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Abstract— This paper addresses the design of nonlinear
quasi-unknown input observers for systems that can be inter-
preted as an interconnection of a linear dynamical subsystem
with a static nonlinear feedback subject to additive pertur-
bations. As assumed classically an exosystem is considered
describing the dynamics of the perturbation, meaning that
the dynamical mechanisms giving rise to the perturbation
are sufficiently well known but the underlying initial con-
dition is unknown. Extending classical results based on the
Sylvester equation, and combining them with well-established
dissipativity concepts and design methods, a new approach for
quasi-unknown input observer design is obtained. It simplifies
previous work on general unknown input observer design by
exploiting the structural knowledge about the exosystem, with-
out extending the state dimension. The approach is illustrated
with numerical case examples.

I. INTRODUCTION
Dissipativity has turned out as a key structural analysis

and design tool for linear and nonlinear systems (see, e.g.,
[1], [2])

Unknown input observer design has attained considerable
attention since the early work of Hautus and others (see,
e.g., [3], [4]). This holds true also for nonlinear systems, for
which different approaches have been presented, including
dissipative observer design considering dissipativity proper-
ties for the system with respect to the unknown input [5],
as well as alternative matrix-inequality based approaches [6],
sliding mode observers [7], [8], high-gain observers [9], [10]
and continuous-discrete Kalman Filter adaptations [11], [12].

In case that some dynamics of the input are known, i.e.,
a so-called exosystem model is at hand, more structured
approaches are possible [13], [14]. This has been widely
used in literature, e.g., for process systems [15], [16] and for
the particular case of slowly varying perturbations is directly
related to the idea of the proportional-integral observers
[17], [18]. As these approaches include the estimation of
the perturbation using the exosystem model the order of the
observer is augmented in comparison to the dimension of the
system state.

On the other hand, it is known that for linear systems
reduced order unknown input observers can be designed in
case that the perturbation has vector relative degree one and
there are as many measurements as unknown inputs [3],
because under this condition one can divide the state space
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into one part that is directly influenced by the unknown input
and another one that is not. The observer is then designed
for the part which is not directly influenced, requiring certain
detectability or observability properties. This idea has also
been extended to some classes of nonlinear systems [5],
[6] and can in principle be applied also to extended state
systems, that include the exosystem model to overcome the
dimension augmentation problem mentioned above.

Yet another approach has been exploited, e.g., in [19]
for a linear system that corresponds to an early-lumping
PDE approximation, where the observer is composed of two
parts: one that provides an estimate that is influenced by
the unknown input and in consequence does not provide the
correct values, and a second part that provides an asymptotic
correction mechanism so that a suitably combined estimate
converges to the actual state value. The main underlying
assumption is that an observer does exist for the unperturbed
case and that an associated Sylvester equation has a solution,
which depends on the observer and the exosystem.

Having these studies as points of departure, in the present
one the problem of quasi unknown input observer design
from [19] is extended to nonlinear systems exploiting con-
cepts and results from dissipativity theory for observer design
[2], [5], [20]. In difference to [5] the exosystem model is
explicitly accounted for in the problem solution, leading to a
reduced dimension of the underlying dissipativity matrix in-
equalities and imposing a particular structure of the solution
based on an associated Sylvester equation.

II. PROBLEM FORMULATION
Consider a system with dynamics

ẋ = Ax+Bu+Gψ(σ) +φ(t,y,u) +Dv (1a)
σ = Hx (1b)
y = Cx (1c)

where x(t) ∈ Rn denotes the state vector at time t ≥ 0,
u(t) ∈ Rm represents control inputs, and y(t) ∈ Rp are
measured outputs. The initial state is denoted by x(0) = x0.
The function ψ : Rr → Rs is assumed Lipschitz continuous
in σ(t) ∈ Rr where σ is a linear, not necessarily measured,
function of the state. The variable φ : R≥0 × Rp+m →
Rn is a possibly nonlinear function of the known quantities
t,y,u and assumed piecewise continuous in t and Lipschitz
continuous in y and u. The variable v(t) ∈ Rq is an external
disturbance generated by the linear time-invariant exogenous
system (exo-system)

ẇ = Ew, w(0) = w0 (2a)
v = Γw (2b)
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with state w(t) ∈ Rd and unknown initial condition w0. The
following assumption is placed on this exo-system.

Assumption 1: The dynamic matrix E ∈ Rd×d of the exo-
system is assumed to be real and its spectrum lying on the
imaginary axis only, i.e., Re{λi(E)} = 0, i = 1, . . . , d and
non-defective. That means,

E = VΛV−1, Λ := diag ([jΩ1 . . . jΩd]) (3)

with frequencies Ωi and regular matrix

V =
[
v1 v2 . . . vd

]
, (4)

with eigenvectors vi associated to λi, i = 1, . . . , d.
The subsequent considerations aim at designing a state

observer that asymptotically estimates the state x from the
measurements y only, i.e., without knowledge of v. To that
end, the following observer structure is proposed

˙̂x = Ax̂+Bu+Gψ(σ̂) +φ(t,y,u)− L(Cx̂− y) (5a)
σ̂ = Hx̂−Nσ(Cx̂− y) (5b)
x̄ = x̂−Ny(Cx̂− y) (5c)

where x̂ ∈ Rn represents the state of the observer and L,
Nσ and Ny are constant observer gains to be designed in the
following. Note that (5a) essentially constitutes a classical
Luenberger observer where in the nonlinearity ψ(σ̂) the
estimate of σ, denoted by σ̂, is considered. The variable x̄,
which is governed by the algebraic correction (5c), represents
the estimate of the state. Hence, the goal is to find corrections
L, Nσ and Ny such that the estimation error x̄−x converges
to zero exponentially. To that end, the errors x̃ = x̂−x and
σ̃ = σ̂ − σ are defined, leading to the observation error
dynamics in the two-subsystem interconnection form

˙̃x = ALx̃+Gν −Dv (6a)
σ̃ = HNx̃ (6b)

ν = ψ̃(σ̃;σ) (6c)

with HN = H−NσC, AL = A− LC and

ψ̃(σ̃) := ψ(σ + σ̃)−ψ(σ), ψ̃(0;σ) = 0 ∀ σ. (6d)

For the observer design procedure the following notions
from dissipativity theory are exploited.

III. NOTIONS FROM DISSIPATIVITY THEORY

Following the notions and ideas in [1], [2], [21]–[24] a
system with state x(t) ∈ Rn, input u(t) ∈ Rm and output
y(t) ∈ Rp is called dissipative with respect to a given supply
rate ω(y,u) if there exists a storage function S⪰0 for which
it holds true that

S(x(t)) ≤ S(x(0)) +
∫ t

0

ω(y(τ),u(τ))dτ, (7)

or if S is differentiable

dS
dt

=
∂S
∂x

ẋ ≤ ω(y,u). (8)

In this case, the system is called strictly state dissipative with
dissipation rate κ, if

dS
dt

≤ −κ∥x∥2 + ω(y,u). (9)

For a quadratic supply rate

ω(y,u) =

[
y
u

]⊺ [
Q S
ST R

] [
y
u

]
≥ 0 (10)

the system is called (Q,S,R) strictly state dissipative with
rate κ if (9) holds true with ω given by (10).

In the following, let Σ(A,B,C) denote a linear system

ẋ = Ax+Bu (11a)
y = Cx (11b)

with vectors and states of appropriate dimension. Consider-
ing the quadratic storage function

S(x) = xTPx, P = PT ≻ 0 (12)

it follows that Σ(A,B,C) is (Q,S,R) strictly state dissi-
pative with rate κ if[

PA+ATP+ κI PB
BTP 0

]
⪯

[
CTQC CTS
STC R

]
. (13)

On the other hand, a static, memoryless map φ(u) with
φ(0) = 0 is called (Q,S,R) dissipative if the associated
supply rate in (10) is non-negative, i.e.

ω(φ,u) =

[
φ
u

]⊺ [
Q S
ST R

] [
φ
u

]
≥ 0. (14)

Based on these concepts it is straightforward to obtain the
following result.

Lemma 1 ( [20]): Consider the system interconnection

ẋ = Ax+Bu (15a)
y = Cx (15b)
u = −φ(y) (15c)

and let φ be (Q,S,R) dissipative, and Σ(A,B,C) be
(−R,ST,−Q) strictly state dissipative with rate κ > 0.
Then x = 0 is exponentially stable.

Note that in the case that the matrices Q and R satisfy
certain properties, further results can be derived, like the
following.

Lemma 2: Let Σ(A,B,C) be (Q,S,R) strictly state
dissipative with rate κ > 0 and let Q⪯ 0, and R≻ 0 and
κ be such that W ≺ 0 with

W = −κI+CTQC+
(
PB−CTS

)
R−1

(
BTP− STC

)
.

(16a)

Then A is Hurwitz.
Proof: By assumption Σ(A,B,C) is (Q,S,R) strictly

state dissipative, so that (13) implies that there exists P =
PT ≻ 0 for which it holds true that[

PA+ATP+ κI−CTQC PB−CTS
BTP− STC −R

]
⪯ 0. (17)
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As assumed R ≻ 0 so that (17) holds true if and only if the
associated Schur complement satisfies (see, e.g., [2])

PA+ATP+ κI−CTQC

−
(
PB−CTS

)
R−1

(
BTP− STC

)
≺ 0

or equivalently

PA+ATP ≺ W (18)

with W as given in (16a). By assumption, W ≺ 0. In
consequence, from P ≻ 0 it follows that A must be Hurwitz.

IV. DISSIPATIVE QUASI-UNKNOWN-INPUT OBSERVER

For the subsequent analysis of the observation error dy-
namics (6) assume that in virtue of Lemma 1 the linear
subsystem Σ(AL,G,HN) is (−R,−ST,−Q) strictly state
dissipative1 with rate κ > 0. Thus, for given Q,S,R and
Nσ the gain L can be chosen such that the inequality[

AT
LP+PAL + κI PG

GTP 0

]
⪯
[
−HT

NRHN −HT
NS

T

−SHN −Q

]
(19)

holds true. In consequence, for Dv = 0, the observation
error exponentially converges to zero for any nonlinearity ψ̃
which is (Q,S,R) dissipative (cp. [20]), and for Q ≺ 0 and
R so that Lemma 2 applies (with the appropriate change of
notation), the matrix AL is Hurwitz.

To design the observer in the presence of the disturbance v
and to proof the main result, some preliminary considerations
are discussed. Given that the basic idea in the dissipative
observer design resides in designing the properties of the
linear subsystem of the observation error dynamics in ac-
cordance with the ones of the nonlinear subsystem, first the
underlying problem for the linear subsystem is addressed in
the following.

A. Design of the linear subsystem

Consider the series connection of the linear systems
Σ1(E,0,Γ) (system 1) and Σ2(AL,−D,C) (system 2) with
state vector w and x̃, respectively in the form:

d
dt

[
x̃
w

]
=

[
AL −DΓ
0 E

] [
x̃
w

]
(20a)

ỹ =
[
C 0

] [ x̃
w

]
(20b)

This system resorts to the estimation error dynamics pre-
sented in (6) with w generated by (2) where G is set to
zero. System (20) is referred to hereinafter as composite
system. Assume that system Σ2 is minimal, i.e., completely
controllable and observable, that D has full column rank, and
C,Γ full row rank. Then, according to [25, Lemma 20.5] the
following Lemma holds:

Lemma 3: The composite system looses observability if
and only if λ is a pole of Σ1 and a zero of Σ2 such that

1Note that to account for the sign in (6c) in comparison to (15c), the
entries with S are multiplied by −1.

there exists an v ∈ null space of (λI − E) and Γv ∈ null
space of C(λI−AL)

−1D.
This is in particular of interest if the goal is to also recon-
struct the states of the exosystem.

For the subsequent analysis, let

e ≜ x̃−Πw, (21)

with matrix Π ∈ Rn×q . Then, with (20) one obtains

ė = ALx̃−DΓw −ΠEw (22)

which, by further using (21), yields

ė = ALe+ [ALΠ−ΠE−DΓ]w. (23)

In consequence, if Π is chosen such that the Sylvester
equation

ALΠ−ΠE = DΓ (24)

holds true, the dynamics of e are governed by the au-
tonomous system

ė = ALe. (25)

Consequently, if AL is a Hurwitz matrix, e converges to zero
asymptotically and, according to (21),

x̃(t) = Πw(t) (26)

is established. The associated solution reads, by once again
exploiting (21) evaluated at t = 0, as

e(t) = eALte(0) = eALt [x̃(0)−Πw(0)] . (27)

Consequently, inserting the above equation into (21) and
reformulating for x̃ provides the solution for the state x̃ of
the composite system in the form

x̃(t) = eALt [x̃(0)−Πw(0)] +Πw(t). (28)

Correspondingly, for the output one obtains

ỹ(t) = CeALt [x̃(0)−Πw(0)] +CΠw(t). (29)

B. Design for the nonlinear system

Based on these preliminary considerations, the main result
of the paper is formulated:

Theorem 4: Consider system (1) with disturbance v gen-
erated by (2). Let Assumption 1 hold true and ψ̃ be
(Q,S,R)-dissipative, Σ(AL,G,HN) be (−R,−ST,−Q)
strictly state dissipative with rate κ > 0, where Q ≺ 0 and
R being such that Lemma 2 applies. Then, if there exist Nσ

and Ny such that

HΠ−NσCΠ = 0, Π−NyCΠ = 0 (30)

holds, where Π satisfies the Sylvester equation (24), the
estimate x̄ obtained from the observer (5) converges to the
state x exponentially.

Proof: Let e be defined according to (21) with Π being
the unique solution of (24) which exists since the spectra of
AL and E are disjoint (see, e.g. [26]) due to Assumption 1,

7016



and AL being Hurwitz in virtue of Lemma 2. Then with (6a)
and (2), as well as taking into account (24) it holds that

ė = ALx̃+Gν −Dv −ΠΓEw

= AL(e+Πv) +Gν −Dv −ΠΓEw

= ALe+ [ALΠΓ−ΠΓE−DΓ]w +Gν

= ALe+Gν. (31)

Substituting (21) into (6a) gives

σ̃ = HN(e+Πv). (32)

By hypothesis there exists Nσ such that

HΠ−NσCΠ = HNΠ = 0. (33)

Therefore,

ν = ψ̃(σ̃), σ̃ = HNe. (34)

This implies that the dynamics of e is equivalent to (6). By
assumption it holds that there exists P = PT ≻ 0 such that[

e
ν

]T [
AT

LP+PAL + κI PG
GTP 0

] [
e
ν

]
≤
[
e
ν

]T [
−HT

NRHN −HT
NS

T

−SHN −Q

] [
e
ν

]
=

[
σ̃

ψ̃(σ̃)

]T [
−R −ST

−S −Q

] [
σ̃

ψ̃(σ̃)

]
=−

[
ψ̃(σ̃)
σ̃

]T [
Q S
ST R

] [
ψ̃(σ̃)
σ̃

]
≤ 0. (35)

This further implies that V (e) = eTPe is a Lyapunov func-
tion, with P chosen such that the above matrix inequalities
hold true, and, therefore

dV

dt
≤ −κ∥e∥2 (36)

which in turns implies the exponential stability of e ≡ 0.
Consequently, x̃ → Πw as t tends to infinity and thus,

ỹss(t) ≜ lim
t→∞

Cx̃(t) = CΠw(t) (37)

in steady state. For the difference to the corrected estimate
x̄, one obtains

x− x̄ = x− (x̂−NyC(x̂− x))

= −x̃+NyCx̃ = −(Π−NyCΠ)w (38)

so that for

Π = NyCΠ (39)

one eventually has

lim
t→∞

[x̄(t)− x(t)] = 0. (40)

which completes the proof.
It remains to clarify under which conditions such correc-

tions Nσ and Ny exist.

Proposition 5: Let the assumptions of Theorem 4 hold
true and CΠ be left invertible. Let

(CΠ)† := [(CΠ)TCΠ]−1(CΠ)T (41)

denote its Moore-Penrose pseudo inverse. Then the choice

Nσ = HΠ(CΠ)†, Ny = Π(CΠ)†, (42)

ensures that the observer (5) converges to the state x expo-
nentially.

Proof: By assumption CΠ is left invertible, and
choosing Nσ and Ny as stated ensures that (33) and (39)
holds providing for the convergence of the estimate x̄ to x.

Remark: Note that the rank of a unique solution Π of
the Sylvester equation (24) depends on the involved matrices
and, in particular, on D and Γ. Various cases that may appear
are, e.g., discussed in [27]. If d = n, D = d and Γ =
γT are vectors the unique solution Π is invertible if and
only if (AL,d) is controllable and (E,γT) is observable.
In the multivariable case the controllability of (AL,D) and
observability of (E,Γ) are only necessary conditions.

Consider a particular input v = ΓviejΩit. The corre-
sponding output estimation error is obtained from the transfer
function of the linear part of the system, i.e.,

¯̃yss(s) = M(s)v̄(s) = C(sI−AL)
−1Dv̄(s) (43)

where ¯̃yss(s) and v̄(s) denote the Laplace transform of ỹss
and v, as

ỹss(t) = CΠviejΩit = M(jΩ)ΓviejΩit. (44)

Therefore, in general

ỹss(t) = M̃eΛtV−1w(0), M̃ =
[
m̃1 . . . m̃d

]
(45)

with the vectors m̃i = M(jΩi)Γvi, i = 1, . . . , d. If M̃
has rank d then there is no m̃i = 0. Then, a necessary
condition for the left invertibility of CΠ is that M(s) does
not possess a zero s = jΩi in the direction of Γvi. According
to Lemma 3 this is ensured by the observability of the
composite system (i.e. the interconnected linear part of the
system).

Note further that, even in case that CΠ is not left-
invertible it might still be possible to design observer gains
such that the estimation error converges to zero. In that case,
conditions need to be imposed on H (see Example 2 in
Section V)

C. Disturbance reconstruction

In certain scenarios it might be of interest to reconstruct
also the states of the exosystem or the disturbance v. From
(29) it is obtained that the trajectories of the system converge
to the d-dimensional positively invariant subset

Ω =

{[
x̃
w

]
∈ Rn+d

∣∣ x̃ = Πw

}
⊂ Rn+d (46)
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and thus for t → ∞ the output error satisfies ỹ(t) =
CΠw(t). In view of this, if (CΠ)† exists the disturbance
can be reconstructed from

ŵ(t) = (CΠ)†ỹ(t) = (CΠ)† [Cx̂(t)− y(t)] . (47)

Otherwise, the disturbance might be estimated by an
additional observer in a cascaded fashion. Assuming the
series connection of the linear part of the system and the
exosystem is observable, i.e, the matrixλI−A −D

0 λI−E
C 0

 (48)

has rank n+ q for all λ ∈ C which is readily obtained from
the Hautus lemma. Therefore, it also holds thatλI−A+ LC −D

0 λI−E
C 0

 (49)

has rank n + q for all λ ∈ C, i.e., the observed system is
also observable. On Ω the dynamics are described by

ẇ = Ew (50)
ỹ = CΠw (51)

and w can be estimated by

˙̂w = (E− LwCΠ)ŵ + Lw [Cx̂(t)− y(t)] (52)

with the observer gain Lw suitably tuned.

V. CASE EXAMPLE
To demonstrate the effectiveness of the proposed observer

consider a simple system of the form (1) with φ ≡ 0 and

A =

[
0 1
−1 −3

]
, G =

[
1
−1

]
, D =

[
2
1

]
H =

[
4 1

]
, C =

[
1 0

]
, Γ = 2, (53a)

with nonlinearity

ψ(σ) =
σ(1− σ)

1 + σ2
(53b)

for t > 0 with initial state x(0) = x0 = [1 1]T, as well as
the exosystem (2) with dynamics

E = 0 (53c)

for t > 0, w(0) = w0 = [1.5]T, i.e, the system is affected
by a constant disturbance with unknown magnitude. The
nonlinearity (53b) satisfies a sector condition of the form

(K1σ − ψ(σ))(ψ(σ)−K2σ) ≥ 0

with K1 = 1.5,K2 = −0.5 (conservatively chosen),
and which can be directly interpreted by expansion as a
(Q,S,R) dissipativity property with Q = −1 < 0, S =
K1 +K2 = 2, and R = −K1K2 = 0.75.

The following observer gains can be verified to satisfy the
design constraints

Nσ = 3.1, Ny =

[
1

−0.93

]
, L =

[
−0.5
2

]
. (54)

Π =

[
−9.3
8.6

]
, and P =

[
50.51 39.16
39.16 30.94

]
(55a)

with κ = 0.35. Figure 1 shows the corresponding simulation
result as well as the estimation of the disturbance. The
observer is initialized with x̂0 = −x0.

0

10

20

x
1

−6
−4
−2
0
2

x
2

0 2 4 6 8 10
0

0.5

1

1.5

Time

w ŵ

Fig. 1. Evolution of the states ( ) and the corresponding estimates
( ) provided by the observer.

In a second example the case where Π does not have full
rank is illustrated. This is demonstrated using the system

A =

−2 1 1
1 −0.5 1
−1 0 −1

 , G =

 1
−1
1

 , D =

10
0


H =

[
0 1 0

]
, C =

[
1 0 0
0 −1 1

]
, Γ =

[
1 0

]
,

(56a)

with the same nonlinearity ψ(σ) as in (53b). for t > 0 with
initial state x(0) = x0 = [1 1 1]T, as well as the exosystem
(2) with dynamic matrix

E =

[
0 1

−ω2 0

]
(56b)

for t > 0 with ω = 2, w(0) = w0 = [1.5 − 1.5]T, i.e, the
system is affected by a sinusoidal disturbance w with known
frequency ω and unknown phase and amplitude.

To obtain the observer gains and corrections one has to
solve (19) with the constraints (42), (24), κ > 0 and P ⪰ 0.
The optimization problem is solved in MATLAB with the help
of Yalmip, see [28]. This approach yields for the observer
gain

L =

 4 4.37
1 −6.27
−1 6.66

 (57a)

and for the corrections

Nσ =
[
0 2.52

]
, Ny =

1 36.22
0 −10.19
0 −17.72

 . (57b)

The corresponding solution of the Sylvester equation reads

Π =

−0.15 0.03
0 0
0 0

 , P =

 97.54 34.10 −65.31
34.10 26.40 −11.93
−65.31 −11.93 57.69


(58a)
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with κ = 6.35. Figure 2 shows the simulation result with
this observer where the intial state of the observer are set
to x̂(0) = −x̂0. It can be seen, that the estimates converge
asymptotically to the real states despite the quasi unknown
input. In the particular example Π has rank one and therefore

−4

−2

0

2

x
1

−1

0

1

2

x
2

−1

0

1

x
3

0 5 10 15 20 25
−20

−10

0

Time

w1 w2

Fig. 2. Evolution of the states ( ) and the corresponding estimates
( ) provided by the observer.

CΠ is not left-invertible. It is noteworthy that the pair
(AL,D) is not controllable.

VI. CONCLUSION
The problem of designing a state observer for a nonlinear

system with quasi-unknown input is addressed by extending
the dissipativity-based observer design approach for the
given setup. It is shown that under suitably chosen correc-
tion matrices asymptotic convergence can be ensured if the
unknown input is periodic with a known dynamics (provided
for the design as exosystem) and unknown initial value, and
certain assumptions on the spectra as well as observability of
the combination of the original system and the exosystem are
satisfied. The correction matrices are solutions of matrix dis-
sipativity inequalities and a Sylvester equation. The approach
is illustrated with academic simulation examples showing the
main design steps and performance of the approach.
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