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Asynchronous Variational-Bayes Kalman Filtering
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Abstract— We consider the joint state and measurement-
noise parameter estimation problem for nonlinear state-space
models with asynchronous, variable-rate, and independent
measurement sources. We approach the problem using vari-
ational Bayes Kalman filters (VB-KFs). By leveraging that
the measurements from different sources are independent, we
develop an asynchronous VB-KF (AVB-KF), which processes
measurements from different sources sequentially and at a
variable rate. Hence, in the measurement update step, we
only update the noise parameters of measurements that have
been processed at a particular time step. This results in faster
computations, especially as the measurement dimension and the
number of sensors grow. We validate the approach on a realistic
application of autonomous mobile-robot platooning, where we
perform fusion of multiple sensor modalities with time-varying
noise characteristics. The results indicate more than a factor of
two improvements measured as a time-averaged absolute error
compared to a nonadaptive implementation.

I. INTRODUCTION

Variational Bayes Kalman filters (VB-KFs) are noise-
adaptive KFs that estimate the noise parameters jointly with
the state of a dynamical system subject to Gaussian-assumed
process and measurement noise recursively over time using
the VB framework [1]-[3]. VB-KFs approximate the joint
posterior distribution of the state and the noise variances by
a factorized free-form distribution, where at each time step
the state and the noise covariance are updated via a fixed-
point iteration of the KF measurement update.

In this paper, we consider the joint recursive estimation of
the state x; € R™ and the measurement-noise covariance
matrix X, € R™ *™ at time step k, based on the mea-
surement vector y; € R™ and the input signal u; € R™
related by a nonlinear state-space model

(1a)
(1b)

i1 = f(@r, uk, hy) + we,
yr = h(zy) + €.

The state aj at each time step k is observed through the
measurement yy. The nonlinear functions f : R™* x R™ x
R=Y + R" and h : R"™ s R™ are known. The
process noise wy, and measurement noise e; are Gaussian
distributed with covariance Q(hy) and X according to
wy, ~ N(0,Q(hy)) and e ~ N(0,X},), respectively, and
hyi = tx — tx—1 is the sampling period between time t; and
tr—1-

Unlike prior work on VB-KFs, not all measurements
are available at each time step k, and the time duration
between two time steps k and k41 varies. Specifically, there
are N multi-dimensional independent measurement channels
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constituting y,i, yﬁ, . ,y,iv , and these are sampled at (pos-
sibly) differing rates. We propose an extension to the VB-
KFs in [4] for multi-dimensional and independent measure-
ment channels, using a special factorization of the posterior
p(xk, Xk|Yo:x). The resulting method bears resemblance to
the sequential-update KF [5], since it updates submatrices
in a blockdiagonal 3. The case of differing measurement
update rates has several applications, for example, in late
fusion of measurements originating from different sensor
modalities. We demonstrate the applicability of our approach
to late fusion with autonomous mobile robots (AMRs), where
measurements from different sensing modalities arrive at
different rates, and where the measurement reliability varies
with time.

One of the early works on adaptive KF for noise identifica-
tion is [6]. Approaches based on variational approximations
and the Student-t distribution can be found in [7], [8]. Some
closely aligned work is [3], which is a VB-KF for linear
systems, and [4], which extends [3] to nonlinear and mul-
tivariate systems. Several noise-adaptive particle-filter (PF)
based solutions have been proposed. Notable contributions
include [9], which is based on augmentation of the state with
the parameters to be estimated, and [10], which considers
static parameter estimation using the marginalized PF. To
overcome the path degeneracy of estimating static quantities
in PFs, [11] considers the role of exponential forgetting in an
adaptive marginalized PF. This work has been extended to
dependent noise sources in [12] and consideration of partially
unknown state-space models [13], [14].

All of the aforementioned works have considered a fixed
sampling period among measurements. For a known noise
covariance, there exist several prior works that can handle
differing measurement rates, such as [15] for Gaussian
filters and [16] for PFs. A related set of works is those
that concern out-of-sequence measurement processing, which
handle measurements that arrive out of order, with or without
known time stamps [17]-[20]. However, this line of research
also assumes known noise covariances.

Notation: Vectors are denoted by z € R™, with [x]; being
the i*" element of x. Matrices are indicated in bold, X,
and the element on row ¢ and column j of X is [X];;.
We write the block-diagonal matrix of the set of matrices
{Xc }eec as blkdiag({X.}eec), and [{Xc.}cec] denotes
the vertical stacking of such set of matrices. The notation
x ~ N (x|m, P) indicates that = is a Gaussian distributed
random variable with mean m and covariance ¥ and |P|
is the determinant of P. Similarly, ¥ ~ ZIW(X|v, V)
means that ¥ is Inverse-Wishart (IW) distributed, with v
degrees of freedom, scale matrix V, and where Tr(-) is
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the trace operator. Given the set of measurements yg., =
{y0,---,Yr}, p(xk|yo.r) is the marginal filtering posterior
of the state xj; up until time step k, corresponding to time
tx and @, is the one-step prediction using measurements up
until time step k — 1. We write the expectation of i(x) when
x ~ p(x), Exopa) h(x)] = [h(x)p(x)dx compactly as
E,[h(z)]. In this notation, the Kullback-Leibler (KL) diver-
gence of two densities p(x) and g(x) is KL(p(x)||q(x)) =
E,[log(p(x)/q(x))]. Finally, we write (a)(x)" for (a)(a).

II. VARIATIONAL BAYES KALMAN FILTERS

The VB-KF methods [3], [4] are recursive filtering tech-
niques for joint inference of the state x; and the noise
covariance matrix X given the estimation model (1), and
rely on the concept of conjugate priors, see Definition 1.

Definition 1 Given a likelihood, the conjugate prior is the
prior distribution such that the prior and posterior are in
the same family of distributions.

Thus, for a conjugate prior, the prior and posteriors are
of the same type, and the estimation problem simplifies
to updating the hyperparameters—that is, the parameters of
the distribution, which can be done analytically. Lemma 1
provides an explicit expression of the conjugate prior for
Gaussian likelihoods.

Lemma 1 (See [21]) For zero-mean multivariate Gaussian
data w € R? with unknown covariance 3, an IW distribution
defines the conjugate prior.

VB-KFs typically approximate the joint posterior using
P(@r, Bk |yor) = gz (Tr) s (B, 2)

where the state and covariance posterior are assumed inde-
pendent. Using (2), VB-KFs minimize the KL divergence
between the true and approximate posterior,

qmiql)lz KL(ge (1) s (Z0)|[p(2k, Zk|yo:x)), 3)
where, using Lemma 1, g¢z(zr) = N(zg|my, P;) and

gs(Xg) = IW(Xg|vk, Vi). By variational calculus [1], the
solutions are known to proportionality,

(4a)
(4b)

4o (1) < exp(Eqy [p(Tr, Xk, Yr|Yo:x—1)]),
qs(Zy) < exp(Eq, [p(zr, Xk, Yx|Yo:r—1)])-

Both of the right-hand sides in (4) can be evaluated to a local
maxima by fixed-point iterations, as the expectations in (4)
are known in closed form given the assumed form of the
posterior in (2). The VB-KFs tend to differ in how the density
gs(Xg) is factored, with [3] proposing a diagonal noise
matrix and a product of Inverse-Gamma priors, whereas [4]
uses a dense IW prior. Prior works assume that all of the
measurements are sampled at the same time instant.

III. ASYNCHRONOUS VARIATIONAL BAYES KALMAN
FILTERS

In this section we present our proposed method for VB
Kalman filtering with variable rate, possibly independent,
measurements, denoted asynchronous VB-KF (AVB-KF).

A. Preliminaries
We consider N measurement channels with, possibly
different, fixed dimensions,

yi. € R" on channel ¢ € Ny ;. (5)

Measurements on these channels can be sampled at different
rates, and we define the following indicator set.

Definition 2 Let C, C Ny ), such that ¢ € Cy, if and only
if the measurement yj, is sampled at a time step k.

We consider inputs in (1a). Therefore, it is possible that Cj, =
(), as we may have a situation in which only an input is
sampled at a time . In contrast, the methods [3], [4] assume
that C, = Ny n for all k. To derive a VB-KF in this setting,
we first specify the assumptions on the measurement model.

Assumption 1 Az each time step k, Cy is known and
pyelzn, Zn) = [ N@ilhe (@), =5)- (6)
ceCy,

In this formulation, the dimension of vy is time varying,
which affects the VB-KF derivations. We start by further
factoring the posterior in (2):

G (Tr) = N(x) Mg, Py),

g (Ze) = [[ DV (Ei v, V).
ceCy,

(7a)
(7b)

The factorization (7a) is common in the VB-KF literature
(c.f. [4]). We take the factorization of ¢s(Xy) a step further
in (7b), owing to Assumption 1. This leads to an efficient
measurement-update step for independent measurements.

B. Time-Propagation

Due to the variable-rate filtering and asynchronous mea-
surement updates, we need to adjust the time-propagation of
the noise-covariance statistics. Standard VB-KFs use

p(xr]er—1) = N(xk|f(zr-1), Qr), (8a)
P(Zk|Zh-1) = IW(Sklp(ve-1 — ) + vp, BViBT),
(8b)

where v, = n, 4 1. It is straightforward how the prediction
model (8a) can be adapted based on the varying sampling
period hy. This is less clear for the prediction model (8b),
which is based on heuristics [3], [4], often with B = /pI
for some p € (0,1]. To get a similar propagation of the
IW statistics under variable sampling periods, consider two
ordinary differential equations

(d/dt)v = —l(u - ),

(9a)
-
1
(d/dt)V = —;V. (9b)
Discretizing (9) with sampling period %y, yields [22]
Vi = agVg—1 + by, (102)
Vi = By Vi—1. (10b)
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where aj, = exp(—hp771), by = (1 — ag)v,, and By =
exp(—hi7~1/2)I. Eq. (10) allows the definition of predic-
tion models emulating (8b) for variable sampling periods hy,

Y

Predicting the covariance using (11) results in a prediction
that is independent on the sampling period Ay, and can be
related directly to the original method (8b) run at a sampling
period h by choosing 7 = —h/log(p).

p(2k|2k,1) = IW(E}C|UJ€V}€71 + blm BkaB,I)

C. Measurement Update

Another complexity when designing a VB-KF for asyn-
chronous measurements is the measurement-update step.
Since measurements from different channels may be col-
lected at different times, we need to address how to update
submatrices in the full covariance matrix. Unlike regular VB
implementations, which operate under a model

yr = h(zk) + ek, er ~N(0,%4),

we partition the measurements into a set of models

yp = h(xi) + e, € R™°, ¢ ey, (12)

according to (5). From Assumption 1, the measurement
models are statistically independent, that is,

Pyklor, k) = [ M(wilh(ar), ).
ceCy,

Without loss of generality, we restrict X =
blkdiag(---,X%,37,--+) to have dense  blocks
ordered such that ¢ < j. For simplicity, we write
3 = blkdiag({X¢ }cec, ). Then, for a predicted density

p(xk, Bk |Yok—1) =
N(almy, Po) TT IW(E5I00) ™~ (Vio) ),

ceCy,

Q

we seek to approximate a posterior p(xk, Xk|Yo:x)
q(xk, Xy), factored as (see (7))

0@k, Bi) = Go(@1)qs(Ze) = ge(@) [] %(E5),
c€eCy,
where  qu(xr) = N(xi|my, Py), ¢ =
IW(XS|vg, ViE). Following the usual steps in the VB
literature (e.g., [4]), we obtain the minimizers of

~cC
(¢ as ") =

argmin - KL(gz (k) gz (Z0)|[p(2r, 2k |Your)),

qm:{Q)C:}CECk

(13)
through the Euler-Lagrange (E-L) equations,
q;(fﬂk)fxexp(/p(yk,wm Ek|y0:k71)q2(2k>d2k)y (14a)

g% (k) xexp (/p(yk,wzw Ek\yo:k_l)qm(wk)dxk). (14b)

Theorem 1 states the main result.

Theorem 1 The minimizers of (13) found through the E-L
equations (14) for a measurement model

€er ~ N(O, Ek),
where Hy, = [{H }cec, | result in

@ (xk) = N(xk|my, Py),

yr = Hyxp, + ey,

where my, and Py are found using a recursion over c € Cg,

mi =m; + Ki(y; — Him; ), (15a)
P =P - KiS{(K})", (15b)
Sg = H{PE (Hf) ' + 3%, (15¢)
Kj = P (H;) ' ()™, (15d)
3% = s Vi (15¢)
where {my, Py} = {m{, P} after the last recursion

and where {mg, P} are initialized with {m{, P{} =
{m, , P, }, with (%)~ denoting the estimate at the previous
iteration. Furthermore,

45" (2F) = IW(ZEI, Vi),
where
Vii= )5 + 1, (16a)
Vié = (Vi)™ + (w5 — Hima)(x) T + H{ PR (HE) " (16b)

Remark 1 The extension to the nonlinear measurement
model (12) is trival, for example, using moment-matching
techniques, see [4] for the case when Xy, is dense, and is
similar to the extension of KFs to nonlinear measurement
models. Our validation in Sec. IV is nonlinear, both in
prediction and measurement model.

D. Algorithm Summary

The solution to (15) requires the solution to (16) and
vice versa. To solve this, we follow the usual VB literature
and employ a fixed-point iteration. Algorithm 1 gives the
proposed method, denoted by AVB-KF. Note that if all
measurements are sampled simultanously and all channels
are one-dimensional, the proposed method collapses to [4].
With the recursion on Lines 14-21, the complexity is
O(maxcec, (ny0)?) instead of O(Y_ ¢, (1,0)%) if updating
the full covariance matrix in one step.

IV. APPLICATION TO LATE FUSION WITH AUTONOMOUS
MOBILE ROBOTS

In this section we apply Algorithm 1 to late sensor fusion
for autonomous mobile robots (AMRs). This is a setting
where variable-rate measurement channels are pervasive, and
where various sensing modalities, such as wheel odome-
try, distance measurements, and configuration measurements
(position and orientation) are to be fused given a known
prediction model. In such settings, it is clear that the mea-
surement reliability may vary. For example, if the AMR
relies on configuration measurements from a simultaneous
localization and mapping (SLAM) system, the quality of a
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Algorithm 1 Variable-rate Asynchronous VB-KF (AVB-KF).

1: Define mo, Py, {v5 ™, Vy"~ 12, set Co = 0)
2: Define {7}, dimensions {n.}Y ;, and jmax
3: for k=1,..., K do

// Receive new measurements

4: Receive: ¢y, yi,Ci
// Time prediction
5: hy <t —tp_1
: Determine m,,, P, from (8a)
7: Determine (vf)~ (Vk )~ from (11)

// Measurement update for sampled channels
: Iik(g;[{{fﬁ}cecJ
9 {m P '} {my. Py}

10: {v;,V, } —{(Wg)” +1,(V,¢)~} for all c € Cy,

11: j ()

12: while not converged and j < jpax do

13: {mk,Pk} — {m,:, P];}

14: for c € C;, do A

s: ﬁ]z’(ﬁl) « WVC’U)

16: Sl(c]+1) HCPk(HC) + EC (J+1)

17: K(H-l) « P, (HC) (S(J-i-l))

18: my, < my + K(]H (y — H{my)

19: P« B, - K““’S ol (K““))

20; VU (Vo) + (g - Hpm{))T
+H{ P (H})"

21: end for 4

2 {mUt) PUTDY (., B}

23: j—i+1

24: end while

// Update sufficient statistics
25: {mk, Pk} (— {m,(j), Pk(j)}
26 Ve VO forall ¢ €
27: end for

measurement will depend on how well a given frame can be
mapped onto the current keyframes stored in a dynamically
changing map representation. Exactly how the uncertainty
of the map representation relates to the noise 3§, on this
channel is unclear, but it will be time varying.

A. Modeling

To demonstrate the proposed method, we consider a
multi-AMR estimation problem and implement the proposed
method in C++, launching each AMR as a node in the
robot operating system (ROS) and simulating its dynamics
in Gazebo using predefined TurtleBot3 models with
nominal parameters. As we have access to odometry data,
we can convert it through the model parameters to a velocity
in the body frame, v, and a rotation rate w. We relate this to
the position pi = [pyX,p} | and orientation 6 of the AMR,

Pr + hkR(ek)[’Uk O]T
O + hiwy

f(xr,uk,hi)

LTk+1 =

a7)

+wp, wi, ~ N(0,Q(ht)),

where Q(hy) = hiblkdiag(c2,02,02), ) = [pk, 0], and
control signals uy = [vg,wy]. In addltlon to wheel odometry,
we consider N = 7 measurement channels:

e c¢ = 1: Direct position measurements;
e ¢ = 2: Direct configuration measurements;
e ¢ > 2: Landmark distance measurements.

To model these measurements in the context of AMRs, let

p(yilzk) = N(yglh(zr), B) Ve €Npnp,  (18)
with

h'(xy) = pr €eR? (n; =2), (19a)

hQ(fEk) = LOS(I;I;/Q)} €R? (n2 = 3), (19b)

he(xzy) = |lpr — 02 €R  (n.=1) Ye>2, (19c)
and where the true noise covariance matrices {X¢}Y ;| are
unknown for all ¢ € Ny n) and time-varying. The reason
for the cos(-) in (19b) is that we sample the orientation
estimate as a quaternion, and as the AMR only rotates about
the vertical axis, the real part of the quaternion is modeled

by the last dimension in (19b) (see, e.g., [23]).

B. Results for Ideal Motion Models

We start with an idealized example, where we generate
synthetic data by using the estimation model (17),(18). Here,
we distinguish between the different measurement channels
and denote the time at the kth time step in the cth channel
by tf. For the different channels, ¢§ — 5 _; ~ Poisson(\°)
and we sample a number of time steps K. for each channel,
such that ¢35, —t5 > T for all ¢ € Njj n). We realize a
sequence of time steps {t%}kfi’o with a rate g at which
the inputs are sampled. The time steps of the simulation
are {t} = UiV:O Uf:“() t¢, and we let K = [{t;}|. This
implicitly defines the channel sets Cy, where some are empty.

The measurements are realized with time-varying noise
covariance matrices {3’ k} *; to generate a synthetic data
set. The measurement data is passed to the ROS node, and
the output is analyzed externally in Matlab given the known
ground truth, and contains two segments of outliers in the
channels ¢ = 1 and ¢ = 2, respectively, associated with
greater measurement noise variance, along with a random
noise levels in each of the distance measurements (see
Fig. 1). Also, the distance measurements are only available
when the landmarks are in close proximity with the AMRs.

Fig. 2 provides a qualitative simulation result using Algo-
rithm 1, indicating that the noise covariance associated with
the measurement channels are estimated correctly, even when
the measurement data arrives asynchronously. Fig. 3 shows
the corresponding results from a Monte-Carlo study with
1000 simulations, with the proposed method and a standard
extended KF (EKF) using nominal measurement covariances.
The results indicate a significant impact on the estimation
performance, measured as root mean-square error (RMSE).
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Fig. 1. Data for the simulation study in Sec. IV-B. The inputs are the

velocities and rotation rates of the AMR. The measurements arrive at
different rates, with two disjoint time intervals of outliers affecting the
position (second subplot) and configuration measurements (third subplot),
respectively, and different noise levels of the distance measurements (fourth
subplot). The shaded areas indicate instances of greater measurement noise,
intentionally inflated to study the noise adaptation.

C. Results with Gazebo Models in ROS

In this study, we make the implementation more realistic.
In particular, we no longer sample the AMR movement from
the prediction model, but use the Gazebo simulator with
the open-source TurtleBot 3 models. In addition, we now
consider a setting with multiple AMRs tasked to navigate
in a coordinated manner along a slowly moving reference
trajectory, with the super-index (-)(*) indicating the ith AMR,
when necessary. The AMRs are controlled using a simple
nonlinear proportional controller, with a feedback of the
estimates. Furthermore, the relative distance measurements
are now evaluated with respect to each AMR; that is, the first
AMR samples distance measurements with respect to every
other AMR. The related measurement model is identical
to (19¢c), but with the landmark position of channel c in the
tth turtlebot defined as the position of the cth turtlebot; that
is, pZ’(Z) = p,(f) when sampling the measurement data, and
o = p{9 when inferring the state estimate. Here, we
ensure that CS) N4 = () for all k, and all agents i = 1, ..., 4.
This implies that the AMRs communicate their position
estimates to one another, and that each AMR has N = 5
measurement channels.

Fig. 4 compares the result of using a variable-rate EKF
with fixed noise covariances and using Algorithm 1. Table I
summarizes the results as time-averaged absolute errors.

V. CONCLUSION

We developed an asynchronous VB-KF, which can handle
measurements from different sources arriving at different
rates. When such measurements are independent, our method
processes them sequentially, leading to a faster update as

(=i

e R L
0 Jf) 1‘0 1‘5 Time [s]

(2

100 4

? —
EERERES 77 Gl AT U RV S L TUR A s 7 ) FAEEEEE (=311

1071 — =Y
i [£5]11
] — 3%,

1072 — B

0 5 10 15 Time [s]
Fig. 2. Diagonal elements of the true noise covariance matrices (dotted) and
their respective estimates over time, with the position measurement noise
(c = 1, top subplot), the configuration measurement noise (¢ = 2, middle
subplot), and the distance measurement noise (¢ > 2, bottom subplot).

£ — EKF
< - - - AVB-KF
20.2
o i
2 0.1 |
~ 0 T
0 5

Fo03
=
0.2
(2, 0.1
e 0 )
0 5 10 15 Time [s]
Fig. 3. RMSE from 1000 Monte Carlo simulations of the p™ -position,

pY -position, and heading-angle estimates. The gray shaded area indicates
instances of large-noise measurements, something which the proposed
method handles without severely affecting performance.

1991



Fig. 4.
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Comparison between variable-rate EKF (top row) with fixe

Position p* [m]
noise covariances and the proposed Algorithm 1 (bottom row) for a platooning

Position p* [m]

example, involving four AMRs with relative distance measurements similar to (19c). The simulation is done in Gazebo, with the reference trajectory in
red dash-dotted, true trajectory in green dashed, estimated trajectory in black dotted, and the blue circles indicate the 2-0 confidence intervals. The middle
row shows two zoom-ins of the second AMR for the EKF and Algorithm 1, respectively.

TABLE 1
TIME-AVERAGED ABSOLUTE ERROR (TAE) OF THE POSITION

ESTIMATES OF EACH AGENT IN THE GAZEBO EXAMPLE IN SEC. IV-C.

Error [m]  Filter AMR (I) AMR (2) AMR (3) AMR (4)
TAE(pX) EKF  0.1275 0.0669 0.1364 0.0486
TAEpX) Alg. 1  0.0573 0.0519 0.0490 0.0477
TAE(pY) EKF  0.1201 0.2008 0.0820 0.1114
TAE(pY) Alg. 1  0.0460 0.0509 0.0511 0.0486

smaller matrix dimensions are handled in serial, as opposed
to one large matrix update. We validated the method in using
ROS on a Turtlebot mobile robotic setup, also including
multiple Turtlebots performing platooning applications. Our
results show that the theory of the method is valid also for
nonperfect estimation models.
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