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Abstract— Opacity is an important information-flow security
property which characterizes the plausible deniability of certain
“secret behaviors” in dynamical systems. In this paper, we study
the problem of synthesizing controllers enforcing a notion of
opacity over discrete-time control systems with continuous state
sets. In this paper, we develop an abstraction-based approach to
tackle the controller synthesis problem. Specifically, we adopt a
notion of approximate opacity which is suitable for continuous-
space control systems. We propose a notion of approximate
initial-state opacity preserving alternating simulation relation
which characterizes the closeness between two systems in terms
of opacity preservation. We show that, based on this new notion
of system relation, one can synthesize an opacity-enforcing
controller for the abstract system which is finite and then
refine it back to enforce opacity over the original control
system. Finally, we present a method for constructing opacity-
preserving finite abstractions for discrete-time control systems
under some stability properties. Our results are illustrated on
a two-room temperature control problem.

I. INTRODUCTION

With the advancements of cyber-physical systems (CPS)
such as smart manufacturing, and smart cities, information
security and privacy issues are becoming increasingly im-
portant for design considerations due to large information
exchanges in real-time. For dynamical systems, an important
aspect of security is to analyze what crucial information
can be released through its information flow. In this work,
we consider an important class of information-flow security
properties called opacity [6]. Roughly speaking, opacity
captures the system’s plausible deniability of its “secret”
such that its secret and non-secret behaviors should be
indistinguishable for an intruder (passive eavesdropper).

In the last decades, a wide range of results on the analysis
of opacity have been developed in the context of discrete
event systems (DES). Depending on the secret requirements
and the information structure of the system, different notions
of opacity were proposed in the literature [15], [18], [20].
Among the various notions, initial-state opacity requires that
the intruder can never determine for sure that the system
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was initiated from a secret state. When the original system
is not opaque, different approaches have also been proposed
to enforce opacity. Among them, one known approach is to
use the supervisory control theory, where a controller is used
to restrict the behavior of the system such that the closed-
loop system under control is opaque [2], [19].

The aforementioned results on the verification or synthesis
of opacity mainly deal with DES with discrete-state sets
and event-triggered dynamics. However, many real-world
systems are hybrid involving both continuous state sets and
time-driven dynamics. More recently, notions of opacity
have been further extended from DES to general CPS with
continuous state sets; see, e.g., [8], [12], [13]. Particularly,
in a recent result [21], notions of approximate opacity
have been proposed, which generalize the opacity concepts
from DES to metric systems. Compared with notions of
opacity in DES literature, approximate opacity takes into
account the imprecise measurements which are typical in
real-world applications, and thus are more suitable for CPS
with continuous state sets.

Related work. Since the state sets for continuous systems
are uncountable, the verification or synthesis are undecidable
in general. To address this issue, a promising approach is
to use abstraction-based techniques [16]. In this context,
one needs to build a finite abstraction (a.k.a. symbolic
model) of the original concrete system such that these two
systems have certain relations under which the analysis
or synthesis results over the finite systems can be refined
and carried over to the original ones. Abstraction-based
techniques have been developed only recently to tackle
security properties including the results in [4], [5], [10],
[21], [22]. For the purpose of verifying approximate opacity
for general control systems, opacity-preserving simulation
relations together with the corresponding abstraction algo-
rithms are first developed in [7], [10], [21], [22]. However,
all these works are only dealing with verification rather than
controller synthesis of opacity. In the context of synthesizing
opacity-enforcing controllers, the results in [5] provide a
notion of opacity-preserving alternating simulation relations
that allows controller refinement with respect to opacity.
However, the results in [5] are only applicable to systems
with finite state sets and under the assumption of precise
observations, which are not appropriate for general CPS.

Our contribution. In this work, we propose a novel
approach for synthesizing controllers that enforce approx-
imate initial-state opacity for CPS with continuous state
sets. To this end, we first propose a new system relation
called approximate initial-state opacity-preserving (AInit-
SOP) alternating simulation relation. We show that this new
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system relation preserves approximate initial-state opacity
between the abstract and the concrete system in terms of
controller synthesis. In particular, one can synthesize opacity-
enforcing controllers directly by applying existing synthesis
algorithms to the finite abstractions that simulate the concrete
systems via AInitSOP alternating simulation relations. We
further propose an effective approach to construct finite
abstractions which preserve the proposed system relation for
a class of discrete-time control systems under some stability
assumptions. To the best of our knowledge, this paper is the
first to provide directly a controller synthesis approach to
enforce opacity for continuous-space control systems using
abstraction-based techniques.

II. PRELIMINARIES

A. Notation

Given a vector x ∈ Rn, we denote by ∥x∥ the infinity norm
of x. A set B ⊆ Rm is called a box if B =

∏m
i=1[ci, di],

where ci, di ∈ R with ci < di for each i ∈ {1, . . . ,m}.
For any set A =

⋃M
j=1 Aj of the form of finite union of

boxes, where Aj =
∏n

i=1[c
j
i , d

j
i ], we define span(A) =

min{span(Aj) | j = 1, . . . ,M}, where span(Aj) =
min{|dji − cji | | i = 1, . . . ,m}. For any µ ≤ span(A),
define [A]µ =

⋃M
j=1[Aj ]µ, where [Aj ]µ = [Rm]µ ∩ Aj and

[Rm]µ = {a ∈ Rm | ai = kiµ, ki ∈ Z, i = 1, . . . ,m}.
We denote the different classes of comparison functions
by K, K∞, and KL, where K = {γ : R≥0 → R≥0 :
γ is continuous, strictly increasing and γ(0) = 0}; K∞ =
{γ∈K : limr→∞ γ(r)=∞}; KL={β : R≥0×R≥0 → R≥0 :
for each fixed s, the map β(r, s) belongs to class K with
respect to r and, for each fixed nonzero r, the map β(r, s)
is decreasing with respect to s and β(r, s) → 0 as s → ∞}.

B. System

In this paper, we employ a notion of “system” introduced
in [16] as the underlying model of systems describing
both continuous-space and finite control systems, which is
modeled by the 6-tuple

T = (X,X0, U, - , Y,H),

where X is a (possibly infinite) set of states, X0 ⊆ X is the
set of initial states, U is a (possibly infinite) set of inputs,
- ⊆ X×U ×X is a transition relation, Y is a (possibly

infinite) set of outputs, and H : X → Y is an output map.
For simplicity, we also denote a transition (x, u, x′) ∈ -

by x
u- x′, where we say that x′ is a u-successor, or

simply successor, of x. For each state x ∈ X , we denote by
U(x) the set of all inputs defined at x, i.e., U(x) = {u ∈
U : ∃x′ ∈ X s.t. x

u- x′}, and by Upost
u (x) the set of

u-successors of state x. A system T is said to be
• metric, if the output set Y is equipped with a metric

d : Y × Y → R≥0;
• finite (or symbolic), if X and U are finite sets;
• deterministic, if for any state x ∈ X and any input

u ∈ U , |Upost
u (x)| ≤ 1 and nondeterministic otherwise.

A finite state run is an internal behavior of a system
S generated from an initial state x0 ∈ X0 under an
input sequence u1 · · ·un, and is a sequence of transitions
x0

u1- x1
u2- · · · un- xn such that xi

ui+1- xi+1 for
all 0 ≤ i ≤ n − 1. The corresponding output run (external
behavior) is a sequence of outputs H(x0)H(x1) · · ·H(xn).

Let Ta = (Xa, Xa0, Ua,
a
- , Y,Ha) and Tb =

(Xb, Xb0, Ub,
b
- , Y,Hb) be two metric systems with the

same output set and metric d. Let I ⊆ Xa ×Xb ×Ua ×Ub

be an ε-approximate interconnection relation [16] such that
∀(xa, xb) ∈ πX(I) : d(Ha(xa), Hb(xb)) ≤ ε, where πX(·)
denotes the projection to Xa ×Xb. The composition of Ta

and Tb with the interconnection relation I is a new system

Ta ×ε
I Tb = (Xab, Xab0, Uab,

ab
- , Y,Hab),

where Xab = πX(I), Xab0 = Xab ∩ (Xa0 × Xb0),
Uab = Ua × Ub, Hab((xa, xb)) =

1
2 (Ha(xa) +Hb(xb)) and

(xa, xb)
(ua,ub)

ab
- (x′

a, x
′
b) if (i) xa

ua

a
- x′

a; (ii) xb
ub

b
- x′

b;
and (iii) (xa, xb, ua, ub) ∈ I. The subscript I will be
dropped when it is clear from the context.

C. Approximate Opacity

In this paper, we consider internal behaviors as the in-
formation available to the system, i.e., state information,
while external behaviors are considered as the information
available to the outside(for example, to an intruder). The
information of the system is released by the output mapping
H : X → Y . Besides, the system model and its dynamics
are also known by the outside intruders.

In many realistic CPS applications, the system might have
some “secret” that does not want to be revealed to the outside
world via the external behavior. Specifically, we assume that
S ⊆ X is a set of secret states, and hereafter, we write
a system in the form of T = (X,X0, S, U, - , Y,H)
by incorporating the secret state set. The notion of opacity
captures the plausible deniability of the system’s secret under
the information leakage. Note that for metric systems whose
outputs are physical signals, due to the imperfect measure-
ment precision of outside observers, it is very difficult to
distinguish two observations if their distance is very small.
Therefore, in this paper, we adopt a type of opacity called δ-
approximate initial-state opacity [21] which quantifies the
measurement precision of the intruder, and thus is more
applicable to metric systems.

Definition 1: Consider a system T = (X,X0, S, U, - ,
Y,H). We say that T is δ-approximate initial-state opaque
if for any x0 ∈ X0 ∩ S and any finite state run
x0

u1- x1
u2- · · · un- xn, there exist x′

0 ∈ X0 \S and
a finite state run x′

0

u′
1- x′

1

u′
2- · · · u′

n- x′
n such that

max
i∈{0,...,n}

d(H(xi), H(x′
i)) ≤ δ.

Intuitively, approximate initial-state opacity requires that
an intruder with imperfect measurement can never know that
the system was initiated from a secret state. The following
example illustrates this notion.
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Fig. 1. Example for δ-approximate initial-state opacity on system T1.

Example 1: Consider system T1 = (X1, X1,0, S1, U1,
- , Y1, H1) as shown in Figure 1, where X1 =

{A,B,C,D}, X1,0 = {A,D}, S1 = {D}, U1 = {u},
Y1 = {1.1, 2.9, 3.1} ⊆ R equipped with metric d defined
by d(y1, y2) = |y1 − y2|, ∀y1, y2 ∈ Y1. We mark all secret
states by red, and the output of each state is specified by
a value associated to it. First, one can check that T1 is
not 0-approximate/exact initial-state opaque since we know
immediately that the system is at secret state when a finite
path D

u- C which generates output path [1.1][2.9]
is observed. Next, consider an intruder with measurement
precision δ = 0.2. One can observe that T1 is not 0.2-
approximate initial-state opaque due to existence of a self-
loop behavior at state C. For example, consider a secret-
starting finite path D

u- C
u- C which generates out-

put path [1.1][2.9][2.9]. The intruder can infer for sure that
the system started from a secret state since there is no path
which started from a non-secret state x0 /∈ S1 generating an
equivalent output path which is close to [1.1][2.9][2.9] up to
precision δ = 0.2. However, once the self-loop is removed
from state C, we can readily see that the new system is 0.2-
approximate initial-state opaque since for every path starting
from a secret state, there always exists a path that starts from
a non-secret state with δ-close observations. ⋄

III. ABSTRACTION-BASED CONTROLLER SYNTHESIS

In this section, we discuss how to leverage abstraction-
based technique to synthesize controllers that enforce opacity
of systems as defined in Subsection II-B.

A. Feedback Composition

When a system T does not satisfy some desired property,
e.g., opacity, we can synthesize a controller for T such
that the closed-loop system meets the specification. There
are several (equivalent) definitions for controllers in the
literature. In this paper, we adopt the definition in [16],
in which a controller is considered also as a system that
is composable to the original one through approximate
alternating simulation relation defined as follows.

Definition 2: (Approximate Alternating Simulation Rela-
tion) Let Ta = (Xa, Xa0, Ua,

a
- , Y,Ha) and Tb =

(Xb, Xb0, Ub,
b
- , Y,Hb) be two systems with the same

output set. A relation R ⊆ Xa × Xb is said to be an
approximate alternating simulation relation from Ta to Tb

if the following conditions hold:
1) ∀xa0 ∈ Xa0,∃xb0 ∈ Xb0 : (xa0, xb0) ∈ R;
2) ∀(xa, xb) ∈ R : d(Ha(xa), Hb(xb)) ≤ ε;
3) ∀(xa, xb) ∈ R,∀ua ∈ Ua(xa),∃ub ∈ Ub(xb) such that

∀xb
ub- x′

b,∃xa
ua- x′

a : (x′
a, x

′
b) ∈ R.

We say that Ta is ε-approximate alternatingly simulated by
Tb (or Tb ε-approximate alternatingly simulates Ta denoted
by Ta ⪯ε

AS Tb, if there exists an ε-approximate alternating
simulation relation from Ta to Tb.

An alternating simulation relation R ⊆ Xa × Xb from
Ta to Tb can also be extended to an interconnection relation
Re ⊆ Xa×Xb×Ua×Ub defined by: (xa, xb, ua, ub)∈Re if

(i) (xa, xb) ∈ R;
(ii) ua ∈ Ua(xa), ub ∈ Ub(xb); and

(iii) ∀xb
ub- x′

b,∃xa
ua- x′

a : (x′
a, x

′
b) ∈ R.

Intuitively, Re explicitly specifies which inputs we need to
choose to maintain the alternating simulation relation.

The detailed control mechanism of (approximate) alternat-
ing simulation relation is explained for finite systems, e.g.,
[5], [16]. We recall this mechanism succinctly as follows.
Consider two systems Ta and Tb under the above defined
(approximate) alternating simulation relation, i.e., Ta ⪯ε

AS

Tb. Then, Ta can be a controller that offers an input ua ∈
Ua(xa); this input is then transferred to Tb as a matching
input ub ∈ Ub(xb) via the interconnection relation Re. Due
to the non-determinism, Tb may go to any successor of ub.
Once Tb measures the successor state, Ta will update its state
by matching the successor in Tb, and then offer a new input,
and this continues. Note that controller Ta can also be non-
deterministic as ua ∈ Ua(xa) may not be unique. The above
discussion is summarized by the following definition.

Definition 3: (Approximate Feedback Composition) A
system Tc is said to be ε-approximately feedback composable
with a system T1 if there exists an ε-approximate alternat-
ing simulation relation R from Tc to T1. When Tc is ε-
approximately feedback composable with T1, the feedback
composition of Tc and T1 is given by

Tc×ε
F T1 = (Xc×X1, Xc0×X1,0, Uc×U1, F

- , Y,Hc1),

where the interconnection relation F = Re is an extended
ε-approximate alternating simulation relation as in Defini-
tion 2. For the sake of simplicity, the subscript F will be
dropped when it is clear from the context.

Based on the above definition, we refer to Tc as a
controller for system T if it is approximately feedback
composable with T .

B. Opacity-Enforcing Control Problem

In this paper, in contrast to the existing results on veri-
fication of opacity [9], [21], our main goal is to tackle the
opacity-enforcing control problem which requires to synthe-
size a controller Tc for system T such that it enforces approx-
imate initial-state opacity on the composed system Tc×ε

F T .
More specifically, we say that Tc enforces δ-approximate
initial-state opacity over T if for any (xc0, x0) ∈ Xc0 ×
(X0 ∩ S) and any sequence

(xc0, x0)
(uc1,u1)

F
- (xc1, x1)

(uc2,u2)

F
- · · · (ucn,un)

F
- (xcn, xn),

there exist x′
0 ∈ X0 \ S and a sequence

x′
0

u′
1- x′

1

u′
2- · · · u′

n- x′
n
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(a) Controller Tc
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(b) Closed-loop system Tc ×εc1
Rc1

T1

Fig. 2. Example to illustrate the opacity-enforcing control problem.

such that max
i∈{0,...,n}

d(H(xi), H(x′
i)) ≤ δ. Note that in this

paper, we assume that Tc ×ε
F T is non-blocking, i.e., ∀x ∈

X : U(x) ̸= ∅, which is a conventional assumption in
symbolic control. Below, we illustrate the above-mentioned
opacity-enforcing control problem on a simple finite system.

Example 2: Let us still consider system T1 shown in
Figure 1. To illustrate the opacity-enforcing control problem
on T1, we assume that there exists a controller Tc =
(Xc, Xc0, Uc,

c
- , Yc, Hc) shown in Figure 2 (a), where

Xc = {0, 1}, Xc0 = {0}, Uc = {u}, Yc = {1.1, 3.1} ⊆ R
equipped with metric d defined by d(y1, y2) = |y1 − y2|,
∀y1, y2 ∈ Yc. The output of each state is specified by a value
associated to it. One can readily check that Tc ⪯εc1

AS T1 with
εc1 = 0.2 through the approximate alternating simulation
relation Rc1 = {(0, A), (1, B), (1, C), (0, D)}. By Defini-
tion 3, the closed-loop system Tc×εc1

Rc1
T1 = (Xc×X1, Xc0×

X1,0, Uc ×U1, Rc1

- , Y,Hc1) is shown in Figure 2(b). One
can readily verify that for any path that started from a secret
initial state in (xc0, x0) ∈ Xc0 × (X1,0 ∩ S1) in the closed-
loop system Tc×εc1

Rc1
T1, there exists an output-equivalent path

initiated from a non-secret state x ∈ X1,0 \S1 in system T1.
For example, for (0, D) ∈ Xc0×(X1,0∩S1) and a finite path
(0, D)

(u,u)

R1c

- (1, C), there exist A ∈ X1,0 \ S1 and a finite

path A
u- B such that |(Hc1(0, D)−H1(A)| = 0 ≤ 0.2

and |Hc1(1, C) − H1(B)| = 0.1 ≤ 0.2. Therefore, we can
conclude that Tc is a controller that enforces 0.2-approximate
initial-state opacity over T1. ⋄

Note that parameters δ and ε in this paper specify two
different types of precision. Parameter δ is used to specify
the measurement precision of outside intruder under which
we can guarantee the approximate opacity of a single system,
while the parameters ε in the definition of approximate alter-
nating simulation relation is used to describe the “distance”
between two systems.

Note that the opacity-enforcing control problem is known
to be undecidable for continuous-space systems. To this
end, a promising approach is to leverage abstraction-based
approaches as a bridge for the purpose of controller syn-
thesis [16]. In this context, one first needs to build a
finite abstraction of the concrete continuous-space control
system, then synthesize a discrete controller based on the
finite abstraction, and finally, refine the synthesized discrete
controller back as a hybrid one to the original concrete
system. The key to abstraction-based approach is to find
appropriate relations between concrete systems and their
finite abstractions such that properties of interest can be

preserved under controller refinement. The abstraction-based
controller refinement scheme is formalized in the following
subsection.

C. Abstraction and Controller Refinement

Although approximate alternating simulation relations
have shown to be useful [16] for controller refinement of
properties such as ω-regular properties, unfortunately, they
do not preserve security properties including opacity [1],
[22]; check [22] for some counterexamples. Therefore, we
introduce a new notion of opacity-preserving approximate
alternating simulation relation, so that it can be applied to
the abstraction-based opacity-enforcing control problem for
continuous-space control systems.

Here, we propose a notion of so-called approximate initial-
state opacity preserving (AInitSOP) alternating simulation
relation. Specifically, this new notion of system relation from
T1 to T2 is required to satisfy the following requirements:
(i) it is still an alternating simulation relation; (ii) enforcing
opacity for T1 implies the enforcement of opacity for T2 after
the controller refinement. The proposed notion of AInitSOP
alternating simulation relation is introduced in the following
definition.

Definition 4: (Approximate Initial-State Opacity Preserv-
ing Alternating Simulation Relation) Let T1, T2 be two
systems, where Ti = (Xi, Xi,0, Si, Ui,

i
- , Y,Hi), i =

1, 2. A relation R ⊆ X1×X2 is said to be an ε-approximate
initial-state opacity preserving (AInitSOP) alternating simu-
lation relation from T1 to T2 if

1) a) ∀x1,0 ∈ X1,0,∃x2,0 ∈ X2,0 : (x1,0, x2,0) ∈ R;
b) ∀x1,0∈X1,0 \S1,∃x2,0∈X2,0 \S2 : (x1,0, x2,0)∈R;

2) ∀(x1, x2) ∈ R : d(H1(x1), H2(x2)) ≤ ε
3) ∀(x1, x2) ∈ R, we have

a) ∀u1∈U1(x1),∃u2∈U2(x2),∀x2
u2-x′

2,∃x1
u1-x′

1

such that (x′
1, x

′
2) ∈ R;

b) ∀x1
u1- x′

1,∃x2
u2- x′

2 such that (x′
1, x

′
2) ∈ R.

We say that T1 is AInitSOP alternatingly simulated by
T2 (or T2 AInitSOP alternatingly simulates T1), denoted
by T1 ⪯ε

AIAS T2, if there exists an AInitSOP alternating
simulation relation from T1 to T2.

If T1 ⪯ε
AIAS T2, we say that T1 is an abstraction of T2.

In the sequel, we denote the original system by T2 and the
abstract system by T1.

Note that an AInitSOP alternating simulation relation is
still an alternating simulation relation, which makes the con-
troller refinement procedure still possible. Next, we present
the first main result of our paper which shows how to use
the above-defined AInitSOP alternating simulation relation
for the purpose of opacity-enforcing controller synthesis.

Theorem 1: Consider two systems T1 and T2, where Ti =
(Xi, Xi,0, Si, Ui,

i
- , Y,Hi), i = 1, 2, and suppose that

T1 ⪯ε12
AIAS T2. Then for any controller Tc that enforces δ-

approximate initial-state opacity for the abstract system T1

with Tc ⪯εc1
AS T1, the refined controller Tref = Tc ×εc1

Fc1

T1 also enforces max{( 12εc1 + 3
2ε12 + δ), (εc1 + 3

2ε12)}-
approximate initial-state opacity for the original system T2.
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In essence, the role of AInitSOP alternating simulation
relation is to build a “bridge” between the original system
and the controller of the abstract system. Based on this
theorem, one can design a controller that enforces opacity
of the finite abstract system, and then refine the controller
back to enforce opacity over the original control system.

Note that in symbolic control, the controllers synthesized
for abstract systems (with finite state set) are often precise,
i.e., εc1 = 0. In this case, we get a more succinct result as
presented in the following corollary.

Corollary 1: Consider two systems T1 and T2, where
Ti = (Xi, Xi,0, Si, Ui,

i
- , Y,Hi), i = 1, 2, and suppose

that T1 ⪯ε12
AIAS T2. Then for any controller Tc that enforces

δ-approximate initial-state opacity for the abstract system T1

where Tc ⪯0
AS T1, the refined controller Tref := Tc×εc1

Fc1
T1

enforces ( 32ε12+δ)-approximate initial-state opacity over the
original system T2.

IV. APPROXIMATE OPACITY-PRESERVING FINITE
ABSTRACTIONS

In the previous section, we introduced a notion of approx-
imate initial-state opacity preserving alternating simulation
relations. Naturally, the next question is how to construct an
opacity-preserving finite abstraction for a concrete control
system so that it can be used for the sake of opacity-
enforcing controller synthesis. In general, the approach to
construct finite abstractions is system-dependent, and not all
systems admit finite abstractions. Next, we show that a class
of discrete-time control systems admits opacity-preserving
finite abstractions under certain stability assumptions.

A. Discrete-time Control Systems

In this section, we consider a class of discrete-time control
systems of the following form.

Definition 5: A discrete-time control system Σ is defined
by the tuple Σ = (X,S,U, f,Y, h), where X, U, and Y are
the state, input, and output sets, respectively, and are subsets
of normed vector spaces with appropriate dimensions. Set
S ⊆ X is a set of secret states. The map f : X × U →
X is called the transition function, and h : X → Y is the
output map and assumed to satisfy the following Lipschitz
condition: ∥h(x)−h(x′)∥ ≤ α(∥x−x′∥) for some α ∈ K∞
and all x, x′ ∈ X. The discrete-time control system Σ is
described by difference equations of the form

Σ :

{
ξ(k + 1)= f(ξ(k), υ(k)),

ζ(k)= h(ξ(k)),
(1)

where ξ : N → X, ζ : N → Y, and υ : N → U are the state,
output, and input signals, respectively.

We denote by ξxυ(k) the point reached at time k under the
input signal υ from initial condition x = ξxυ(0). Similarly,
let ζxυ(k) denote the output corresponding to state ξxυ(k),
i.e. ζxυ(k) = h(ξxυ(k)). Note that we implicitly assumed
that X is positively invariant.

B. Construction of Finite Abstractions

Next, we present how to construct finite abstractions for a
class of discrete-time control systems. Specifically, the finite
abstraction is built under the assumption that the concrete
discrete-time control system is incrementally input-to-state
stable as defined in [17] and recalled below.

Definition 6: System Σ = (X,S,U, f,Y, h) is called
incrementally input-to-state stable (δ-ISS) if there exist func-
tions β ∈ KL and γ ∈ K∞ such that ∀x, x′ ∈ X and
∀υ, υ′ ∈ N → U, the following holds for any k ∈ N:

∥ξxυ(k)−ξx′υ′(k)∥≤β(∥x− x′∥, k)+γ(∥υ − υ′∥). (2)
Next, in order to construct approximate initial-state opacity

preserving finite abstractions for a control system Σ =
(X,S,U, f,Y, h) in Definition 5, we define an associated
metric system T (Σ) = (X,X0, XS , U, - , Y,H), where
X = X, X0 = X, XS = S, U = U, Y = Y, H = h,
and x

u- x′ if and only if x′ = f(x, u). In the sequel,
we will use T (Σ) to denote the concrete control systems
interchangeably.

Next, we introduce a symbolic system for the control
system Σ = (X,S,U, f,Y, h). To do so, in the rest of the
paper, we assume that sets X, S and U are of the form of
finite union of boxes. Consider a concrete control system
Σ and a tuple q = (η, µ) of parameters, where 0 < η ≤
min {span(S), span(X \ S)} is the state set quantization, and
0 < µ ≤ span(U) is the input set quantization. Now let us
introduce the symbolic system

Tq(Σ) = (Xq, Xq0, XqS , Uq,
q
- , Yq, Hq), (3)

where Xq = Xq0 = [X]η , XqS = [S]η , Uq = [U]µ, Yq =
{h(xq) | xq ∈ Xq}, Hq(xq) = h(xq), ∀xq ∈ Xq, and

• xq
uq

q
- x′

q if and only if ∥x′
q − f(xq, uq)∥ ≤ 1

2η.

Now, we are ready to present the main result of this
section, which shows that under some condition over the
quantization parameters η and µ, the finite abstraction Tq(Σ)
constructed in (3) indeed simulates our concrete control
system T (Σ) through the proposed relation.

Theorem 2: Let Σ = (X,S,U, f,Y, h) be a δ-ISS control
system. For any desired precision ε > 0, and any tuple q =
(η, µ) of parameters satisfying

β
(
α−1(ε), 1

)
+

1

2
η ≤ α−1(ε), (4)

we have Tq(Σ) ⪯ε
AIAS T (Σ).

Intuitively, this theorem shows that under certain condi-
tions over the quantization parameter η, one can construct
a finite abstraction as in (3) which is related to the original
control system through the proposed AInitSOP alternating
simulation relation. Let us recall that such an abstraction is
a crucial bridge to the opacity-enforcing controller synthesis
of continuous-space control systems. To be specific, one can
first design symbolic controllers for the finite abstractions,
and then leverage the results proposed in Theorem 1 to
refine controllers to hybrid ones that render opacity over the
original systems. Note that the design of symbolic controllers
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for finite abstractions is out of the scope of this paper.
However, since the abstractions are finite, one can readily
utilize the existing works and computational tools in the DES
literature (e.g., [3]) to design controllers that enforce opacity
over the abstractions.

We should mention that one can always find quantization
parameters η such that (4) holds as long as β

(
α−1(ε), 1

)
≤

α−1(ε). This inequality can be ensured by regarding the
discrete-time control system as a sampled-data version of an
original continuous-time system with large-enough sampling
time (see [21, Remark VI.8]).

V. CASE STUDY

In this section, we demonstrate the proposed abstraction-
based controller synthesis approach on a two-room temper-
ature control problem, where each room is equipped with a
heater. This model is borrowed from [11]. The temperature
evolution of two rooms is:

Σ :

{
x(k + 1)= Ax(k) + αhxhu(k) + αexe,

y(k)= h(x(k)), (5)

where x(k)=[x1(k); x2(k)], where xi(k), i ∈ {1; 2}, repre-
sents the temperature of each room at time k, u(k)=[u1(k);
u2(k)], where ui(k) ∈ [0, 1], ∀i ∈ [1; 2], represents the
ratio of the heater valve being open in room i, A ∈ R2×2

is a heat exchange matrix for this model with elements
{A}11 = {A}22 = α, {A}12 = 1 − 2α − αe − αhc1,
{A}21 = 1 − 2α − αe − αhc2. The parameters α = 0.1,
αh = 0.5, αe = 0.1, c1 = 0.4 and c2 = 3 are heat exchange
coefficients of this model, xe = [xe1;xe2] = [5 ◦C; 5 ◦C]
represents the environment temperature and xh = 50 ◦C
represents the heater temperature. The output of this system
is assumed to be the temperature of the second room, i.e.,
y(k) = h(x(k)) = x2(k). In this example, our region of
interest is as follows: X = [0, 40]× [0, 40], X0 = [20, 25]×
[20], Xs = [23.5, 25]× [20].

It is assumed that the secret of the system is whether
the initial temperature of room 1 is higher than 23.5 ◦C,
as this could mean that there are sensitive devices running
or people are gathering in this room. We also assume that
there is a malicious intruder interested in reasoning about
the initial temperature of the first room by knowing the
dynamics of the system and the output of the model. It is
worth mentioning that due to the imperfect precision, the
intruder cannot accurately obtain the output values of the
system. Correspondingly, the measurement precision of the
intruder is assumed to be δ1 = 3.5. Note that this can be
captured as an δ1-approximate initial-state opacity property
of the system. By the verification approach of [9], this system
is not 3.5-approximate initial-state opaque. Now, we apply
our proposed abstraction-based framework to synthesize a
controller to enforce approximate initial-state opacity on Σ.
To do this, let us first build a finite abstraction of Σ using
the approach presented in Subsection IV-B with a desired
precision ε = 1. One can readily check that the system Σ
is incrementally input-to-state stable. Hence, by leveraging
Theorem 2 and based on inequality (4), we simply choose

Fig. 3. Trajectories of the augmented closed-loop abstract system projected
on the first-room coordinate starting from initial region G0 (represented by
the green area) under symbolic control. The black lines denote the state
trajectories of the augmented abstract system. The red regions constitute
the unsafe set Gu.

the state quantization parameter to be η = 0.9 and the
input quantization parameter µ = 0.5. Then, following the
approach presented in Subsection IV-B, one can obtain a
finite abstraction Tq(Σ) such that Tq(Σ) ⪯ε

AIAS T (Σ) holds.
Next, we proceed with the opacity-enforcing controller

synthesis by leveraging the result in Corollary 1. Specif-
ically, in order to enforce the original system Σ to be
3.5-approximate initial-state opaque, we can design a 2.0-
approximate initial-state opacity-enforcing controller for the
abstract system Tq, and then refine it back to a controller that
enforces 3.5-approximate initial-state opacity on the original
system Σ.

Fig. 4. First-room temperature trajectories initiated from different initial
states (one from a secret state x = [24.3; 20] and the other one from a
non-secret state x′ = [22.9; 20].

Fig. 5. Distance between the output trajectories corresponding to the two
state trajectories depicted in Figure 4.

Fig. 6. The input runs corresponding to the state trajectories in Figure 4.
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For the sake of completeness of the example, we briefly
discuss our symbolic controller design process with the help
of SCOTS [14] together with the ideas proposed in [9].
In order to utilize SCOTS to design an opacity-enforcing
symbolic controller, we resort to an approach developed
in [9] which essentially converts the opacity property of a
single control system to a safety property of an augmented
system which can be seen as the product of a control
system and itself. We refer interested readers to [9] for
more details on the translation of opacity property to a
safety one. Here, we briefly recall some of the notations
that are used in this example: Given a single system Tq, an
augmented system is defined as Tq×Tq = (Xq ×Xq, Xq0×
Xq0, XqS ×XqS , Uq × Uq, fq × fq, Yq × Yq, Hq ×Hq). We
use G =Xq × Xq to denote the augmented symbolic state
set. Recall that a safety property essentially requires that
any trajectory starting from a certain initial region should
never reach an unsafe region. In this example, the initial
and unsafe region for the obtained safety property is as
follows: the initial region is G0={(xq, x̂q) ∈ (Xq0 ∩XqS)×
(Xq0 \ XqS)| ∥H(xq) − H(x̂q)∥ ≤ δ2}, the unsafe region
is Gu={(xq, x̂q) ∈ Xq × Xq)| ∥H(xq) − H(x̂q)∥ > δ2},
where δ2 = 2. Then, the safety controller synthesis problem
is solved using SCOTS. In Figure 3, we show the state trajec-
tories of the augmented closed-loop abstract system projected
on the first-room coordinate under the controller provided
by SCOTS. It can be readily seen that the safety property
is satisfied on the augmented system, which implies that
the individual closed-loop abstract system is 2.0-approximate
initial-state opaque.

So far, we have obtained a controller that enforces opacity
on the abstract system with the closed-loop system denoted
by Tref = Tc ×0

Fc1
Tq(Σ). Then, according to Corollary 1,

let Tref be the refined controller for the original system.
We have the guarantee that the closed-loop control system
Tref×1

F12
T (Σ) is δ1-approximate initial-state opaque, where

δ1=( 32ε + δ2)=3.5, and the AInitSOP alternating simulation
relation is as follows: R12 = {(xq,1, x1) ∈ Xq,1×X1|∥x1−
xq,1∥ ≤ 1.0 ∧ (xc, xq,1) ∈ Rc1}. Figure 4 shows the sim-
ulation results of our implementation, which illustrates δ1-
approximate initial-state opacity of the closed-loop control
system. In particular, two trajectories are depicted in this fig-
ure, where one is initiated from a secret state [24.3; 20] while
the other started from a non-secret state x′ = [22.9; 20].
The distance between the corresponding output trajectories
of these two state runs is depicted in Figure 5. The input
runs of the trajectories are shown in Figure 6.

VI. CONCLUSION

In this work, we developed an abstraction-based approach
for synthesizing controllers that enforce approximate initial-
state opacity over continuous-space control systems. To
this end, we proposed a notion of approximate initial-state
opacity-preserving alternating simulation relation, which can
be used to capture the distance between a concrete con-
trol system and its finite abstraction. Under this system
relation, an opacity-enforcing controller designed for the

finite abstraction can be refined back to the original control
system. We further showed that under an incremental input-
to-state stability assumption, a finite abstraction can be
readily computed for a control system through the proposed
system relation. Finally, we used a two-room temperature
control example to illustrate our proposed abstraction-based
controller synthesis framework.
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