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Abstract—Research has been performed for many years
regarding the development of nonlinear control techniques.
One commonly researched concept in nonlinear control theory
is the development of methods that can address unknown
disturbances or unmodeled effects in a dynamic system when
the terms have constant upper bounds. Continuous and discon-
tinuous nonlinear controllers have evolved over many years to
address these unknown terms bounded by constants. Unfortu-
nately, these evolved controllers have either been confined to
some classes of nonlinear systems or have shown to be suscepti-
ble to the chattering effect. The focus of this work is to construct
a control framework that addresses unknown dynamic terms
with constant bounds while simultaneously minimizing chatter
for nonsmooth or switched Euler-Lagrange dynamic systems.
The proposed control framework includes a filtered error signal
designed to compensate for the unmodeled effects bounded
by constants and an adaptive control law designed to address
uncertainties in the Euler-Lagrange dynamic system’s control
effectiveness matrix. To ensure the effectiveness of the proposed
control law for a nonsmooth Euler-Lagrange dynamic model, a
nonsmooth Lyapunov-based stability analysis is performed that
proves semi-global exponential tracking to an ultimate bound.

Index Terms—Lyapunov methods, Nonlinear control, integral
sliding mode, switched systems, robust and adaptive control.

I. INTRODUCTION

Control system structures for uncertain nonlinear systems
have been studied for many years (cf. [1], [2], [9], [12]).
A typical control system structure for uncertain nonlinear
systems is a high-gain robust controller. This controller can
ensure that uncertain dynamic systems remains within a
stable region by having gains large enough to compensate
for uncertainties in the system. It is a common practice to
implement robust controllers with adaptive terms to improve
control efficiency [21]. However, adaptive approach are un-
able to approximate unstructured terms in a dynamic model.
Consequently, one approach to address uncertain terms in the
dynamics that are upper bounded by constants is to combine
high-gain robust controllers with discontinuous controllers
such as sliding mode (SM) controllers [11], [16], [25], [27].
Though SM control produces an excellent stability outcome,
its implementation is problematic since SM controllers have
instantaneous jumps in the control effort, which requires
the actuator to act with an infinite frequency. Consequently,
SM controllers (and controllers with similar discontinuous
control structures) produce a chattering effect [21].

In an effort to develop a continuous controller that is able
to account for dynamic model terms with constant bounds

and to reap the tracking performance of SM controllers
without the limitations, a category of robust controllers
called Robust Integral of the Sign of the Error (RISE) were
developed. Unlike SM, RISE implements the integral of the
SM term into the control law, creating a continuous controller
which alleviates chattering, eliminates the need for infinite
frequency, and ensures asymptotic tracking. Moreover, with
some alterations, in [19], a RISE control structure was
developed that achieved exponential error tracking. RISE
has previously been implemented for applications such as
estimation, control, and optimization (cf. [7], [8], [15], [20],
[22], [23], [28]–[30]). However, RISE is limited to a class of
continuous dynamic systems since RISE control requires the
derivative of the unknown model dynamics, the control input,
and the uncertain disturbances must exist and be bounded.

Beyond RISE control, higher-order SM controllers were
developed to alleviate the limitations of SM control (cf.,
[5], [6], [10], [14], [17]). Critically, it was shown that the
chattering effect was reduced as a result of the implementa-
tion of higher-order SM control. [5]. In order to implement
higher-order SM controllers, prior works have required the
dynamic system to have a constant upper bound and to be
sufficiently smooth (cf. [13], [14], [17]). Thus, higher-order
SM controllers have limitations similar to RISE control,
such as the dynamic model being restricted to smooth and
continuous systems, and constraints being placed on the
control objective. Also, if a higher-order SM controller is
first order, it will be equivalent to the previously discussed
SM controller that is chatter-prone [14].

Preliminary efforts by the authors have been made to
develop a class of feedback controllers for a wide range of
systems, including nonlinear systems that are continuous as
well as discontinuous (e.g., switched), that are capable of
compensating for unstructured disturbances that are bounded
by constants without creating chatter [3], [26]. These re-
cent control developments by the authors will henceforth
be called Auxiliary-injected Robust Integral of the Slid-
ing modE (ARISE) controllers. The early results from the
ARISE controllers have been promising; however, to date
the ARISE controller has only been implemented on control-
affine nonlinear dynamic models [3], [26]. The study in this
paper is motivated to develop an ARISE controller for a
general, uncertain, and switched Euler-Lagrange dynamic
model. However, the extension of ARISE control to Euler-
Lagrange dynamic models is particularly complicated by the
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existence of the inertia matrix, which requires modifications
to the error system development and stability analysis. To
demonstrate the generality of the proposed approach, a
switched and uncertain control effectiveness matrix has also
been assumed.In this work, a SM term is injected through a
filtered auxiliary error signal into the closed-loop dynamics
(i.e., an ARISE controller is developed). The control law is
designed in a way such that it has the integral of the SM
term in it, which will help in reducing the chattering effect.
Furthermore, an adaptive update law is defined to address
the unknown terms in the control effectiveness matrix. In
addition, through a Lyapunov-like stability analysis, a semi-
global result with exponential tracking towards an ultimate
bound is achieved, provided that the conditions on the gains
and initial values are satisfied. It should be stated that the
controller that is developed in this paper can also be extended
to continuous systems.

II. DYNAMICS

To facilitate the design of the proposed ARISE controller,
an uncertain, nonsmooth, and nonlinear Euler-Lagrange dy-
namic model is considered that is modeled as follows:

Mσ (x) ẍ+ Cσ (x, ẋ) ẋ+Gσ (x) + Fσẋ+ dσ (t)
= τϕ (x, ẋ, t) ,︸ ︷︷ ︸
gϕ(x,ẋ,t)u(t)

(1)

where x : R≥0 → Rn is the generalized position coordinate,
ẋ : R≥0 → Rn is the generalized velocity coordinate,
ẍ : R≥0 → Rn is the generalized acceleration coordinate,
Mσ : Rn → Rn×n is an unknown non-smooth but continu-
ous inertia matrix, Cσ : Rn × Rn → Rn×n is an unknown
switched centripetal-Coriolis matrix, Gσ : Rn → Rn is an
unknown switched gravitational effects vector, Fσ ∈ Rn×n is
an unknown switched coefficient damping matrix comprised
of constants, and dσ : R≥0 → Rn is an unknown disturbance
vector. The signal σ (x, ẋ, t) : Rn × Rn × R≥0 → I =
{1, 2, . . . , σmax}, signifies the index of Mσ , Cσ , Gσ , Fσ ,
and dσ , where σmax ∈ N is the finite index set for all
involved subsystems. In (1), gϕ : Rn ×Rn ×R≥0 → Rn×m

is the nonsmooth and unknown control effectiveness matrix,
u : R≥0 → Rm is the control input, and τϕ : Rn × Rn ×
R≥0 → Rn is the generalized input torque or force. The
signal ϕ (x, ẋ, t) : Rn×Rn×R≥0 → B = {1, 2, . . . , b}, is a
set of switching signals and signifies the index of τϕ (x, ẋ, t)
and gϕ (x, ẋ, t), where b ∈ N is the finite index set for all
the distinctive forms of τϕ (x, ẋ, t) , and gϕ (x, ẋ, t) .

Remark 1. Every index σ ∈ I switches with every discrete
jump or non-smooth occurrence that takes place in dynamic
parameters of the system in (1). Similarly, for every change
in the form of τϕ (x, ẋ, t) and gϕ (x, ẋ, t), a discrete jump
in ϕ ∈ B takes place. Thus, when ϕ ∈ B and σ ∈ I are
constants, the dynamics are continuous in (1).

Moreover, the common assumptions made below must be
satisfied by the dynamical system in (1).

Assumption 1. For all σ ∈ I, Mσ (x) is a positive definite
and symmetric matrix such that its satisfies cm ∥Υ∥2 ≤
ΥTMσ (x)Υ ≤ cM ∥Υ∥2 , ∀Υ ∈ Rn, ∀t ≥ t0 (i.e.,
cm ≤ ∥Mσ (x)∥ ≤ cM ), where cm ∈ R>0 and cM ∈ R>0

are positive known constants.

Assumption 2. For all σ ∈ I, Cσ (x, ẋ) is bounded as
∥Cσ (x, ẋ)∥ ≤ cC ∥ẋ∥ ,∀t ≥ t0 in which cC ∈ R>0

is a known constant. Moreover, Cσ (x, ẋ) also satisfies
Cσ (x,Υ) v = Cσ (x, v)Υ, ∀Υ, ∀σ ∈ I, ∀v ∈ Rn.

Assumption 3. For all σ ∈ I, Gσ (x) is bounded as
∥Gσ (x)∥ ≤ cG,∀t ≥ t0, in which cG ∈ R>0 is a known
constant.

Assumption 4. For all σ ∈ I, Fσ is bounded as ∥Fσ∥ ≤
cF ,∀t ≥ t0, in which cF ∈ R>0 is a known constant.

Assumption 5. For all σ ∈ I, dσ (t) is bounded as
∥dσ (t)∥ ≤ cD,∀t ≥ t0, in which cD ∈ R>0 is a known
constant.

Assumption 6. The generalized force/torque input,
τϕ (x, ẋ, t) = gϕ (x, ẋ, t)u (t), can be parameterized linearly
∀t ≥ t0 and ∀ϕ ∈ B as

gϕ (x, ẋ, t)u (t) = Y (x, ẋ, t, u) θ, (2)

where θ ∈ Rq is a vector of bounded unknown constant
parameters and Y : Rn × Rn × R≥0 × Rm → Rn×q are
measurable regression matrices. The vector θ can be upper
and lower bounded as

θi ≤ θi ≤ θ̄i,∀i ∈ {1, . . . , q} , (3)

where θi is the ith parameter of θ. Additionally, the unknown
control effectiveness matrix g (x, ẋ, t) is assumed to be
bounded if x and ẋ are bounded.

III. CONTROL DEVELOPMENT

In (1), One of the control aim of the dynamic system in
(1) is that the generalized states track a smooth desired path
xd : R≥0 → Rn. The control objective can be quantified by
a measurable error signal represented by e : R≥0 → Rn and
defined as

e (t) ≜ xd (t)− x (t) . (4)

The measurable auxiliary tracking error, indicated as r :
R≥0 → Rn, is defined as

r ≜ ė+ α1e+ α2ef , (5)

where α1, α2 ∈ R>0 are user-defined control gains, and ef :
R≥0 → Rn is a filtered auxiliary error signal determined by
solving the following auxiliary filter dynamics:

ėf ≜ −k1sgn (r)− k2r + α2e− β1ef , (6)

where k1, k2, β1 ∈ R>0 are user-defined control gains,
sgn (·) is a sliding mode function (i.e., a signum function).
The other control aims in this study is to implement a
SM term, which is −k1sgn (r (t)), in the closed-loop error
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dynamics without actually implementing the SM term in the
controller itself. This control aim motivated the inclusion of
−k1sgn (r (t)) in ėf and the auxiliary signal ef (t) in (5).

Taking the time derivative of (5) and then multiplying
throughout by Mσ , and using (1), (4), and (6) results in

Mσ ṙ = χσ − e− Cσr − gϕu−Mσα2k1sgn (r)
−Mσα2k2r −Mσα2β1ef ,

(7)

where χσ : R≥0 → Rn,∀σ ∈ I is an auxiliary term
determined as

χσ ≜ Mσẍd + Cσ (ẋd + α1e+ α2ef ) +Gσ

+Fσẋ+ dσ +Mσα1ė+
(
Mσα

2
2 + 1

)
e.

(8)

Using Assumptions 1-5, (4), and (5), χσ can be upper
bounded with respect to the generalized states such that

∥χσ∥ ≤ Φ+ ρ (∥z∥) ∥z∥ ,∀σ ∈ I (9)

where Φ ∈ R>0 is a known constant, ρ (·) is radially
unbounded, positive, and strictly increasing function, and
z : R≥0 → R3n is a composite error vector determined
as

z (t) ≜
[
eT rT eTf

]T
. (10)

One complication in the development of the control sys-
tem is that gϕ (x, ẋ, t), the control effectiveness matrix,
is not known in (7). Nevertheless, the generalized input
torque/force, τϕ (x, ẋ, t) = gϕ (x, ẋ, t)u (t), can be estimated
and expressed as

ĝϕ (x, ẋ, t)u (t) = Y (x, ẋ, t, u) θ̂ (t) , (11)

∀ϕ ∈ B, where ĝϕ : Rn × Rn × R≥0 → Rm×n, is the
estimation of gϕ (x, ẋ, t) and θ̂ : R≥0 → Rq is the estimation
of θ . The error in the parameter estimation, θ̃ : R≥0 → Rq ,
is defined as

θ̃ (t) ≜ θ − θ̂ (t) . (12)

Assumption 7. The control effectiveness estimation matrix
ĝϕ (x, ẋ, t) is a full row rank matrix for t ≥ t0 and
∀ϕ ∈ B. The pseudo inverse of ĝϕ (x, ẋ, t) is given by
ĝ+ϕ : Rn × Rn × R≥0 → Rm×n, ∀ϕ ∈ B, in which

ĝ+ϕ (·) ≜ ĝTϕ (·)
(
ĝϕ (·) ĝTϕ (·)

)−1

. Moreover, ĝϕ (x, ẋ, t) ∈
L∞ ∀ϕ ∈ B given that θ̂, x ∈ L∞.

Implementing gϕu = Y θ and adding/subtracting Y θ̂ to
(7), and using (11), and (12) results in the open-loop error
dynamics below:

Mσ ṙ = χσ − e− Cσr − Y θ̃ − ĝϕu−Mσα2k1sgn (r)
−Mσα2k2r −Mσα2β1ef .

(13)
Based on the subsequent analysis and by examining the
open-loop error system in (13) the control input has been
designed as,

u ≜ ĝ+ϕ

(
k3r −

(
k2 + M̂α2β1

)
ef

)
, (14)

where k3 ∈ R>0 are user defined control gains, and M̂ ≜
1
2 (cm + cM ) In×n is an estimate for M , In×n is an identity
matrix of n × n dimension. For all σ ∈ I, the estimation
error for the inertia of the system is defined as

M̃σ ≜ M̂ −Mσ. (15)

Moreover, (15) can be bounded using Assumption 1 as∥∥∥M̃σ

∥∥∥ ≤ 1
2 (cM − cm) = cM̃ , where cM̃ ∈ R>0 is a positive

constant. Similarly, the adaptive law is formulated as

˙̂
θ (t) ≜ proj

(
−ΓY T r

)
, (16)

where proj (·) is the smooth projection algorithm from [4] to
ensure that the adaptive law remains bounded as stated in (3),
and Γ ∈ Rq×q is a positive definite diagonal gain matrix. By
implementing (14) into (13), the closed-loop error dynamics
can be acquired and simplified to yield

Mσ ṙ = χσ − e− Cσr − Y θ̃ + k2ef −Mσα2k1sgn (r)
− (k3 +Mσα2k2) r + M̃σα2β1ef .

(17)
It can be noticed from the equations (14) and (6), that the
integral of the SM term is present in the controller. This was
made possible by including the SM term in (6) which further
appeared in the closed-loop error dynamics in (17), which
was then used to compensate for the unknown/uncertain
terms in the system. Moreover, the designed controller re-
mains continuous if gϕ and thus ĝ+ϕ are continuous.

IV. STABILITY ANALYSIS

To prove stability, a family of Lyapunov candidate func-
tions that are continuously differentiable and positive defi-
nite, given by Vσ : D × R≥0 → R≥0, are defined ∀σ ∈ I
as

Vσ ≜
1

2
eT e+

1

2
rTMσr +

1

2
eTf ef +

1

2
θ̃TΓ−1θ̃, (18)

where D ⊆ R3n+q is given as D ≜
{
y ∈ R3n+q |∥y∥ < γ

}
,

γ ∈ R>0 is a known constant and also meets
the inequality γ ≤ inf

{
ρ−1

((√
2cmα2k2δ1,∞

))}
,

δ1 ∈ R is a known constant and is defined as
δ1 ≜ min

(
α1, k3 −

α2β1cM̃ε1
2 , β1 −

α2β1cM̃
2ε1

− k1ε2
2

)
, and

ε1, ε2 ∈ R>0 are choosable constants. Furthermore, lets
define the set of acceptable initial conditions as

SD ≜

{
y ∈ R3n+q

∣∣∣∣∣∥y∥ <

√
λ1

λ2
γ

}
. (19)

Moreover, Vσ could be bounded ∀σ ∈ I as

λ1 ∥y∥2 ≤ Vσ ≤ λ2 ∥y∥2 , (20)

where λ1 ≜ 1
2 min

(
1, cm, λmin

{
Γ−1

})
and λ2 ≜

1
2 max

(
1, cM , λmax

{
Γ−1

})
. Also, λmin {·} is the minimum

eigenvalue of {·} and λmax {·} is the maximum eigenvalue
of {·}. Also, y : R≥0 → R3n+q is a vector determined as

y ≜
[
zT θ̃T

]T
. (21)
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Another way to bound Vσ ∀σ ∈ I is

λ1 ∥z∥2 ≤ Vσ ≤ λ2 ∥z∥2 + v1, (22)

where v1 is determined as

v1 ≜
1

2
λmax

{
Γ−1

}∥∥∥θ̃∥∥∥2
max

, (23)

where
∥∥∥θ̃ (t)∥∥∥ ≤

∥∥∥θ̃∥∥∥
max

,∀t ≥ t0 for some
∥∥∥θ̃∥∥∥

max
∈ R>0

because of the proj (·) operator in (16) and the bounds for θ
in (3).

Theorem 1. For the uncertain, nonsmooth, and nonlinear
Euler-Lagrange dynamic model described in (1) with all the
assumptions discussed in Assumptions 1-7, the control input
discussed in (14) and the update law discussed in (16) ensure
semi-global exponential tracking to an ultimate bound in the
sense that

∥y (t)∥2 ≤ λ2

λ1
∥y (t0)∥2 exp (−δ (t− t0))

+ v
λ1δ

(1− exp (−δ (t− t0))) ,
(24)

∀t ∈ [t0,∞), where δ ≜ δ1
2λ2

and v ≜ δv1 +
k1n
2ε2

, provided
that y (t0) ∈ SD and the following conditions are satisfied

1

2
α2k1 (cm + cM ) > Φ+

√
ncM̃α2k1, (25)

k3 >
α2β1cM̃ε1

2
, β1 >

α2β1cM̃
2ε1

+
k1ε2
2

, (26)√
v

δλ1
< γ. (27)

Proof: To facilitate the proof, the times when σ switches
to and from σ = q ∈ I are denoted by {ton,q

i } ,
{
toff,q
i

}
, i ∈

{0, 1, 2, ...}, respectively, and the times when ϕ switches to
and from ϕ = p ∈ B are denoted by

{
tp,on
j

}
,
{
tp,off
j

}
, j ∈

{0, 1, 2, ...}, respectively. Consider the case when σ = q

for an arbitrary q ∈ I (i.e., t ∈
[
ton,q
i , toff,q

i

)
for some

, i ∈ {0, 1, 2, ...}) such that the terms described by σ
are continuous and differentiable. Note that the times in
t ∈

[
ton,q
i , toff,q

i

)
correspond to Vq from (18).

For t ∈
[
ton,q
i , toff,q

i

)
,∀i, let y (t) be a Filippov solution to

the differential inclusion ẏ ∈ K [h] (y), where h : R3n+q →
R3n+q is defined as h (y) ≜

[
ėT , ṙT , ėTf ,

˙̃
θT

]T
,

and K is the differential inclusion operator stated in [18].
Because of the existence of discontinuities in the closed-
loop error dynamics in 17, the derivative of Vq with re-
spect to time exists almost everywhere (a.e), for almost
all t ∈

[
ton,q
i , toff,q

i

)
,∀i, in the sense that V̇q (y)

a.e.
∈

˙̃Vq (y), where ˙̃Vq (y) is the generalized derivative of (18)
with respect to time along along ẏ = h (y), and ˙̃Vq ⊆⋂
ξ∈∂Vq(y)

ξT
[
K[h]T (y), 1

]T
(according to [24, Equation 13]).

Since Vq is continuously differential with respect to y,
∂Vq(y) = ∇Vq(y), where ∇ denotes the gradient operator.

Finding the generalized derivative of (18) with respect to
time, then substituting the adaptive law in (16), the parameter
estimation error in (12), the auxiliary error in (5), the closed
loop error system in (17), and the auxiliary filtered error in
(6) results in

˙̃Vq ⊆ rT (χq − e− Cqr −K
[
Y θ̃

]
+ k2ef

−Mqα2k1K [sgn (r)]− (k3 +Mqα2k2) r

+M̃qα2β1ef − θ̃TΓ−1K
[
Proj

(
−ΓY T r

)]
+eTf (−k1K [sgn (r)]− k2r + α2e− β1ef )

+eT (r − α1e− α2ef ) +
1
2r

T Ṁqr.
(28)

Now, for t ∈
[
ton,q
i , toff,q

i

)
,∀i, lets consider the narrower

case where ϕ = p for an arbitrary p ∈ B (i.e., times when
the set

[
ton,q
i , toff,q

i

)
∩

[
tp,on
j , tp,off

j

)
is non-empty for any

i, j ∈ {0, 1, 2, ...}). During these times, ϕ is constant and
thus K [Y ] = Y . Using (9) to upper bound χq , canceling
common terms, noting that −rTK [sgn (r)] ≤ −∥r∥ and
∥K [sgn (r)]∥ ≤

√
n (dimension of r is defined by n), using

Assumption 1, the estimate for M̂ over (15), (15), and the
bound for

∥∥∥M̃σ

∥∥∥ under (15), and implementing the gain
condition from (25), the Lyapunov function can be simplified
and upper bounded as

V̇q

a.e.
≤ −α1 ∥e∥2 − β1 ∥ef∥2 − (k3 + cmα2k2) ∥r∥2

+ ∥r∥ ρ (∥z∥) ∥z∥+ α2β1cM̃ ∥r∥ ∥ef∥
+k1 ∥ef∥ ∥K [sgn (r)]∥ .

(29)
Using Young’s Inequality and completing the squares, allows
for (29) to be bounded as

V̇q

a.e.
≤ −α1 ∥e∥2 −

(
β1 −

α2β1cM̃
2ε1

− k1ε2
2

)
∥ef∥2

−
(
k3 −

α2β1cM̃ε1
2

)
∥r∥2

+ 1
4cmα2k2

ρ2 (∥z∥) ∥z∥2 + k1n
2ε2

.
(30)

Using the definition of v and δ in the theorem statement,
the gain conditions in (26), the bound in (22), the fact that
∥y∥ ≥ ∥z∥, and the definition of D below (18), (30) can be
further bounded as

V̇q

a.e.
≤ −δVq + v, (31)

∀t ∈
[
ton,q
i , toff,q

i

)
∩
[
tp,on
j , tp,off

j

)
given that y (t) ∈ D, ∀t ∈[

ton,q
i , toff,q

i

)
∩
[
tp,on
j , tp,off

j

)
. Since the bound for V̇q in (31)

holds for any arbitrary ϕ ∈ B, the bound holds for all ϕ ∈ B.
Therefore, the result in (31) holds for ∀t ∈

[
ton,q
i , toff,q

i

)
given that y (t) ∈ D, ∀t ∈

[
ton,q
i , toff,q

i

)
. Following a multiple

Lyapunov function approach and based on (31) and the fact
that Mσ is a continuous function, it can be proven that

Vq (t) ≤ Vq (t
on,q
0 ) exp (−δ (t− ton,q

0 ))
+v

δ [1− exp (−δ (t− ton,q
0 ))] ,

(32)

∀t ∈
[
ton,q
i , toff,q

i

)
,∀i, ∀q ∈ I, provided that y ∈ D,∀t ∈

[t0,∞). Note that ton,q
0 represents the first time when σ
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switches to any q ∈ I. Using (20) and defining t0 ≜
min

{
ton,1
0 , . . . ton,σmax

0

}
, the results in (24) can be obtained,

provided that y ∈ D,∀t ∈ [t0,∞). A sufficient condition
for y ∈ D,∀t ∈ [t0,∞) is that y (t0) ∈ SD and the gain
condition in (27) is satisfied. Selecting the control gains k1,
k2, k3, α1, α2, and β1, appropriately will guarantee that
y ∈ SD and that all of the gain conditions in (25)-(27)
are met. Moreover, using (10), (21), and (24), along with
(4), (5), (12), it can be determined that x, ė, ẋ, θ̂ ∈ L∞.
From Assumption 7 and (16), it can be determined that
ĝ+ϕ , ĝϕ ∈ L∞. Given the fact that xd (t) is bounded along

with (14), it can be shown that u ∈ L∞.

V. RESULTS/DISCUSSION

The compensation of a discontinuous or switched system
with unstructured disturbances bounded by constants through
the design of an ARISE controller (which has an integral
SM term in the controller itself) is the major contribution of
this work. In contrast, a RISE control also implements an
integral SM term in it, but the drawback of RISE controllers
is that they can be implemented only in smooth systems.
The proposed ARISE controller is implementable for a much
wider class of dynamic systems compared to RISE control.

VI. CONCLUSION

In this study, an ARISE controller was designed for a
class of nonsmooth and uncertain Euler-Lagrange nonlinear
dynamic systems with an uncertain control effectiveness
matrix. A SM term was injected in the error dynamics
through a filtered error signal rather than from the controller.
In addition, the controller was designed in a way that it has
an integral of a SM term in it to address the disturbances
of the system that have constant bounds. In addition, an
adaptation law was used to develop an estimate for the
control effectiveness matrix. To ensure stability, a Lyapunov-
based stability analysis was completed, which showed semi-
global exponential tracking to an ultimate bound. The focus
of future efforts will be to investigate modifications to the
stability analysis to remove the ultimate bound from this
stability result.
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