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Abstract— As distribution systems evolve to accommodate
large-scale renewable energy sources, maintaining voltage sta-
bility becomes increasingly challenging. Network partitioning
plays a pivotal role in voltage control tasks, especially in active
distribution systems (ADSs). By partitioning the network into
manageable small sub-networks, i.e., voltage area partition
(VAP), fine-grained, decentralized, and coordinated voltage
control can be realized, which prevents over-voltage or under-
voltage issues and facilitates the integration and absorption of
renewable energies. However, because of the weak ability to
extract complicated voltage relationships, existing naive graph
clustering VAP methods are likely to suffer a performance
bottleneck in voltage cohesiveness for large-sized distribution
networks. Therefore, this paper proposes a neural spectral
clustering-based VAP method for ADSs. Specifically, a network
partition problem is solved by clustering a neural spectral
mapping of multi-phase voltage coupling features. Theoretical
and experimental results show that the proposed method can
partition the network with voltage cohesiveness higher than
that of the standard spectral clustering method while bringing
certain advantages in computational efficiency.

I. INTRODUCTION

Large-scale integration of renewable energies to distribu-
tion networks will become a trend, which transforms the role
of distribution systems from passive energy consumers into
active energy prosumers. Although such a deployment ben-
efits the environment and human sustainable development,
it brings numerous operation challenges to ADSs. Among
them, voltage quality issues need to be particular attention.
Normally, the high R/X ratio of distribution networks makes
buses prone to voltage deviations when active power flows
through power distribution lines. Due to the large reverse
power flow produced by renewable energy sources, the
voltage deviation may deteriorate and even arouses over-
voltage issues [1], [2].

Conventional voltage regulation (VR) is achieved by
optimizing on-load tap changers, switched capacitors, and
voltage regulators, which are mechanical in nature, and
thus suffer from slow response speed and limited switching
frequencies, making them inadequate in promptly mitigating
fast voltage fluctuation and addressing voltage violations
in a short time. In contrast, controllable distributed energy
resources (DERs) have opened new avenues for more flexible
and fast voltage control in ADSs. For example, PV inverters
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Fig. 1. Illustration for the network partition-based distributed voltage
control strategies

can participate in VR while losing some active power-
providing capacity [3]. Technically, this type of VR device
changes the distribution of power flow by compensating
distribution networks with granular active and reactive power.

Based on their communication architectures, existing
active-reactive power voltage control strategies via control-
lable DERs can be categorized into centralized, distributed,
and local methods [4]. Centralized methods rely on global
information for decision-making, which is computationally
costly and may involve privacy and safety issues. Unlike cen-
tralized methods, distributed and local methods have fewer
communication demands, which are more appropriate for
a complicated decision-making environment. To efficiently
manage large-scale controllable DERs for VR, inspired by
VR in bulk transmission systems, some researchers have
made efforts to network partition-based distributed voltage
control strategies [5], [6].

As for network partition-based distributed voltage control
strategies, as shown in Fig. 1, the entire distribution network
is divided into multiple areas, each of which is assigned a
voltage control agent who can make control decisions based
on measurements within its affiliated area. A critical step
involved in this type of voltage control strategy is VAP. In
essence, VAP is employed to decompose a centralized VR
problem into multiple regional VR problems. Proper VAP
results are treated as the premise of achieving satisfying
VR performance, which can ensure low interdependence
between areas in terms of voltage magnitudes, i.e., bus
voltage magnitude changes within one area have minimal
impact on others, and buses in the same area have a stronger
voltage-coupling level than others. Therefore, it is valuable
to develop effective VAP methods.

The majority of existing works convert VAP in ADSs to a
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graph clustering task. Specifically, an electrical distance that
reflects the voltage coupling degree is first defined, and then
based on it either a modularity metric [7]–[10] or a cut-based
metric [11]–[13] is optimized to cluster buses with close
electrical distances. However, when the distribution network
size is large, these VAP methods may have difficulties in
capturing complicated voltage similarity relations between
buses and between phases. Therefore, they are likely to suffer
a degradation of voltage cohesiveness performance, which
means that there may exist a better partition result with
much closer voltage relations in each area. It is worth noting
that such an improvement is essential because more efficient
local adjustment can be found to save the voltage regulation
cost, i.e., the same voltage regulation performance with less
power compensation. Furthermore, as the number of buses
increases to tens of thousands, the computational expenditure
in optimizing the graph quality functions, such as the inverse
calculation of spectral clustering, is very high.

To improve the adaptability and performance of VAP
methods in large-sized distribution networks, this paper
proposes a neural spectral clustering-based VAP method for
ADSs. The contributions are two-fold. First, unlike standard
spectral clustering methods, a neural network is introduced
to efficiently learn a graph spectral embedding, which is
realized by stochastic batch optimization, with the afford-
able computational cost in inverse calculation, and used for
clustering in VAP later. Secondly, a Siamese neural network
is developed to learn the complicated bus voltage affinity
relations.

The remainder of this paper is organized as follows.
Section II is a formulation of the VAP problem. Section
III proposes a neural spectral clustering-based VAP method,
with numerical test results demonstrated in Section VI.
Finally, Section V concludes this paper.

II. VOLTAGE AREA PARTITION PROBLEM

The voltage-magnitude sensitivity coefficients, i.e., ele-
ments of the Jacobian matrix of voltage magnitudes with
reference to power injections, and are widely applied in
voltage control tasks for ADSs. Therefore, they are utilized
here to evaluate the voltage coupling degree. As for distri-
bution networks, voltage-magnitude sensitivity coefficients
are relative to both active and reactive injections. Assume
that the majority of controllable sources in the system are
wye-connected, and thus the effect of delta-connected source
power injections is not considered in the voltage coupling
degree. Mathematically, for a generic three-phase distribution
network with one slack bus and N three-phase PQ buses, the
per-phase voltage coupling degree can be defined as
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(1)
where V ϕ

i is voltage magnitude at phase ϕ at bus i, pϕi is
active power injection at phase ϕ at bus i, qϕi is reactive
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Fig. 2. Illustration for the proposed voltage area partition method

power injection at phase ϕ at bus i, ∂V ϕ
i

∂pϕ
i

( ∂V ϕ
i

∂qϕi
) is voltage-

active (voltage-reactive) power sensitivity, which can be
achieved by the power flow model.

Note that ξϕij ∈ [0, 1], and the larger the value of ξϕij is,
the closer voltage connection both buses at phase ϕ have.
Let matrix ξϕ := (ξϕij)N×N collect all values of the voltage
coupling degree at phase ϕ. Since ξϕij = ξϕji, ξ

ϕ is symmetric.
Define ξ := (ξa, ξb, ξc)N×3N as the voltage coupling feature
matrix, of which each row ξi can be viewed as voltage
coupling features of bus i.

For network partition-based distributed voltage control,
each voltage area is assigned a regional voltage controller
that is responsible for regulating the voltage magnitudes of
a set of buses. Therefore, a voltage area partition problem is
designed as finding a clustering scheme so that a set of buses
sharing similar voltage coupling features can be grouped
and partitioned into a voltage area. Although the standard
spectral clustering method can be applied to solve this
problem, with large distribution networks, direct computation
of eigenvectors is computationally expensive. Meanwhile,
ADSs tend to bear complicated bus voltage affinity relations
and overly simplistic measure of similarity may lead to poor
clustering results, which also motivates this work.

III. VOLTAGE AREA PARTITION METHOD

In order to solve the above-designed problem, a neural
spectral clustering-based VAP method for ADSs is proposed
and illustrated in Fig. 2, which consists of the following five
steps:

1) First, the phase-missing buses are temporarily re-
moved. For a multi-phase distribution network, there
are single-phase and two-phase buses dispersed at
the end of the feeder. Most of them could arouse
several isolated buses in the VAP results. It is not
desired because there is no physical connection among
these buses, which makes VAP results less practical.
Although removed, the phase-missing buses can still
affect the clustering results through voltage-magnitude
sensitivity coefficients.

2) Second, for the remaining three-phase buses, the volt-
age coupling feature matrix is constructed based on
Eqn. (1).

3) Then, a Siamese network is designed to capture the
affinity of bus voltage coupling features so that a bus
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similarity feature matrix with a graph is constructed.
More details can be found in Subsection A.

4) After that, the voltage coupling features can be rep-
resented in a dimension-reduced space by learning a
neural spectral mapping on the graph. More details can
be found in Subsection B.

5) Finally, as in standard spectral clustering methods,
VAP results are determined by clustering algorithms
with dimension-reduced features. The phase-missing
buses can be naturally partitioned into the nearest
voltage area.

A. Bus Similarity Matrix Construction

Denote a bus similarity feature matrix as W :=
(Wij)N×N , and each element Wij measures the affinity of
voltage coupling features of three-phase buses i and j, i.e.,
ξi and ξj . In many applications, the Euclidean distance with
the Gaussian kernel is utilized to measure the affinity of data
points, i.e.,

Wij = e−
||ξi−ξj ||

2
2

2σ2 (2)

However, this affinity measure is overly simplistic, and it
only considers the local affinity relations. In the meantime,
it is not easy to choose an appropriate value for bandwidth
σ.

In the proposed method, a Siamese network is designed
to measure global affinity, i.e., Wij is determined by all
bus voltage coupling features. The Siamese network is rep-
resented by a neural network that takes voltage coupling
feature ξi as an input, and maps it into an embedding
space, i.e., zi = fθsiamese(ξi) where θsiamese collects all neural
network weights. The role of this embedding is to predict
the affinity, i.e.,

Wij =
2

1 + e||zi−zj ||22
∈ [0, 1] (3)

When two buses have similar voltage coupling features, the
value of the Euclidean distance ||zi− zj ||2 should be small,
and the affinity value Wij should be large and vice versa.

To learn such an embedding, the network can be trained
by minimizing the following cross-entropy loss function

Lsiamese(θsiamese; ξi, ξj) = −Ŵij(log (Wij))

− (1− Ŵij)(log (1−Wij))
(4)

where Ŵij ∈ {0, 1} is a label for a pair of points ξi and ξj ,
which constitutes matrix Ŵ := (Ŵij)N×N . The label value
Ŵij can be determined by the following rule

Ŵij =

{
1 : ||ξi − ξj ||2 ≤ ε
0 : ||ξi − ξj ||2 > ε

(5)

where ε is a margin. If the value of the Euclidean distance
between the points ξi and ξj is small, their label is assigned
as 1 and vice versa. Note that the labeling via Eqn. (5) is
a local affinity measure that is a priori to help the Siamese
network learn consistent affinity relations, i.e., global affinity
relations should be consistent with local ones.

Fig. 3. Illustration of an example bus similarity matrix learned from the
proposed Siamese network

In addition, the output value Wij is a real number that
provides a more fine-grained measure of voltage affinity
relations between buses i and j. Once the network is trained,
the desired bus similarity matrix can be achieved, as shown
in Fig. 3. It can be shown that this matrix is symmetric, and
the diagonal light part indicates that the adjacent buses tend
to share more similar voltage coupling features. The spe-
cific procedures for constructing the proposed bus similarity
matrix are summarized in Algorithm. 1.

Algorithm 1: An algorithm for constructing the
proposed bus similarity matrix

Data: matrices ξ and Ŵ, and learning rates ηsiamese
Result: matrix W

1 Initialize the neural network weights θsiamese;
2 while not converge do
3 for each pair (ξi, ξj) do
4 using Eqn. 3 to compute Wij ;
5 using gradient decent to update θsiamese ←

θsiamese − ηsiamese
∂Lsiamese(θsiamese;ξi,ξj)

∂θsiamese
;

6 end
7 end
8 for each pair (ξi, ξj) do
9 using Eqn. 3 to update Wij ;

10 end

B. Neural Spectral Mapping Learning

The afore-learned bus similarity feature matrix involves a
fully-connected undirected graph, which measures the affin-
ity of different buses in terms of voltage coupling features.
Following the conventional practice of spectral clustering,
the next step is to embed the data of voltage coupling
features in the eigenspace of the Laplacian matrix, i.e.,
spectral mapping. While spectral mapping of data points can
be achieved by a simple eigen-decomposition of their graph
Laplacian matrix, with large datasets direct computation of
eigenvectors may be computationally expensive, especially
in a multi-phase distribution network with tens of thousands
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of buses. Therefore, neural spectral mapping is resorted to
strengthen the efficiency of the proposed VAP method.

Given W′ := (W ′
ij)m×m corresponding a mini-batch that

can be silced from W, feature points ξi and ξj with large
W ′

ij need to be embedded close and orthonormal to each
other. Hence, a neural spectral mapping mini-batch learning
problem is formulated by

min
θspectral

Lspectral(θspectral; ξi, ξj) s.t.

ui = fθspectral(ξi);

uj = fθspectral(ξj);

1

m
U⊤U = Ik×k

(6)

where fθspectral : R3N → Rk is a general neural network
mapping the input features into a spectral embedding space,
k is the number of clusters or voltage areas customized by
users, θspectral collects all neural network weights, ui and uj

are neural spectral mappings, U ∈ Rm×k is a output matrix
whose the i-th row are u⊤

i , m is the number of feature points
in a mini-batch, I is an identity matrix, and the objective
function Lspectral is designed as

Lspectral(θspectral; ξi, ξj)
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(7)

where uip is the p-th element in ui, di =
m∑
j=1

W ′
ij , D =

diag(di) ∈ Rm×m is a diagonal matrix, and ǔp is the p-th
column of U. Note that the Eqn. 7 is an approximation of
the ratio cut objective in the standard spectral clustering,
i.e., partitioning a subgraph into disjoint subsets that are
internally cohesive and externally separate, where the i-th
element in ǔp can indicate whether bus i belongs to area p,
and D−W′ corresponds to the graph Laplacian.

To solve the above-formulated neural mapping learning
problem, the constrained optimization problem needs to be
converted to an unconstrained problem. The first two con-
straints in Eqn. (6) can be removed by inserting them into the
objective (7) while the last constraint, i.e., the orthogonality
constraint, can be removed by using an orthonormal layer
as the output layer in the neural network, as shown in
Fig. 4. This orthonormal layer can enforce the orthogonality
constraint, which takes k neurons as inputs and acts as a
linear layer with k outputs.

Fig. 4. Illustration of the neural network architecture for spectral mapping

Algorithm 2: An algorithm for learning the neural
spectral mapping

Data: matrices ξ and W, m, k and learning rates
ηspectral

Result: neural spectral mappings
1 Initialize the neural network weights θspectral;
2 while not converge do
3 randomly sample m rows of ξ;
4 using fθspectral to compute Ũ;
5 using Cholesky decomposition to obtain L;
6 using Orthonormal layer to compute U;
7 using gradient decent to update

θspectral ← θspectral − ηspectral
∂Lspectral(θspectral;ξi,ξj)

∂θspectral
;

8 end
9 for every m rows in ξ do

10 repeat lines 4,5,6;
11 end

Unlike fully connected neural network layers, weights
in the orthonormal layer can be computed through QR
decomposition as

√
m(L−1)⊤ where matrix L is a lower

triangular matrix and can be obtained via the Cholesky
decomposition, i.e., Ũ⊤Ũ = LL⊤, and matrix Ũ ∈ Rm×k

denotes the inputs to the orthonormal layer. After multiplying
Ũ from the right by weights

√
m(L−1)⊤, columns of Ũ can

be orthogonalized into U.
The neural network fθspectral can be trained by solving

the above-reformulated optimization problem in a gradient
descent way. In each step, a minibatch of m feature points
is randomly sampled. After forward propagation, the weights
of the orthogonal layer are updated first, and then back-
propagate the gradients ∂Lspectral

∂θspectral
to update the remaining

weights in fθspectral . Once this neural network is trained, all the
weights are frozen, and the entire voltage coupling feature
matrix is divided into multiple mini-batches, sequentially
sent to the network as the input to achieve the desired spectral
mapping used for clustering. The specific procedures for
learning the proposed neural spectral mapping are summa-
rized in Algorithm. 2.

It is noted that the minibatch training involved in neural
spectral mapping learning significantly save the computa-
tional and storage cost of the inverse calculation or the
eigenvectors.

IV. NUMERICAL SIMULATION

The effectiveness of the proposed method in this paper
is verified using IEEE 123 bus distribution systems. The
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number of voltage areas is set as 6. The maximum number
of iterations is set as 50, which is used to control the
termination of the training. The batch sizes are set as 120
and 16 for neural networks fθsiamese and fθspectral , respectively.
In terms of the structure of these two networks, given that
the dimension of their input data is the same, i.e., 192, we
design a similar network architecture with all fully connected
layers. The numbers of neurons in the Siamese network are
designed as [192, 168, 128, 64, 32, 16], while the numbers
of neurons in the Spectral neural network are designed as
[192, 168, 128, 64, 32, 16, 6].

Furthermore, the multi-phase power flow model devel-
oped in [14] is used to find voltage-active (voltage-reactive)
power sensitivities. The standard spectral clustering method
is selected as a benchmark method with Gaussian kernel
bandwidth set as 2.4. All the programs are written in Python
and performed on a Windows PC equipped with AMD Ryzen
5 5600H, 3.30 GHz, NVIDIA GeForce RTX 3070 GPU, and
16.0 GB RAM.

To evaluate the voltage cohesiveness, an index called
voltage magnitude increment is designed as V ϕ

i2−V ϕ
i1

V ϕ
i0−V ϕ

i1

for each

phase at each bus, where V ϕ
i1 is the voltage magnitude at

the original operation point, V ϕ
i0 is the referenced voltage

magnitude, and V ϕ
i2 is the voltage magnitude at the new

operating point caused by injecting some active and reactive
power at the pilot nodes. Each voltage area has only one pilot
node that can be selected as the node with the maximum total
voltage coupling degrees with other buses in the situated
area. Pilot nodes vary with VAP results. In general, lower
the variance of all indexes in a voltage area implies higher
voltage cohesiveness.

When the training data is similar to the actual operat-
ing point, VAP results achieved by the standard spectral
clustering and the proposed neural spectral clustering-based
method are shown in Fig. 5 and Fig. 6, respectively. Different
areas are colored in different colors. Fig. 7 shows the neural
spectral mapping reconstructed in a PCA feature space. It
can be seen that most of the feature points in the same
cluster are similar, and the spectral mapping learned by
the trained neural network is meaningful. Fig. 8 shows
that in the same voltage area (with the same color), the
variance of all indexes is relatively small. The average index
variance can be calculated as the average of all cluster index
variances. Table. I shows that the average index variance of
the proposed method under different pilot node selections
(i.e., taking on either spectral clustering’s pilot nodes or
neural spectral clustering’s ones) is lower, reflecting the
overall performance of voltage cohesiveness is better than
the standard spectral clustering method.

When the training data is different from the actual oper-
ating point, Table. II shows that even if the learned neural
spectral mapping is not updated to the new operating point,
it still can have a better performance in terms of voltage
cohesion. Meanwhile, there is a negligible voltage cohesion
performance difference between the previously trained and
retrained neural spectral clustering networks.

Fig. 5. Illustration of VAP results from the standard spectral clustering
method

Fig. 6. Illustration of VAP results from the proposed neural spectral
clustering-based method

Fig. 7. Illustration of PCA Visualization Results from the proposed neural
spectral clustering-based method

V. CONCLUSION

This paper proposes a novel VAP method to enhance its
applicability and performance in ADSs. The VAP problem
is first formulated as a graph clustering problem, where a
voltage coupling feature matrix is defined. Via a Siamese
network, complicated bus voltage affinity relations can be
captured into a bus similarity matrix. Instead of conducting
eigen-decomposition on the entire graph, an unconstrained
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Fig. 8. Illustration of Evaluation Index Results from the proposed neural spectral clustering-based method

TABLE I
AVERAGE VARIANCE PER CLUSTER OF DIFFERENT PHASE

Method and Pilot Nodes Average Variance among Clusters
Phase a Phase b Phase c Phase abc

Spectral clustering + Spectral clustering pilot nodes 0.000296 0.018170 0.001927 0.006798
Neural spectral clustering + Spectral clustering pilot nodes 0.000115 0.006855 0.000922 0.002631
Spectral clustering + Neural spectral clustering pilot nodes 0.000451 0.021425 0.002420 0.008099

Neural spectral clustering + Neural spectral clustering pilot nodes 0.000152 0.007316 0.001369 0.002946

TABLE II
AVERAGE VARIANCE PER CLUSTER OF DIFFERENT PHASE

Method Average Variance among Clusters
Phase a Phase b Phase c Phase abc

Spectral clustering 0.000393 0.018825 0.002063 0.007094
Previously-trained neural spectral clustering 0.000133 0.006445 0.001171 0.002583

Retrained neural spectral clustering 0.000131 0.005469 0.001129 0.002243

optimization problem with an orthogonal layer is designed
to learn efficient neural spectral mapping. Experiment results
validate the better performance of the proposed method
in terms of voltage cohesiveness compared to that of the
standard spectral clustering method. Furthermore, mini-batch
learning of neural spectral mappings improves the efficiency
of optimizing the graph quality functions. Designing a learn-
ing objective for neural spectral mapping to make each area
have a balanced regulation capacity is left for future research.
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