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Abstract— The paper explores the usage of minimax adaptive
controllers to guarantee finite L2-gain simultaneous stabiliza-
tion of linear time-invariant (LTI) plants. It is shown that
a minimax adaptive controller simultaneously stabilizes any
two multiple-input multiple-output (MIMO) P -stabilizable LTI
plants when no LTI controller can achieve that, and the worst
attained L2-gain bound for the transient dynamics is readily
computable.

I. INTRODUCTION

Recently, there has been a surge of research interest at
the intersection of machine learning, system identification
and adaptive control; see, for example, [14] for a review.
Most work concerns the stochastic setting, but recently works
relating to worst-case disturbances started to appear, see [1],
[19]. Based on a game theory formulation of the H∞ optimal
control introduced in [2], the minimax adaptive control
approach was presented in [7], [17]. It focuses on worst-
case models of disturbances and uncertain parameters and
assumes no prior knowledge of a stabilizing controller. The
exploration-exploitation strategy exhibited by these adaptive
controllers ensure stability when faced with large uncertain-
ties that can not be tackled using robust LTI controllers.

The relevance of the problem of simultaneous stabilization
of a finite set of plants could be justified in the sense that
besides stabilizing a nominal plant of the underlying system,
it is also desirable to stabilize discrete perturbations of this
nominal plant induced by structural changes or component
failure [20]. It could also be motivated within the scope of
nonlinear systems where the concern is to design controllers
around several operating points of interest [10].

The problem of simultaneous stabilization of linear time-
invariant plants has been studied extensively in the literature.
It was considered in [9], [10], [18], [21] with the restric-
tion that the controller is linear time-invariant. However, as
discussed in [22], there are counterexamples where an LTI
controller fails to stabilize even a pair of single-input single-
output systems simultaneously. This then calls for the need to
employ a more complex controller architecture in attempting
a solution to this problem.

The works in [11]–[13] show that using periodic time-
varying compensators, it is possible to L2 stabilize any finite
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collection of discrete-time LTI plants. The same conclusion
was reached in [16]. The use of periodic time-varying
controllers for the simultaneous placement of the closed-loop
poles of N SISO LTI plants was also reported in [6]. On the
other hand, the work in [8] explores using switching deadbeat
controllers to stabilize a finite set of scalar systems. This was
generalized to the MIMO setting in [3] under the condition
that the systems are controllable. However, one difficulty of
these works is that extracting L2-gain bounds, which reflects
the performance of these controllers, is cumbersome and
complicated, especially for MIMO models.

The current work concerns using minimax adaptive con-
trollers to provide guarantees on finite L2-gain stabilization
of LTI plants, possibly MIMO, in the presence of adversarial
disturbances. In doing that, We relax the controllability
assumption needed in [3] to only stabilizability. We also pro-
vide an explicit easily computable L2-gain bound achieved
by the adaptive controller.

The outline of the paper is as follows: Section 2 presents
the framework of minimax adaptive control synthesis and
formulates the problem; section 3, on the other hand, estab-
lishes the main results of the paper. Section 4 is dedicated
for numerical examples and section 5 concludes the paper.

A. Notation

The set of n×m matrices with real coefficients is denoted
by Rn×m. For a symmetric matrix A ∈ Rn×n, we indicate
that A is positive definite by writing A ≻ 0 and positive
semi-definite by writing A ⪰ 0. In denotes the identity
matrix of dimension n × n. Given x ∈ Rn and A ∈ Rn×n,
the notation |x|2A means xTAx. Given a positive definite
matrix P ≺ γ2In and a scalar γ > 0, we define the positive
definite matrix SP, γ2 := (P−1 − γ−2In)

−1. We let ∥A∥
denote the spectral radius of a symmetric matrix A ∈ Rn×n,
i.e., ∥A∥ := maxj |λj (A) |, where λj (A), j = 1, . . . , n are
the eigenvalues of A.

II. PROBLEM FORMULATION

Minimax adaptive control synthesis was presented in [17].
Given a compact set M ⊂ Rn×n × Rn×m, an initial state
x0 ∈ Rn and a scalar γ > 0, we seek a solution to the
following optimization problem

inf
µ

sup
w,A,B,N

N∑
t=0

(|xt|2Q + |ut|2R − γ2|wt|2)

s.t. xt+1 = Axt +But + wt, t ≥ 0
(1)

ut = µt(x0, . . . , xt, u0 . . . ut−1),

(A,B) ∈ M.
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The problem is a zero sum dynamic game where the µ-player
minimizes the cost and the (w, A, B)-player maximizes it.
Note that the adversary not only is allowed to choose the
disturbance w but also the model pair (A,B) [2].

The following result from [17] presents an explicit solution
to (1) in terms of an adaptive controller that guarantees a
pre-specified L2-gain bound from disturbances to errors for
model sets M of the type M := {(A1, B1), . . . , (As, Bs)}.

Proposition 1: Given A1, . . . , As ∈ Rn×n, B1, . . . , Bs ∈
Rn×m and positive definite matrices Q ∈ Rn×n, R ∈
Rm×m, suppose there exist K1, . . . ,Ks ∈ Rm×n and Pij ∈
Rn×n with 0 ≺ Pij = Pji ≺ γ2I and

|x|2Pjk
≥ |x|2Q + |Kkx|2R
+ |(Ai −BiKk +Aj −BjKk)x/2|2SPij, γ

2
(2)

− γ2 |(Ai −BiKk −Aj +BjKk)x/2|2

for x ∈ Rn and i, j, k ∈ {1, . . . , s}, excluding the case
i ̸= j = k. Then, the input-output gain is bounded by γ for
the adaptive control law given by

ut = −Kktxt,
(3)

kt = argmin
i

t−1∑
τ=1

|Aixτ +Biuτ − xτ+1|2 .

The gain bound γ provides robustness guarantees to
unmodelled (possibly nonlinear and infinite-dimensional)
dynamics following the small gain theorem [23]. There-
fore, in solving (2) for γ, Ki and Pij for i, j ∈
{1, · · · , s}, one wishes to acquire as small as possible
values of γ. We specialize Proposition 1 to the case M :=
{(A1, B1), (A2, B2)}, i.e., the simultaneous stabilization of
two LTI plants, possibly MIMO.

Corollary 1: Consider the model set M :=
{(A1, B1), (A2, B2)}. It suffices for the existence of
the adaptive minimax controller that the following set of
inequalities hold

Pi ⪰ Q+KT
i RKi + (Ai −BiKi)

TSPi, γ2(Ai −BiKi),

T ⪰ Q+KT
k RKk + (Ai −BiKk)

TSPi, γ2(Ai −BiKk),

T ⪰ Q+KT
k RKk +

1

4
|(Ak −BkKk +Ai −BiKk)|2ST, γ2

− γ2

4
|(Ak −BkKk −Ai +BiKk)|2 ,

where i, k ∈ {1, 2} and i ̸= k, and the quadruplet(
P1, P2, T, γ

2
)

adheres to the construction 0 ≺ Pi ≺ T
and 0 ≺ T ≺ γ2In.
Proof. The first inequality is obtained by selecting i =
j = k in (2). The second one, on the other hand, is
obtained by selecting i = j ̸= k. Lastly, to obtain the
third inequality, we define T := P12 = P21 and we select
i = k ̸= j. By consequence, we have demonstrated that
the set of matrix inequalities in (2) collapses to the matrix
inequalities mentioned in the statement of the Corollary when
M := {(A1, B1), (A2, B2)}. □

The natural question that arises then is if the set of
inequalities in (2) are feasible for any M of the type M :=

{(A1, B1), (A2, B2)} and with a finite L2-gain γ under the
condition that each pair is stabilizable. This question is the
center of this paper. We capture this question in the following
problem.

Problem 1: Suppose the two pairs (A1, B1), (A2, B2)
are stabilizable. Show that a minimax adaptive controller fi-
nite L2-gain stabilizes the two pairs in the set simultaneously.
The main results of the paper are presented in the sequel.

III. MAIN RESULTS

A. Guarantees on stabilization of two P -stabilizable MIMO
LTI plants

We first introduce the notion of P -stabilization.
Definition 1: Call the model set M :=

{(A1, B1), (A2, B2)} P -stabilizable if ∃P ≻ 0 and
γ > 0 such that the following holds

P ⪰ Q+KT
i RKi + (Ai −BiKi)

TSP, γ2(Ai −BiKi),

for i ∈ {1, 2}, for some stabilizing controllers K1 and K2.
Remark 1: Two systems are P -stabilizable if they accept

the same solution P ≻ 0 to the H∞ discrete algebraic Riccati
inequality (DARI). Another way to look at it is that they
are stabilizable with the same quadratic Lyapunov function
V (x) = xTPx.

Example 1: Consider two plants (A1, B1), (A2, B2) in
the controllability canonical form. It is then possible to place
the closed loop poles of the two plants inside the unit circle
such that it holds that A1 − B1K1 = A2 − B2K2 for some
K1 and K2; hence, ∃P ≻ 0 common among the two plants
for some large enough γ > 0 and therefore they are P -
stabilizable.
The main result of the paper is stated next.

Theorem 1: Suppose (A1, B1) and (A2, B2) are P -
stabilizable. Then, there exists a minimax adaptive controller
that stabilizes both plants simultaneously in the L2-gain
sense.
Proof. The proof is constructive and is achieved by showing
the feasibility of the set of inequalities given in Corol-
lary 1 for all P -stabilizable pairs (A1, B1), (A2, B2) for
the choices P1 = P2 = P and T := αP for some α > 1,
i.e., showing the feasibility of

P ⪰ Q+KT
i RKi + (Ai −BiKi)

TSP, γ2(Ai −BiKi)

(4)

αP ⪰ Q+KT
k RKk + (Ai −BiKk)

TSP, γ2(Ai −BiKk)
(5)

αP ⪰ Q+KT
k RKk

+
1

4
|(Ak −BkKk +Ai −BiKk)|2SαP, γ2

(6)

− γ2

4
|(Ak −BkKk −Ai +BiKk)|2

Where i, k ∈ {1, 2}, i ̸= k, and the triplet
(
P, T, γ2

)
is

selected such that 0 ≺ P ≺ T , and 0 ≺ T ≺ γ2In. The two
pairs being P -stabilizable means that (4) accepts a feasible
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solution pair (P, γ) for i ∈ {1, 2}. Fix γ and select α large
enough such that (5) holds, i.e., the following holds

αP ⪰ Q+KT
k RKk + (Ai −BiKk)

TSP, γ2(Ai −BiKk),
(7)

where i ̸= k. It remains to show the feasibility of (6) for
some γ̄ > γ. Define the matrix variables

Mk = Ak −BkKk,

∆ik =
(Ai −BiKk)− (Ak −BkKk)

2
,

then (6) could be rewritten succinctly as

αP ⪰ Q+KT
k RKk + (Mk +∆ik)

T
SαP, γ̄2 (Mk +∆ik)

− γ̄2∆T
ik∆ik. (8)

Assuming that (4) holds, multiplying by α yields the follow-
ing

T = αP ⪰ Q+KT
k RKk +MT

k SαP, αγ2Mk.

Then, (8) holds if the following holds

(Mk +∆ik)
T
SαP, γ̄2 (Mk +∆ik) ⪯ γ̄2∆T

ik∆ik

+MT
k SαP, αγ2Mk. (9)

Expanding the left hand side of (9) yields

(Mk +∆ik)
T
SαP, γ̄2 (Mk +∆ik) = MT

k SαP, γ̄2Mk

+∆T
ikSαP, γ̄2∆ik +MT

k SαP, γ̄2∆ik +∆T
ikSαP, γ̄2Mk.

(10)

Using Lemma 1 at the Appendix by taking E = Mk,
F = ∆ik, M = SαP, γ̄2 and a non-zero scalar β yields
the inequality

MT
k SαP, γ̄2∆ik +∆T

ikSαP, γ̄2Mk ⪯ β2MT
k SαP, γ̄2Mk

+ β−2∆T
ikSαP, γ̄2∆ik. (11)

Combining (9-11) we obtain the sufficient condition

MT
k SαP, γ̄2Mk +∆T

ikSαP, γ̄2∆ik + β2MT
k SαP, γ̄2Mk

+ β−2∆T
ikSαP, γ̄2∆ik ⪯ γ̄2∆T

ik∆ik +MT
k SαP, αγ2Mk.

Re-arranging gives

MT
k

(
SαP, αγ2 −

(
1 + β2

)
SαP, γ̄2

)
Mk

+∆T
ik

(
γ̄2In −

(
1 + β−2

)
SαP, γ̄2

)
∆ik ⪰ 0.

Hence, it is sufficient to show the existence of a γ̄2 > αγ2

such that the next two inequalities hold

SαP, αγ2 −
(
1 + β2

)
SαP, γ̄2 ⪰ 0, (12)

γ̄2In −
(
1 + β−2

)
SαP, γ̄2 ⪰ 0. (13)

(12-13) could be satisfied by selecting a small enough β and
a large enough γ̄ as will be demonstrated in the next section.

To conclude, we have shown that (4-6) could be made
feasible for any two P -stabilizable pairs (A1, B1), (A2, B2)
and therefore the theorem is proven. □

B. Explicit value of the achievable L2-gain bound

We provide an explicit value for γ̄ that the adaptive
controller achieves. This is done by solving the inequalities
in (12-13). This bound is provided in the next Theorem.

Theorem 2: Let (A1, B1), (A2, B2) be stabilizable with
a common tuple (P, γ). Then, a minimax adaptive controller
stabilizes both plants with an L2-gain bound given by

γ̄2 = α(2 + β−2)∥P∥,

where

β2 = −∥P∥−1 + ∥P−1∥ − 3γ−2

4 (∥P−1∥ − γ−2)
+

1

4

√
Λ,

Λ =

(
∥P∥−1 + ∥P−1∥ − 3γ−2

∥P−1∥ − γ−2

)2

+
8γ−2

∥P−1∥ − γ−2
,

and α > 1 is selected such that

αP ⪰ Q+KT
k RKk + (Ai −BiKk)

TSP, γ2(Ai −BiKk),

where i, k ∈ {1, 2}, i ̸= k.
Proof. Consider the condition in (13). Written explicitly

γ̄2In −
(
1 + β−2

)
((αP )

−1 − γ̄−2In)
−1 ⪰ 0.

Solving for γ̄ yields

γ̄2In ⪰ α(2 + β−2)P.

Therefore, the lowest achievable γ̄2 is

γ̄2 = α(2 + β−2)∥P∥. (14)

To get a feasible value for β we plug (14) in (12). This leads
to (

(αP )
−1 −

(
αγ2

)−1
In

)−1

−
(
1 + β2

) (
(αP )

−1 −
(
α
(
1 + β−2

)
∥P∥

)−1
In

)−1

⪰ 0,

canceling out the α term and simplifying further yields((
3β2 + 2β4 + 1

)
γ−2 − β2∥P∥−1

)
In ⪰

(
β2 + 2β4

)
P−1.

Therefore, β has to satisfy(
3β2 + 2β4 + 1

)
γ−2 − β2∥P∥−1 ⪰

(
β2 + 2β4

)
∥P−1∥.

Rearranging yields the scalar inequality in β

2β4 +
∥P∥−1 + ∥P−1∥ − 3γ−2

∥P−1∥ − γ−2
β2 − γ−2

∥P−1∥ − γ−2
≥ 0.

Since we are interested in the smallest value of β, we solve
for the equality instead

2β4+
∥P∥−1 + ∥P−1∥ − 3γ−2

∥P−1∥ − γ−2
β2− γ−2

∥P−1∥ − γ−2
= 0.

First, we must make sure the existence of a β2 ∈ R such
that the equation holds. Secondly, such β2 has to be positive.
The first condition is met since the discriminant, which we
denote by Λ, is positive, that is

Λ =

(
∥P∥−1 + ∥P−1∥ − 3γ−2

∥P−1∥ − γ−2

)2

+
8γ−2

∥P−1∥ − γ−2
> 0.
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This is the case since ∥P−1∥ − γ−2 > 0. This can be
concluded since by construction λmin (P ) ≤ λmax (P ) <
γ2 ⇐⇒ ∥P−1∥ = 1

λmin(P ) > γ−2 ⇐⇒ ∥P−1∥−γ−2 > 0.
The next step is to show that one of the solutions

β2
1, 2 = −∥P∥−1 + ∥P−1∥ − 3γ−2

4 (∥P−1∥ − γ−2)
± 1

4

√
Λ

is positive. β2
2 is obviously rejected since it yields a negative

solution. However, β2
1 is clearly admissible since 1

4

√
Λ >

∥P∥−1+∥P−1∥−3γ−2

4(∥P−1∥−γ−2) . Therefore we take

β2 = −∥P∥−1 + ∥P−1∥ − 3γ−2

4 (∥P−1∥ − γ−2)
+

1

4

√
Λ.

To get the lowest achievable γ̄, we plug this value of β
in (14). This concludes the proof Theorem. □

C. A specialized L2-gain bound for the single-input single-
output (SISO) case

in the SISO case we have ∥P∥−1 = ∥P−1∥ = P−1, and
therefore the discriminant from before simplifies to

Λ =

(
2P−1 − 3γ−2

P−1 − γ−2

)2

+
8γ−2

P−1 − γ−2

=

(
2P−1 − γ−2

P−1 − γ−2

)2

,

and β2 simplifies to

β2 =
γ−2

2 (P−1 − γ−2)
=

P

2 (γ2 − P )
> 0,

and hence the achievable γ̄2 is given by

γ̄2 = α(2 + β−2)P = αP

(
2 +

2
(
γ2 − P

)
P

)
⇐⇒ γ̄ = 2αγ2.

IV. NUMERICAL EXAMPLES

A. systems with unknown input direction

Consider the unstable SISO system with unknown input
direction

xt+1 = axt ± uk + wt, a > 1.

We attempt to stabilize the system and extract an L2-gain
bound we call it γ̄ and compare it to the optimal bound given
in [22]. Stated in our context, we are trying to simultaneously
stabilize the two pairs (a, 1) and (a, −1). To establish
ground for comparison, we follow [22] by taking Q = 1 and
R = 0, which corresponds to bounding the L2-gain from w
to x.

We start by finding a pair (P, γ) that commonly solves
the H∞ DARI for both systems. We pick K1 = −K2 = K
where K is the H∞ controller given by

K =
BSP, γ2

R+B2SP, γ2

A = a,

which corresponds to a deadbeat controller. Plugging K = a
in the H∞ DARI yields the solution P = Q = 1 and the

condition γ2 > P = 1 ⇐⇒ γ > 1. Let’s consider the pair
(1, γ) to be a feasible pair, where γ > 1. Next, we select α
to be

T := αP = α = 1 +
4a2

1− γ−2
= 1 +

4a2γ2

γ2 − 1
.

Last step would be to solve the inequalities (12-13) for a
feasible pair (γ̄, β). From section (III-C) and having P = 1,
the smallest achievable γ̄ is given by

γ̄ =

√
2γ2 +

8γ4a2

γ2 − 1
, γ > 1.

In [22], it is conjectured that no controller can achieve a
better L2-gain bound a+

√
a2 + 1. We compare our obtained

bound to this optimal bound for different values of a and for
a fixed value of γ = 1.4; this comparison is given in figure 1.
We justify the non-tightness by the fact that unlike [22], our
bound account for a much larger uncertainty set as compared
to that of only unknown input sign, and also works in the
case R ̸= 0, and therefore when applied to special cases
such as this it tends to be conservative. However, we believe
that the techniques used in the constructive proof could be
refined to produce much tighter bounds when the model set
M is more accurately defined a priori.

1 1.5 2 2.5 3 3.5 4 4.5 5

10

20

30

a

γ̄

Optimal
Minimax

Fig. 1: A comparison between The optimal L2-gain bound
and the one achieved by the minimax controller for the
system given in example IV-A.

B. Inverted pendulum with uncertain actuator gain

Consider the unstable state-space model corresponding to
an inverted pendulum with uncertain input matrix

xt+1 =

[
3 −1
1 0

]
xt +

[
b
0

]
ut + wt,

where b takes two values, b1 = 1 or b2 = 3. By taking
K = [k1 k2], it could be checked by an application of Jury’s
test for stability [15] that such system can not be stabilized
by a static linear state feedback law. To see this, we plug in
K and obtain the following characteristic polynomial in the
variable z

D(z) = z2 + z(bk1 − 3) + bk2 + 1.

We attempt to ensure that the polynomial D(z) has roots
inside the unit circle through the design variables k1 and
k2. Following Jury’s Stability test, the following necessary
conditions must first hold
(1) D (1) > 0;
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(2) D (−1) > 0;
(3) |a0| < a2;
where D(z) is considered in the form D(z) = a2z

2+a1z+
a0. These conditions translate to the following
(1) b(k1 + k2) > 1;
(2) b(k2 − k1) > −5;
(3) |bk2 + 1| < 1;
solving the inequalities for b = 1 and b = 3 yields the
solution given in table I.

TABLE I

b = 1 b = 3

3 < k1 < 5 1 < k1 < 5
3

−2 < k2 < 0 − 2
3
< k2 < 0

Notice that there exist no value of k1 for which we could
place the poles of the characteristic polynomial inside the
unit circle for both values of b. This asserts that our design
objectives are not met using a static state feedback control
law.

The goal now is to find an adaptive feedback law that
stabilizes the system for both values of b. We select Q = I
and R = 1. We first find a feasible pair (P, γ) that solves
the DARI in (4) for both pairs. We get

P =

[
9.62 −2.68
−2.68 2

]
, γ = 10.

Next, we fix T := αP where α is found as in (7); we get
α = 35 and therefore

T =

[
336.75 −93.91
−93.91 70

]
;

this choice of T renders (5) feasible. Last step is to find a γ̄ >
γ that will make (6) feasible for the same choice of T . This
problem breaks down to finding a pair (γ̄, β) that renders
(12-13) feasible. One way is to follow the explicit solutions
given in theorem 2. Another alternative is to bisect over γ̄
until (6) is made feasible. Following the second approach
yields γ̄ = 27.

We run the adaptive control law given in (3) on this
system in the presence of a stochastic disturbance w under
the assumption that the true system corresponds to an input
matrix with b = b2 = 3. We compare the performance of the
minimax adaptive controller to the optimal H∞ controller
which knows the actuator gain and a 2n-periodic switching
deadbeat controller. The 4-periodic switching deadbeat con-
troller is given by

ūt =


−K̄1xt, t mod 4 = 0

−K̄1xt, t mod 4 = 1

−K̄2xt, t mod 4 = 2

−K̄2xt, t mod 4 = 3

where K̄1 and K̄2 are the deadbeat controller gains corre-
sponding to the two systems respectively and the mod op-
erator is the remainder of division. The results are presented
in figure 2. As can be seen, the minimax adaptive controller

TABLE II: L2-gain from disturbance to state

Optimal H∞ Minimax Periodic deadbeat
1.88 8.8 59.1

exhibits a nearly optimal performance and outperforms the
switching deadbeat controller. The minimax controller in-
creases the control activity in the beginning for the sake of
exploration. Once the true dyanmics is learned, it behaves
similar to the H∞ controller.

C. Performance comparison

We compare the L2-gain achieved by the adaptive con-
troller to that of the switching deadbeat controller and the
optimal H∞ controller for the system in IV-B. To obtain
a tighter bound on the L2-gain of the minimax controller
we resort to the work in [4] which treats the synthesis of
minimax adaptive controllers. The approach presented in [4]
proved to deliver tighter lower bounds on the L2-gain. To
obtain the L2-gain of the system driven by the 4-periodic
switching deadbeat controller, note that in such case the
closed loop system is periodic with period 2n = 4. This
suggest representing it via an LTI system according to [11].
To this end, we define the new state and disturbance sequence

Xt =

 x4t

...
x4t+3

 , ηt =

 w4t

...
w4t+6

 ,

this yields the LTI representation of our periodic systems
given by

Xt+1 = ApXt +Bpηt,

where

Ap =


Ā2

22Ā
2
21 0 0 0

0 Ā21Ā
2
22Ā21 0 0

0 0 Ā2
21Ā

2
22 0

0 0 0 Ā22Ā
2
21Ā22

 ,

Bp =


Ā2

22Ā21 A2
22 A22 In 0 0 0

0 Ā21Ā
2
22 Ā21Ā22 Ā21 In 0 0

0 0 Ā2
21Ā21 Ā2

21 Ā21 In 0
0 0 0 Ā22Ā

2
21 Ā22Ā21 Ā22 In

 ,

and

Ā22 = A−B2K̄2,

Ā21 = A−B2K̄1,

B2 =

[
b2
0

]
.

The L2-gain of this system is the H∞ norm of the transfer
function from η to X . Let’s denote such transfer function by
G (z). Then, the L2-gain is

∥G (z) ∥∞ = ∥ (zI4n −Ap)Bp∥∞.

The obtained numerical results are given in table II.
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Fig. 2: The states and the control input trajectories when
using the minimax adaptive controller, the optimal H∞
controller and a 4-periodic switching deadbeat controller.

V. CONCLUSIONS AND FUTURE WORKS

The paper discussed the simultaneous stabilization of LTI
plants via minimax adaptive control. We have established that
any two P -stabilizable LTI plants could be stabilized via a
minimax adaptive controller when no static state-feedback
controller could accomplish that. We as well provided an
explicit L2-gain bound on the achievable worst-case perfor-
mance. Future work concerns scaling our guarantees to cover
stabilization of more than two systems and providing tighter
lower bound on the achievable L2-gain performance.

APPENDIX

A. Preliminary Lemmata

Lemma 1: Let E, F ∈ Rn×n be two matrices and M ∈
Rn×n be a positive definite matrix. Then, for any scalar β ̸=
0, it holds that

ETMF + FTME ⪯ β2ETME + β−2FTMF.
Proof. Start by noting that for any two matrices E, F ∈
Rn×n and any nonzero constant β it holds that

(βE − β−1F )TM(βE − β−1F ) ⪰ 0,

expanding the left hand side of the inequality gives

β2ETME + β−2FTMF − ETMF − FTME ⪰ 0.

Then, it follows immediately that

ETMF + FTME ⪯ β2ETME + β−2FTMF.

Note that in the event E = F along with the selection β = 1,
we get equality. This shows that the upper bound provided
in the lemma is tight. □
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