. Finally, the conclusions are summarized in the
Section V.

II. PROBLEM FORMULATION AND MODELING

According to the requirement of multi-UUV cooperative
target search and exploration task in unknown environment,
the application scenario of target search can be summarized
as follows: in the task area, static targets with unknown
positions and random number of obstacles are randomly
distributed, and UUVs are required to perform target search
tasks in this area, which requires collaborative control of
multiple UUVs to search more unknown targets with less
search cost in limited time.

A. 3-DOF Models for UUVs

The UUV model used in this paper is a mathematical UUV
kinetic model with three degrees of freedom, also named
the equation of UUV kinetic model in the horizontal plane.
Given the following assumptions: Ignore the motion of roll,
pitch and heave, and only consider the plane motion, i.e

1) Ignore the motion of roll, pitch and heave, and only
consider the plane motion, i.e

z = 0,w = 0,φ = 0, p = 0,θ = 0,q = 0 (1)

2) There is not interference from wind, wave and current
during UUV movement process.

The mathematical model of UUV’s three-degree-of-
freedom motion can be obtained as follows: ẋ = ucosψ − vsinψ

ẏ = usinψ + vcosψ

ψ̇ = r
(2)

where the components of velocity vector
[

u v r
]

are
defined in the UUV frame, the components of velocity vector[

ẋ ẏ
]

are defined in the UUV NED coordinates and ψ

represents the angle of yaw.

B. Forward Looking Sonar Model

In this paper, it is assumed that UUV carries Reson’s
SeaBat 8125-H forward looking sonar for target detection
and obstacle identification. It detects a sector area with a
horizontal level of 120° and a vertical opening angle of
17°. In ordinary mode, there are 240 beams, divided into
three layers, each layer contains 80 beams, and the beam
angle is 0.5°. The optional detection mode can contain 512
beams, with a maximum range of 120m and a maximum
transmission rate of 40Hz. According to the [18], the function
of Johnson’s curve is defined as below:

f(l) =

 λα2(l2−l1)
(l−l1)(l2−l)

√
2π

e
− 1

2

(
α1+α2 ln

(
(l−l1)
(l2−l)

))2

l1 < l < l2
0 otherwise

(3)
where the Johnson parameters α1, α2, l1, l2 are selected as
shown in Table I.

TABLE I: Definition of Johnson’s parameters

Johnson’s parameters

Range probability curve α1 = 0,α2 = 0.75 l1 = 11.5m, l2 = 103.75m

Angular probability curve α1 = 0,α2 = 1.25 l1 = 0, l2 = π

As the Figure 1 shown, the probability of detection is quite
high when the range of detection is between 20 to 100 meters
and the angle of detection is between -60 to 60 degrees.

C. Division of search and exploration area

Combined with sonar detection characteristics mentioned
before, a grid network is established to ensure that the
distance between task points in adjacent areas is equal, and
any path can nearly cover the whole area where the adjacent
task points are located.

8831



(a) PDet-Range graph (b) PDet-Angle graph

Fig. 1: Probability of detection-range and angle graphs

As shown in Figure 2, using the UUV path R =
{x1,x2,x5,x8,x9} which starts at x1 = (108.75,108.75) and
ends at x9 = (523.75,523.75) as an example, the blue region
of route R reflects the detection area during the search and
exploration process. To achieve the highest coverage with
shortest search time, for instance, when UUV arrivals at
the center of one grid, its detected region should cover the
current grid with the horizontal level under 120°. According
to (3), the distance between two nearest task points is defined
as

dtask point =
2ddetect

sin(adetect/2)
(4)

where the range of sonar ddetect is set to 120m and the angle
adetect is set to 120°. For key areas, the density of task points
is increased, so that the probability of target detection is
greatly improved.

Fig. 2: Local map of region division

D. Fitness

During the multi-UUV search and exploration, the purpose
of multi-UUV is to recognize and determine the target as far
as possible in the task area. Thus, improving the certainty
of target information in the environment is important from
below aspects:

• Find and mark more targets within less time steps.
• Reduce the cost of multiple UUVs cooperating target

search.
• Improve the certainty of targets’ information in the task

area.
• Allocate the search area of the individual UUV reason-

ably.

The distance of ith UUV’s search route is defined as

W1 (i) =
ni−1

∑
j=1

d j, j+1 (5)

where ni represents the last task point in route Ri and d j, j+1
represents the distance between two adjacent task points.

At the view of base defense, each route begins as close to
the base as possible and ends as far away from the base as
possible. Thus, the weight function W2 is defined as

W2 (i) =
ni−1

∑
j=1

d j,base (6)

where d j,base represents the distance between each task point
and base.

The ith UUV’s search route accumulated turning angle is
defined as

W3 (i) =
ni−1

∑
j=1

a j, j+1 (7)

where a j, j+1 represents the turning angle between two adja-
cent task points.

To sum up, the following optimization equation is de-
signed considering the base defense, search range and head-
ing angle changes:

min
m

∑
i=1

f (i) = dstart +αW1 (i)+βW2 (i)+λW3 (i) (8)

where dstart represents the distance between the ith UUV’s
current location and the first task point in route Ri and α , β

and λ are the weight parameters.

E. Constraint

During the multi-UUV search and exploration process, the
constraints are summarized as follows:

m ≤ M (9)

R1 ∪R2 ∪·· ·∪Rm = X (10)

Ri ∩R j = /0 i ̸= j 1 ≤ i, j ≤ m (11)

W1 (i)+W2 (i)≤ D (12)

where M is the total number of UUVs, Ri is the search
route of the i-th UUV, X represents the collation of total
task points and D is the maximum safe range of UUV. In
addition, communication delay is not considered. The UUV
could communicate with the base in the search area.

III. MDC-MGA TASK PLANNING METHOD

A. Chromosome Representation

For path planning of regional task points, this paper adopts
sequential coding, also known as natural number coding.
According to the number of task points in this paper, K
represents the number of chromosomes, and the length of
each chromosome is set to n which depends on the number
of total task points,

Xk = (x1,x2 · · · ,xn) 1 ≤ k ≤ K (13)
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B. Selection

For individuals in the population of each generation, each
chromosome is randomly sorted and evenly divided into l
groups according to K individuals. According to the (9), the
number of breakpoints is defined as nbreakpoint = l−1, where
nbreakpoint ≤ (M − 1). Without considering the arrangement
of groups, the size of its solution space is K!C

nbreakpoint
K−1 . To

simplify the illustration of proposed MGA, the length of each
chromosome is set to n = 8, the number of chromosomes is
set to K = 9 and the individuals are divided into l = 3 groups
in this section. As shown in the Figure 3 below, the core idea
is to select the chromosome with the highest fitness value
from each group. But different from directly screening out
the optimal l individuals with the highest fitness value from
the contemporary population, this random grouping method
ensures the diversity of the population.

Fig. 3: Schematic diagram of chromosome selection and
grouping

C. Crossover

The direct application of the single-objective crossover
algorithm to multi-objective problems will produce many
infeasible solutions. To solve this problem, the following
methods are generally adopted to deal with it.

• Discard infeasible solutions.
• Use a penalty function to reduce the fitness of infeasible

solutions.
• Construct operators so that only viable solutions are

generated.
• Turn an infeasible solution into a viable one.
However, those solutions could cause the losing of several

populations in current generation or continuity information
between task points. As shown in Figure 4, this paper pro-
poses the method of changing the position of the breakpoint
to carry out crossover operation. In Table II, the changing of
route R2 and route R3 reflects the population evolution after
changing the position of Break Point2.

Fig. 4: Schematic diagram of chromosome crossover

TABLE II: UUV path updated after crossover operation

UUV path task points sequence before crossover task points sequence after crossover

R1 {x6} −→ {x2} −→ {x3} {x6} −→ {x2} −→ {x3}
R2 {x5} −→ {x1} {x5} −→ {x1} −→ {x4}
R3 {x4} −→ {x7} −→ {x8} {x7} −→ {x8}

In traditional methods, more time may be consumed in
the searching process of the solution space where the non-
global optimal solution is located. This algorithm will obtain
a larger solution space, while retaining the connectivity in-
formation between task points. Meanwhile, through changing
the breakpoint, all the individuals of offspring generations are
viable, so as to find the global optimal solution with higher
probability and efficiency.

D. Mutation

Due to the sequential coding adopted in this paper, it
ensures the legitimacy of the mutated chromosomes. As
shown in Figure 5, switching, sliding and flipping are all
adopted. In Table III, the changing of route R1 −R3 reflects
the population evolution after mutation operation.

Fig. 5: Schematic diagram of chromosome mutation

TABLE III: UUV path updated after mutation operation

UUV path Task points sequence
before mutation

Task points sequence after mutation

switching sliding flipping

R1 {x6} −→ {x2} −→ {x3} {x6} −→ {x2} −→ {x4} {x6} −→ {x2} −→ {x5} {x6} −→ {x3} −→ {x2}
R2 {x5} −→ {x1} {x1} −→ {x5} {x1} −→ {x4} {x5} −→ {x1}
R3 {x4} −→ {x7} −→ {x8} {x3} −→ {x7} −→ {x8} {x3} −→ {x7} −→ {x8} {x4} −→ {x7} −→ {x8}

In addition, three crossover-mutation evolution mecha-
nisms, including switching, sliding, flipping and breakpoint
selection, are applied as shown in Figure 6. In Table III, the
changing of route R1 −R3 reflects the population evolution
after crossover and mutation operation.

Fig. 6: Schematic diagram of chromosome crossover-
mutation

TABLE IV: UUV path updated after crossover and mutation
operation

UUV path Original task
points sequence

Task points sequence after crossover and mutation

crossover + switching crossover + sliding crossover + flipping

R1 {x6} −→ {x2} −→ {x3} {x6} −→ {x2} {x6} −→ {x2} −→ {x5} {x6} −→ {x3}
R2 {x5} −→ {x1} {x4} −→ {x1} −→ {x5} −→ {x3} {x1} −→ {x4} −→ {x3} {x2} −→ {x5} −→ {x1}
R3 {x4} −→ {x7} −→ {x8} {x7} −→ {x8} {x7} −→ {x8} {x4} −→ {x7} −→ {x8}
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In each group of the current population, a selection mech-
anism is introduced to select the optimal parent individual,
and operations of crossover and mutation are carried out to
improve the quality of the offspring individuals.

E. Elitism

The idea of elitism is that the best individuals should be
preserved for the next generation. There are two steps to
ensure elitism in MGA.

• Preserve elite individuals within the group.
• Store historical elite individuals and reintroduce them

into the group in later generations.
The elite MGA adopts elitism to perform full-space par-

allel search and focuses on the part with high performance,
which can improve efficiency and avoid trapping local min-
ima.

F. Steps of applying the MGA cooperative regional searching
method

To sum up, the proposed MGA cooperative regional
searching method is integrated in the MGA module. The
pseudo-code of the MGA module described above is shown
in Algorithm 1.

The steps of applying the MGA method are as follows:
Step 1: Set encoding and decoding schemes. This paper

adopted iteration counter and sequential encoding scheme
to encode unlocked areas in the island surveillance area.
Random generation of primary population containing K
chromosomes.

Step 2: Calculate the fitness of each individual in the
population and record the optimal individual in the current
population. Fitness function is the only index to measure
whether an individual can survive, which provides screening
basis for the subsequent individual selection algorithm. The
setting of fitness function is determined referring to (8), that
is, in the MGA, the size of fitness value determines the
quality of an individual.

Step 3: Randomly group the population generated in the
previous step into l groups, and select the optimal individuals
in each group, that is, the individuals with the greatest fitness
in each group. Individuals with greater fitness have a greater
probability of inheriting their genes to the next generation, so
as to continuously eliminate individuals with lower fitness.
At the same time, the selection of the best individuals in
each group also ensures genetic diversity.

Step 4: Genetic operation is carried out on each group
of selected individuals, as mentioned in Section III-C and
Section III-D, new chromosomes are produced by all sort of
crossover, mutation and crossover-mutation operations on the
genes of selected chromosomes with probability of crossover
and mutation. On the basis of preserving excellent genes to
a large extent, genetic manipulation increases gene diversity
through variation, so as to improve the probability of finding
the optimal solution.

Step 5: Judging whether the algorithm terminates accord-
ing to the convergence condition, this paper chooses the
maximum number of iterations as the stopping criterion. If

Algorithm 1: MGA cooperative regional searching
method

Input: the current position and course of each
inidividual UUV

Output: the pathpoint of each individual UUV
1 Initialize the parameters and generate the initial

population Xk;
2 while not meet the stopping criterion do
3 for s=1:K //K represents the number of

population. do
4 calculate the optimization equation

min
m
∑

i=1
f (i) of each population using (8);

5 end
6 update the global best route of each UUV

gBestRoutem;
7 divide the population into l groups randomly;
8 for i=1:l do
9 generate the breakpoints nbreakpoint = l −1

randomly; generate the randon number
P1 = rand (0,1) and P2 = rand (0,1);

10 if P1 < Pc then
11 if P2 < Pm then
12 do the crossover and mutation

operations mentioned in Section
III-C and Section III-D;

13 else
14 do the crossover operation mentioned

in Section III-C;
15 end
16 else
17 reserve the orginal chromosome in the

current group;
18 end
19 end
20 end

the termination condition is not reached, the iteration counter
is updated and the Step 2 is returned to continue the iterative
evolution. Otherwise, find individual with the highest fitness
among all the recorded optimal individuals and return as the
global optimal solution and end the program.

G. Steps of applying the MDC-MGA task planning method

The framework of applying the MDC-MGA task planning
method to multi-UUV cooperative regional search and ex-
ploration is shown in Figure 7.

Step 1: According to the actual underwater environment,
divide the searching region into K areas. Meanwhile, set key
search areas based on previous experience which means the
distance between the adjacent task points in key areas is
smaller than others.

Step 2: Initialize the MGA Module as mentioned in
Section III-F and publish the task route to each UUV.

Step 3: Obstacle avoidance and cooperative target search-
ing. During this process, the priority of obstacle avoidance
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Fig. 7: MDC-MGA task planning framework

is higher than the target searching. When the avoidance
process is active, the searching progress will pause until the
avoidance process finished.

Step 4: All UUVs will follow the given route through
the various mission points for task search. However, there
are two cases that go back to Step 2 and MGA Module
will activated to republish the task route to each UUV
respectively.

• Case 1: If the targets found in one area is much higher
than the others, the MGA Module will republic the task
route to each UUV and form a group of UUVs. Aiming
at discovering the targets of that area in shortest time,
the routes of UUVs in that group start near that area.

• Case 2: If one of the UUVs finished all the task points
in it’s route and the proportion of left task points are
higher than 15%.

Step 5: Judging whether the task points have been searched
or all of the targets have been detected. If one of the
conditions satisfied, the program will end. Otherwise, the
Step 2 is returned to continue the searching and exploration
process.

IV. SIMULATION RESULTS

The simulation environment of this paper is a horizontal
plane of a certain depth with an area of 2500m × 2500m
(see Figure 8). Firstly, according to the Section II-C, the
entire search and exploration environment is decomposed
into 36 first-level task regions, and each first-level region
is decomposed into 4 second-level sub-regions with a side

length of dtask point = 207.5m. Secondly, under the global
communication condition, static targets (the number of static
targets is set to 40 in advance) are set with random positions
and distribution. The black rectangles represent the obstacles.
The blue circle in the middle represents the base of offshore
island. One key region is set with blue dotted rectangle. At
last, refer to Table V, UUVs are sent from initial positions
to carry out the target search and exploration task, with the
specified running time T = 2500(step).

Fig. 8: Global map of
region division

TABLE V: UUV initial
positions

Num. of UUV
Position Parameter

X(m) Y(m)

1 835 1617

2 960 882

3 1757 1014

4 1427 1627

5 479 535

6 2100 2050

7 510 2400

8 2111 487

As the obstacle avoidance problem is not the main focus
of this paper, it is only used to verify the rationality of
the task planning module, and to avoid collision in the
process of multi-UUV search and exploration, as well as
to avoid the location of the base, so only one obstacle
is set up in the simulation environment. In addition, the
parameters of MGA are set as follows, the population size
K is set to 240, the number of maximum iterations Iter is
set to 10000. According to experts’ experience [20], the total
parameters used in MGA, elite MGA and elite MDC-MGA
are summarized in Table VI.

TABLE VI: Parameters of MGA, elite MGA and elite MDC-
MGA

Name Symbol Parameter Name Symbol Parameter

The number of chromosomes K 240 The length of chromosome n 144

The probability of crossover Pc 0.5 The probability of mutation Pm 0.1

The maximum iteration Iter 10000 Dist. between task points(m) dtask point 207.5

The number of chromosome group l 30 Weight parameter of fitness α 0.1

Weight parameter of fitness β 1 Weight parameter of fitness λ 0.8

According to the [19], the adapted genetic algorithm with
three modified crossover operators were applied to multiple
traveling salesmen problem (MTSP). As [19] mentioned
in the experiment, the partially mapped crossover (PMX)
operator had the best performance. The core of PMX is to
swap the segment of two parent chromosomes. Unlike the
methods mentioned in the Section I, the PMX can handle
the TSP with different start points. Using the mappings in
the original parent chromosome corrects the rest part of the
child chromosome which makes the generated offspring are
feasible. However, PMX is unsuitable for the multi-UUV
searching mission. Because the start and end points of each
individual in PMX are same. PMX-GA is inspired by the
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PMX operator which adds the mutation operator mentioned
in Section III-C with the crossover probability Pc is set to 0.5,
the mutation probability Pm is set to 0.1. Thus the PMX-GA
could solve the cooperative searching problem with different
start and end points.

In the task planning experiments, five algorithms are
introduced to testify the performance as the Table VII shown.
The GA with cluster algorithm (GACA) [21], PMX-GA and
modified two-part wolf pack search algorithm 2 (MTWPS2)
[22] are used to testify the performance of proposed MGA
and elite MGA.

TABLE VII: Comparison results among these algorithms

Num of UUV Algorithm Mean
(m)

Best
(m)

Worst
(m)

Mean of
Iterations

Regional coverage
over 90% (s)

4 GACA 30849 30302 31820 5611 1951

PMX-GA 30756 29631 32647 4713 1802

MTWPS2 30415 29714 31043 4563 1790

MGA 30409 29652 30958 6650 1776

elite MGA 30218 29945 30571 2851 1756

6 GACA 31266 30028 31961 7957 1204

PMX-GA 30659 29885 31736 8037 1182

MTWPS2 30927 29582 32501 8126 1175

MGA 31182 30837 31522 8054 1151

elite MGA 30578 29423 31150 9492 1140

8 GACA 34241 33053 35462 8326 913

PMX-GA 33437 32923 34068 4972 876

MTWPS2 32625 31408 33562 8276 870

MGA 32230 31584 33074 8170 868

elite MGA 32585 30145 33206 9688 785

Table VII shows the results of the comparison among
GACA, PMX-GA, MTWPS2, MGA and elite MGA in
30 rounds of simulation. ”Mean”, ”Best” and ”Worst” in
this table respectively represent the average, minimum and
maximum value of total search and exploration trajectory of
all UUVs’ individuals obtained by relevant algorithms. The
bold text shows the best results in that column of indicator.

As can be seen, in case of four UUVs cooperative search
task, elite MGA had almost the same performance as MGA.
But elite MGA took only a third of the number of iterations
of the MGA. For the six and eight UUVs cooperative search
task, it seems that GACA and PMX-GA had the smallest
number of iterations respectively. But combined with the
mean distance, it is not difficult to find that they fell into local
optimality. For first and second trials, compared to MGA,
elite MGA had the larger search space and achieved better
performance. Although in the third trial, MGA got better
result on mean distance. The reason is that elite MGA intro-
duced the historical elite chromosome. Meanwhile, because
of the number of UUV also increased, larger search space
brought negative effect on convergence of elite MGA and the
average number of iterations increased. In addition, from the
aspect of time consuming on regional coverage over 90%,
proposed MGA and elite MGA also have a certain advantage.

The whole simulation results of MDC-MGA task planning
method are shown in Figure 9. The purple ∆ represents
the static target. The results show that two task planning

phases are included in the regional search and exploration. In
Figure 10-(a) and Figure 11-(a), the task points are generated
referring to the model of forward looking sonar. In Figure 10-
(b) and Figure 11-(b), the lines represent the paths of each
UUV. The small circle of each line is the current position of
each UUV and is also the start point in the searching process.
Figure 10-(c) and Figure 11-(c) verify the effectiveness of
proposed algorithm. Due to UUV4 marked with yellow path,
it found the probability of targets in the key area was above
the average level of others. The two nearest UUVs, which
were marked with blue and red paths, mustered and formed a
search group. The UUV marked with green path kept on the
current task. It could not only shorten the total search time
but also save the energy consumption. When the search group
arrived the key area as shown in top right of the Figure 9-(a),
the task planning of phase 2 started. The elite MGA module
mentioned in Figure 7 would publish the new individual task.
The UUVs in search group started from the key area. As
shown in the top right of Figure 11-(a), the density of task
points in the key area is higher than average.

(a) Task planning phase 1 (b) Task planning phase 2

Fig. 9: Trajectory of multi-UUV task planning

(a) Task Points (b) multi-UUV Paths (c) Convergence

Fig. 10: Task planning phase 1

(a) Task Points (b) multi-UUV Paths (c) Convergence

Fig. 11: Task planning phase 2

Compared to the task planning in phase 1 which is the
process before dotted line marked point of purple curve in
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Figure 12, the benefit of MDC is the targets in key area would
be found at once. In phase 1, MTWPS2 has almost the same
performance as elite MGA and elite MDC-MGA, especially
before the 180th second. The slope of purple curve after
marked point increased proves the benefit of task planning
module. The potential danger near the base would be relieved
in time. Because all the cooperative searching algorithms
are worked on the path planning based on the 3-DOF UUV
model and forward looking sonar model. The positions of
static targets were not known before the missions. The total
searching time may not reflect the performance of the algo-
rithm completely. From the view of time axis, elite MGA and
elite MDC-MGA have better performance at most second
which can prove the effectiveness of proposed algorithms to
a certain extent.
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Fig. 12: Static targets searching process

V. CONCLUSIONS

In this paper, a multi-UUV task planning module is de-
signed to coordinate UUVs collaborative search and obstacle
avoidance. Proposed MGA and elite MGA have global
data digging ability and are good at searching complex
and nonlinear problems. Because of uneven distribution of
targets and the randomness of UUVs’ positions and states,
a multi-UUV dynamic cooperative (MDC) task planning
method based on multi-objective genetic algorithm (MGA) is
established. The simulation results illustrate the effectiveness
of proposed MDC-MGA task planning method.
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