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Abstract— Dynamic network reconstruction aims to infer
network structure from input-output data. Dynamical structure
functions (DSFs) have been introduced to represent structural
information between observable nodes of linear time-invariant
systems. However, reconstructing large-scale DSFs can be
difficult since most existing methods do not scale. Instead of
inferring large DSFs directly, an alternative approach is to
reconstruct many small-scale DSFs that are easier to infer.
Given a sparsity constraint on the network, this paper proposes
a necessary and sufficient condition for perfect reconstruction
of the Boolean network using collapsed small-scale networks.
For sparse networks, such as gene regulatory networks, this
method can significantly reduce time and computational costs
of Boolean network inference for most links in the network,
especially when using parallel computing.

I. INTRODUCTION

Dynamical network systems have two fundamental proper-
ties: their system dynamics and network structure. Both can
be captured by dynamical structure functions (DSF) [1], [2].
Reconstruction of DSF has been the focus of considerable
research especially in systems biology, such as inference
of gene regulatory networks [3], [4] and organic reaction
mechanism classification [5].

There are several methods to reconstruct DSFs like
BINGO [6], dynGENIE3 [7], and many others [8]–[12],
while some focus on reconstructing part of the network [13],
[14]. However, reconstructing large-scale DSFs (as those
shown in [3], [4]) can be difficult considering the costs of
computation, time and accuracy. An alternative approach is to
collapse the original network into many small sub-networks,
which are easier to infer.

For sparse networks, this paper provides necessary and
sufficient conditions that guarantee the inference of the
Boolean network from many and small collapsed networks.
The paper is organised as follows: the next section provides
a motivating example, followed by the main results section.
Finally, section IV contains an illustrative example.

II. MOTIVATING EXAMPLE

Example 1. Consider the directed graph in Fig. 1a and
assume we are interested in inferring whether the link from
node 2 to node 1 exists or not. While keeping nodes 1 and
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2, three 3-node collapsed networks can be obtained from
the original 5-node network (Figs. 1b-d). All three collapsed
networks give a nonzero link from node 2 to 1 via collapsed
nodes, given the impression that this link does exist. For
example, when keeping nodes 1, 2 and 3 (Figs. 1b), nodes 2
to 1 link via the now hidden node 4. However, we see that
the original network does not have this link.

Alternatively, consider collapsing the original network into
three 4-node sub-networks (Fig.2b-d). One of the collapsed
networks (Fig.2b) does not show a link from node 2 to 1,
while the other two (Fig.2c-d) do. By a one-vote veto strategy
we obtain the correct answer.

Example 1 shows that the order of the collapsed networks
influences the inference results. In particular, in this example
collapsing to 3-node networks is not enough for inference,
and collapsing to 4-node networks yields the correct Boolean
structure. This paper will formalise this result into necessary
and sufficient conditions on the number of nodes of the
collapsed network to guarantee the correct inference of the
original Boolean network.
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Fig. 1. The case when collapse the original network into three 3-node
sub-networks. a. The original network. b-d. The collapsed sub-networks.
The directed dash line implies the link that does not exist but is wrongly
inferred. Hence, the link from node 2 to 1 is misjudged.

III. MAIN RESULTS

A. Dynamical Structure Function

Dynamical structure functions (DSFs) are derived from the
signal structure of an LTI system and are characterized by:

Y = QY + PU (1)

where Y represents measured states, U represents measured
inputs, and (Q,P ) is the DSF of the system. Q has zero on its
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Fig. 2. The case when collapse the original network into three 4-node
sub-networks. a. The original network. b-d. The collapsed sub-networks.
The directed dash line implies the link that does not exist but is wrongly
inferred. With one-vote veto strategy the link can be inferred correctly.

diagonal and describes the transfer functions between mea-
sured states. P describes the transfer functions from inputs to
outputs without depending on any additional measured states
[1], [15], [16].

We call Q and P the internal structure and control
structure, respectively, since they can be interpreted as the
weighted adjacency matrix of a directed graph indicating
the system topology. Note that the DSF in [1] was derived
from state space systems where C = [I, 0] and D = 0, thus
ensuring (Q,P ) to be strictly proper. This was extended to
general state space system (A,B,C,D) in [15], [16] that
makes (Q,P ) non-strictly proper. We assume the network is
well-posed [17].

B. Network Collapse

Identification of large-scale systems is typically chal-
lenging as it can lead to large dimension computational
problems, which are prone to errors. This is also true when
reconstructing large-scale DSFs. An alternative to identifying
high dimentional DSFs is to reconstruct many small-scale
DSFs. Define network collapse as the reduction on the
number of observed nodes in the network without changing
its underlying dynamical system. More precisely, consider an
n-output dynamical structure function (Q(n), P (n)) from (1).
To collapse the DSF to m nodes, first partition the system
as follows:[

Ŷ
Z

]
=

[
Q

(n)
11 Q

(n)
12

Q
(n)
21 Q

(n)
22

] [
Ŷ
Z

]
+

[
P

(n)
1

P
(n)
2

]
U (2)

where Y = [Ŷ Z]T ∈ Rn are the observed nodes before
collapse, Ŷ ∈ Rm are the observed nodes after collapse, Z
are the n − m nodes to be ”hidden” or collapsed. Solving
for Z gives

Z = (I −Q
(n)
22 )−1Q

(n)
21 Ŷ + (I −Q

(n)
22 )−1P

(n)
2 U. (3)

Substituting (3) into (2) then yields

Ŷ = WŶ + V U (4)

where
W = Q

(n)
11 +Q

(n)
12 (I −Q

(n)
22 )−1Q

(n)
21 ; (5)

V = Q
(n)
12 (I −Q

(n)
22 )−1P

(n)
2 + P

(n)
1 . (6)

Subtracting diag{W}Ŷ from both sides of (4) yields (I −
diag{W})Ŷ = (W − diag{W})Ŷ + V U . Note that W −
diag{W} is a matrix with zeros on its diagonal. We then
have

Ŷ = Q(m)Ŷ + P (m)U

where

Q(m) = (I − diag{W})−1(W − diag{W}) (7)

Combining (5) and (7), we have the following proposition.

Proposition 1. An n-node internal structure Q(n) and its
collapsed m-node internal structure Q(m) have the following
relation:

(I − diag{K})Q(m) = Q
(n)
11 +K − diag{K}

where
K = Q

(n)
12 (I −Q

(n)
22 )−1Q

(n)
21

In particular, if m = n− 1,

(I − diag{K})Q(n−1) = Q
(n)
11 +K − diag{K}

K = Q
(n)
12 Q

(n)
21

(8)

Proposition 1 outlines the relationship between the internal
structure Q before and after network collapse. Each collapsed
internal structure Q(m) provides insights into the original
internal structure Q(n), suggesting that the large-scale net-
work could be reconstructed from many collapsed networks
that feature different combinations of observed nodes. In the
following, we aim to identify a condition that enables the
network to be mapped to its multiple small-scale collapsed
networks without losing any structural information. This
allows for the reconstruction of a large-scale network to be
transferred to a small-scale network instead.

This paper focuses on the reconstruction problem of the
Boolean structure of Q(n). Henceforth, let Θ(n) denote the
n-node Boolean internal structure matrix.

C. Boolean Internal Structure Reconstruction

There are a total of
(
n
m

)
networks that can be collapsed

from an n-node to a m-node network. Due to their smaller
size, each of the smaller m-node networks should be easier
to reconstruct than the original n-node. However, it remains
unclear whether the process of network collapse leads to any
loss of structural information. We are interested in determin-
ing whether the use of a sparsity assumption about internal
structure topology can contribute to perfectly converting
the reconstruction problem from one large-scale network to
many small-scale ones. In contrast to the traditional sparsity
requirement that limits the number of regulations (links) in
the entire network, we propose a novel sparsity constraint
that is defined based on the directed link between any two
nodes in the network:
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Definition 1. Let ai (bi) be the indegree (outdegree) of an
observable node i, i = 1...n. Given any two observable
nodes i and j in the network, let the sparsity parameter
of the directed link from j to i be defined as

rij = min{ai, bj} (9)

.

The sparsity parameter of a directed link indicates the
number of other regulatory pathways that are similar to this
link. When the sparsity parameter rij is high, there are many
other potential indirect pathways that come out from node
j and arrive at node i, which makes it more challenging to
distinguish the direct pathway from a vast number of those
indirect. By using the sparsity parameter of a directed link,
we can quantify the difficulty of reconstructing every single
link without considering the properties of the entire network.
Next, is a similar definition of sparsity on the entire network.

Definition 2. Given an n-node network, the sparsity param-
eter R of the network is defined as the maximum sparsity
parameter among all pairs of observable nodes in the
network:

R = max
i,j∈{1,2,...,n}

i̸=j

rij (10)

When reconstructing a single link of Boolean internal
structure (we call it Boolean causality of a link), its sparsity
parameter represents how ”distinguishable” it is. If a link
has a low sparsity parameter, which means the number of
potential similar pathways is low, it is possible to collapse
the network to a lower size without losing any topological
information of the target link. Hence, the following theorem
explores feasible sizes of collapsed networks based on a link
sparsity parameter.

Theorem 1. Given two observable nodes i, j and their
sparsity parameter rij , the Boolean causality from node j
to node i can be recovered with probability 1 from collapsed
m-node networks if and only if m ≥ rij + 2.

We have the following corollary to reconstruct the entire
Boolean internal structure.

Corollary 1. Consider an n-node network with sparsity
parameter R. Its Boolean internal structure Θ(n) can be re-
covered with probability 1 from collapsed m-node networks
if and only if m ≥ R+ 2

Theorem 1 states that the dimension of the collapsed
networks required to recover a link’s Boolean causality
depends solely on the sparsity parameter of the link, and
not on the network size and other properties. In reality,
most of the links in large-scale networks have relatively low
sparsity parameters. Theorem 1 offers a practical approach
to reconstructing the basic Boolean structure of such a large-
scale network by collapsing it to low-dimensional networks.
The proof for Theorem 1 is divided in two lemmas.

Lemma 1. Given two observable nodes i, j and their spar-
sity parameter rij , the Boolean causality from node j to node

i can be recovered with probability 1 from all the collapsed
(rij + 2)-node networks as

Θ
(n)
ij =

∏
n1,...,nrij

∈{1,2,...,n}\{i,j}
ns ̸=nt, for s̸=t

Θ
node i,j,n1,...,nrij

retained
ij

(11)
where Θ

node i,j,n1,...,nrij
retained

ij is the Boolean causality of
the directed link from node j to node i, in the collapsed
network that node i, node j and other rij number of nodes
are retained.

For convenience, we use function T to describe the
multiplication of every link Boolean causality:

T
(n)
ij (r,K) =

∏
n1,...,nr∈{1,2,...,n}\K

ns ̸=nt, for s̸=t

Θnode i,j,n1,...,nr retained
ij

(12)
r is the number of retained nodes apart from node i and j,
K is a set of nodes that will not be used. Note that node i
and j are always retained, and i, j ∈ K.
Proof. For simplicity, and without loss of generality, suppose
i = 1, j = 2 and r stands for r12. We prove this by induction.

Base case: Show that Lemma holds for n = r + 2. When
n = r + 2, the collapsed network has the same size as the
original network, then Θ

(n)
12 = Θall nodes retained

12 .
Induction step: Suppose Lemma 1 holds for any n that

n ≥ r+2. Prove that it also holds for n+1. We first collapse
the (n+1)-node network to n-node networks. n−1 number of
networks can be obtained by fixing node 1, 2 as two observed
nodes in the network collapse process. To collapse the kth

node (k ∈ {3, 4, . . . , n+ 1}), we apply (8) and get

(1−q
(n+1)
1k q

(n+1)
k1 )q

(n+1)\{k}
12 = q

(n+1)
12 +q

(n+1)
1k q

(n+1)
k2 (13)

where the superscript ’(n + 1) \ {k}’ means removing kth

node from original n+1 nodes network. Since the system is
well-posed, (1−q

(n+1)
1k q

(n+1)
k1 )−1 exists and is proper. Regard

1− q
(n+1)
1k q

(n+1)
k1 in (13) as a non-zero term and booleanize

it

Θ
(n+1)\{k}
12 = Θ

(n+1)
12 +Θ

(n+1)
1k Θ

(n+1)
k2 (14)

Note that in some extreme cases, q(n+1)
12 and q

(n+1)
1k q

(n+1)
k2

could be nonzero and perfectly cancel each other. However,
for random networks this happens with probability 0. Thus,
we assume the booleanization holds from (13) to (14).
Then, since Lemma 1 holds for n-order systems, we further
collapse LHS of (14) to (r + 2)-node networks:

T
(n+1)\{k}
12 (r, {1, 2, k}) = Θ

(n+1)
12 +Θ

(n+1)
1k Θ

(n+1)
k2

(15)

Hence, n − 1 equations can be obtained from (15) as k ∈
{3, 4, . . . , n+ 1}. Since either node 1 has up to r incoming
links or node 2 has up to r outgoing link (r ≤ n−2), there is
at least one Θ

(n+1)
1k Θ

(n+1)
k2 equal to zero. Multiply all n− 1
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equations by each other to obtain

n+1∏
k=3

T
(n+1)\{k}
12 (r, {1, 2, k})

=

n+1∏
k=3

(
Θ

(n+1)
12 +Θ

(n+1)
1k Θ

(n+1)
k2

)
= Θ

(n+1)
12 +

n+1∏
k=3

Θ
(n+1)
1k Θ

(n+1)
k2

= Θ
(n+1)
12

(16)

Expanding the LHS of (16) and using (12) yields

n+1∏
k=3


∏

n1,...,nr∈
{3,4,...,n+1}\{k}
ns ̸=nt, for s̸=t

Θnode 1, 2, n1,...,nr retained
12

 = Θ
(n+1)
12

(17)
We want to prove T

(n+1)
12 (r, {1, 2}) = Θ

(n+1)
12 from (17).

If Θ
(n+1)
12 = 0, then there exists an k ∈ {3, 4, . . . , n + 1}

and n1, n2, . . . , nr ∈ {3, 4, . . . , n + 1} \ {k} (ns ̸= nt, if
s ̸= t) such that Θnode 1, 2, n1,...,nr retained

12 = 0. This is one
of the factor in the multiplication behind T

(n+1)
12 (r, {1, 2}).

Hence, T(n+1)
12 (r, {1, 2}) = 0.

If T
(n+1)
12 (r, {1, 2}) = 0, there exist n1, n2, . . . , nr ∈

{3, 4, . . . , n + 1} (ns ̸= nt, if s ̸= t) such that
Θnode 1, 2, n1,...,nr retained

12 = 0. Without loss of generality,
suppose n1 = 3, n2 = 4, . . . , nr = r + 2. Then
Θnode 1, 2, 3, ..., r+2 retained

12 = 0. Suppose k = r + 3, we find
a set of n1, . . . , nr ∈ {3, 4, . . . , n + 1} \ {k} that satisfies
Θnode 1, 2, n1,...,nr retained

12 = 0. Then Θ
(n+1)
12 = 0 from (17).

Im summary, we have the following equations proving that
n+ 1 also holds

Θ
(n+1)
12 = T

(n+1)
12 (r, {1, 2})

■
Lemma 1 states that collapsed (rij + 2)-node networks

can reconstruct the original Boolean structure Θij perfectly.
Next, we show that Boolean causality cannot always be
recovered from collapsed smaller sized networks than (rij +
2)-nodes.

Lemma 2. Given two observable nodes i, j and their spar-
sity parameter rij , the Boolean causality from node j to node
i cannot always be recovered from the collapsed (rij + 1)-
node networks.

Proof. We still focus on Θ
(n)
12 for simplicity. Consider the

construction of a network with n ≥ rij + 2 nodes as shown
in Fig. 3. We demonstrate that Θ(n)

12 in this network cannot be
recovered correctly using collapsed (r12+1)-node networks.
As the number of retained nodes (i.e. r12−1) is smaller than
the number of nodes connecting node 1 and 2 (i.e. r12), for
any r12−1 retained nodes n1, n2, . . . , nr12−1 ∈ {3, 4, . . . , n}
(ns ̸= nt, if s ̸= t), Θnode 1, 2, n1,...,nr12−1 retained

12 = 1. Denote

2 15

4

3

𝒓𝟏𝟐+2

…

𝒓𝟏𝟐+3

𝒓𝟏𝟐+4

…

n

Isolated nodes

Fig. 3. The special case where node 2 does not directly regulate node 1, but
it can regulate node 2 indirectly via separate intermediate nodes, including
nodes 3, 4, ..., r12+2. Hence, Θ12 cannot be correctly reconstructed by
collapsing the network to r12 + 1-node networks.

Θ̃
(n)
12 as the estimate of the real Θ(n)

12 . Then, we have

Θ̃
(n)
12 = T

(n)
12 (r12 − 1, {1, 2}) = 1

which is inconsistent with the real Θ(n)
12 = 0 ■

We further use Example 1 again to illustrate Lemma 2.
We can build the Boolean internal structure matrix in terms
of the graph topology:

Θ(5) =


0 0 1 1 0
0 0 0 0 0
0 1 0 0 0
0 1 0 0 1
0 0 0 0 0

 (18)

To infer the Boolean causality from node 2 to node 1 which
has the sparsity parameter of r12 = 2. If collapsing the
network to 3-node, three collapsed sub-networks can be
obtained

Θ(5)\{4,5} =

0 1 1
0 0 0
0 1 0



Θ(5)\{3,5} =

0 1 1
0 0 0
0 1 0



Θ(5)\{3,4} =

0 1 1
0 0 0
0 0 0


(19)

Then Θ̃
(5)
12 = T

(5)
12 (1, {1, 2}) = 1, which is inconsistent with

the real Θ(5)
12 = 0.

The proof of Theorem 1 follows from Lemmas 1 and 2.
Proof of Theorem 1. When m ≥ rij + 2. Since Lemma 1,
any m-node Boolean network can be recovered by collapsed
(rij + 2)-node networks (Let n = m). Therefore, for any n-
node network, we can always collapse it to well-recovered
m-node networks. These m-node networks must be able to
recover Θ(n)

ij by Lemma 1.
For m ≤ rij + 1, if it is possible to recover Θ(n)

ij through
collapsing to m-node networks, then if n = rij + 1 we
can still get Θ

(rij+1)
ij by collapsing to m-node networks.
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Therefore, for any n-node network, we can always collapse
it to well-recovered (rij+1)-node networks, which indicates
through (rij + 1)-node networks we will always be able
to recover Θ

(n)
ij . This contradicts Lemma 2. Therefore,

collapsing the network to the dimension of m ≤ rij + 1

cannot recover Θ(n)
ij perfectly.

■

From Theorem 1, only those links that have a sparsity
parameter of 1 in Example 1 can be reconstructed by
collapsed 3-node networks, such as

Θ̃
(5)
13 = T

(5)
13 (1, {1, 3}) = 1 = Θ

(5)
13 ;

Θ̃
(5)
32 = T

(5)
32 (1, {2, 3}) = 0 = Θ

(5)
32

For some links that have a sparsity parameter of 2, they can
be reconstructed by a 4-node networks

Θ̃
(5)
12 = T

(5)
12 (2, {1, 2}) = 0 = Θ

(5)
12

When reconstructing the entire network, the sparsity param-
eters of all the links must be taken into consideration. The
size of the collapsed networks is determined by the maximal
sparsity parameter of all the links, which is the sparsity
parameter of the network defined in Definition 2.

Theorem 1 and Corollary 1 present criteria to collapse
the network for reconstructing a single link and the entire
network, respectively. However, if the networks consist pre-
dominantly of links with low sparsity parameters, Theorem 1
can be used instead of Corollary 1 to choose the dimension of
collapsed networks and reconstruct the basic Boolean inter-
nal structure. Although this may have slightly lower accuracy
due to potential misreconstruction of high sparsity parameter
links, it allows for the network to collapse to a smaller
dimension. Ultimately, this trade-off between accuracy and
dimensionality enables a more effective reconstruction of the
Boolean internal structure.

In practice, the formula in Theorem 1 and Corollary
1 can be explained as a ”one-vote veto” strategy. When
reconstructing a link Boolean causality, if the reconstruction
result from any collapsed network is zero (non-existent), then
the final result will be zero without the need to consider other
collapsed networks. This can greatly speed up the computa-
tion as it is unnecessary to compute all possible collapsed
networks. The whole reconstruction process combining the
one-vote veto strategy is summarized as follows.

Algorithm 1 Link Boolean causality reconstruction using
collapsed networks
Input: Experiments on n-node network, Dimension of col-

lapsed networks m

Output: Link Boolean causality Θ
(n)
ij

Initialisation
1: k = 1
2: Θ

(n)
ij = 1

Loop Process
3: while k ≤

(
n−2
m−2

)
and Θ

(n)
ij = 1 do

4: Besides node i, j, choose other m− 2 retained nodes:
i, j, n1, . . . nm−2

5: Θ
(n)
ij = Θ

node 1, 2, n1,...,nm−2 retained
ij

6: k = k + 1
7: end while

IV. EXAMPLE

Here we demonstrate the approach with a large-scale
network reconstruction example.

Example 2. Consider a 10-node network shown in Fig.
4, where arrows denote direct relations containing all the
dynamics of the hidden states. 15 links in the network
form typical tree structures and ring structures. The sparsity
parameter of the network R = 3.

1

10

39

2

8

7

6

5

4

Fig. 4. Network structure in Example 2

The network topology is fully characterised by the
Boolean internal structure as

Θ(10) =



0 0 1 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0


(20)

We can calculate a matrix of m that describes the minimal
dimension of collapsed networks for reconstructing every
single link in the network:

453



[m]
(10)
ij = [r

(10)
ij +2] =



∗ 3 4 3 4 2 4 4 3 2
3 ∗ 4 3 4 2 4 4 3 2
3 3 ∗ 3 3 2 3 3 3 2
3 3 3 ∗ 3 2 3 3 3 2
3 3 4 3 ∗ 2 4 4 3 2
3 3 3 3 3 ∗ 3 3 3 2
3 3 5 3 4 2 ∗ 4 3 2
2 2 2 2 2 2 2 ∗ 2 2
3 3 5 3 4 2 5 4 ∗ 2
2 2 2 2 2 2 2 2 2 ∗


(21)

The maximal element in matrix [m]
(10)
ij is 5, corresponding

to R = 3. To reconstruct the entire network topology
perfectly from Corollary 1, the dimension of collapsed
networks used must be at least 5. If using 4-dimensional
collapsed networks, most of the links can still be correctly
reconstructed, except for two links Θ

(10)
73 and Θ

(10)
93 . If we

reduce the dimension of the collapsed networks to 3, 73 out
of 90 potential links can still be correctly reconstructed.

V. CONCLUSION

Reconstructing large-scale DSFs at one time is sometimes
difficult due to the accuracy and the cost of computation
and time. To address this problem, this paper defined the
sparsity parameter to describe the reconstructability of the
network. We proposed a reconstruction method that involves
network collapses and a one-vote veto strategy. This lead to
necessary and sufficient condition that ensures reconstruc-
tion. For sparse networks, this work has the potential to
significantly reduce the computational costs and improve
accuracy for large-scale networks. Especially for links with
low scarcity parameter rij . Moreover, collapsed networks can
be computed in parallel.
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