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Abstract— The engineering of molecular programs capable
of processing patterns of multi-input biomarkers holds great
potential in applications ranging from in vitro diagnostics (e.g.,
viral detection, including COVID-19) to therapeutic interven-
tions (e.g., discriminating cancer cells from normal cells). For
this reason, mechanisms to design molecular networks for
pattern recognition are highly sought after. In this work, we
explore how enzymatic networks can be used for both linear
and nonlinear classification tasks. By leveraging steadystate
analysis and showing global stability, we demonstrate that these
networks can function as molecular perceptrons, fundamen-
tal units of artificial neural networks—capable of processing
multiple inputs associated with positive and negative weights
to achieve linear classification. Furthermore, by composing
orthogonal enzymatic reactions, we show that multi-layer net-
works can be constructed to achieve nonlinear classification.

Biomolecular Neural Networks, Molecular sequestration,
Chemical reactions, Enzymatic network, Biological systems.

I. INTRODUCTION

Cellular decision-making encompasses various endoge-
nous processes that determine the fate of cells, whether
they should replicate, differentiate, or undergo cell death.
For example, apoptosis describes processes associated with
programmed cell death to eliminate cells that are classified
as abnormal or unnecessary cells. In embryonic develop-
ment, individual cells process multiple environmental cues
to decide whether they should differentiate, migrate, or
decay. We are only beginning to understand the underlying
mechanisms and factors influencing these crucial cellular
decisions, which depend on a multitude of factors. Recent
work has put forward the intriguing hypothesis that cellular
decision making may present similarities with classification
tasks performed by Artificial Neural Networks [1]–[4].

Theoretical work has illustrated that biochemical networks
including sequestration or phosphorylation reactions can ap-
proximate ideal Artificial Neural Networks (ANNs) for linear
and nonlinear classifiers [3], [4]. Experimental, bottom-up
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implementations of classifiers using biological molecules
have been recently proposed in vitro, based on DNA strand
displacement [5], and using the enzymatic PEN toolbox,
leading to the demonstration of nonlinear classifiers [6].
In bacteria, synthetic genetic circuits based on transcription
factors can generate diverse patterns [1], while metabolic
networks can implement linear classifiers [7]. In mammalian
cells, sequestration-based and phosphorylation-based non-
linear classifiers have been demonstrated [8], [9]; further,
protein-based linear classifiers based on the “winner-takes-
all" principle have also been built [10].

Here, we examine a new set of biomolecular programs
based on enzymatic association and degradation to build
a biomolecular classifier. We take inspiration from the ar-
chitecture of classifiers in ANNs, which are based on the
interconnection of simple fundamental units known as “per-
ceptrons”. A molecular perceptron requires only two core
species, an enzyme and its substrate. The species producing
enzyme and substrate serve as inputs to the perceptron.
Through a rigorous steady-state analysis, we establish that
our perceptrons operate robustly and generate classifiers with
a linear decision boundary (namely, the hyper-surface that
separates data points belonging to different classification
labels), as long as enzyme-substrate association is sufficiently
fast. Through computational simulations we then illustrate
how the interconnection of multiple perceptrons with linear
decision boundaries produces nonlinear classifiers. The sim-
ple enzymatic reactions we adopt expand the repertoire of
available systems that can generate classifiers.

II. A MOLECULAR PERCEPTRON

A perceptron is the fundamental unit of ANNs. Percep-
trons process a weighted sum of their inputs, which is
fed into activator functions, for example ReLU (Rectified
Linear Unit) activation functions. In this section, we propose
an enzymatic reaction that asymptotically can behave as
a molecular perceptron. Although concentrations and rate
constants are always positive, the network we propose can
process multiple inputs associated with positive and negative
weights. We provide a thorough analysis of the perceptron
module dynamics, and in particular we show that the trajec-
tories are bounded, and that the system admits an equilibrium
that is structurally globally asymptotically stable.

A. Chemical reactions and ODE model
In the following we denote chemical species with up-

percase letters (e.g. X) and their concentrations with the
corresponding lowercase letters (x). An enzymatic percep-
tron (Fig. 1A) consists of two species, Y (substrate) and Z
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(enzyme). Free (unbound) enzyme Z binds to the substrate
Y , forming the enzyme-substrate complex C, at rate constant
γ. This complex C catalyzes the degradation of Y , while Z
dissociates from the complex, releasing free enzyme. The
catalytic step (and release of Z) occurs at rate constant θ.
Two inputs X1 and X2 produce respectively the species Y
and Z at rate constants w1 and w2. We assume that all
the species Y , Z and C dilute/degrade with rate constant
δ as shown in Fig. 1A. Overall, our proposed enzymatic
perceptron module is described by the following chemical
reactions:

X1
w1−−−⇀ X1 + Y, X2

w2−−−⇀ X2 + Z, Production

Y + Z
γ−−−⇀ C, Association

C
θ−−−⇀ Z, Enzymatic degradation

Y
δ−−−⇀ ∅, Z

δ−−−⇀ ∅, C
δ−−−⇀ ∅. Dilution/Degradation

The association between enzyme and substrate is a second
order reaction akin to molecular association [3], [11]–[13].
We will discuss the key role played by the related reaction
rate parameter γ in guaranteeing desirable properties of this
network.

Fig. 1. A: Reaction network describing the enzymatic perceptron. B: The
input-output curve for different values of γ computes a ReLU activation
function; w∗

2 = (1 + θ/δ)w2. C: Schematic of the general architecture of
a perceptron. D: At steady-state, the enzymatic perceptron realizes a linear
classifier with a decision boundary corresponding to the black dashed line.

Based on the law of mass action, we can write the corre-
sponding system of Ordinary Differential Equations (ODEs)
to describe the time evolution of the species concentrations:

ẏ = w1x1 − δy − γyz, (1)
ż = w2x2 − δz − γyz + θc, (2)
ċ = γyz − δc− θc. (3)

We now examine the stability properties of this circuit.

B. Steady-state analysis in a fast association regime
We will show that as long as the enzyme/substrate associa-

tion constant γ is sufficiently large, the system (1)-(3) asymp-
totically operates as a perceptron. In other words, this system

processes the weighted sum of input x1 (associated with a
positive weight) and input x2 (associated with a negative
weight) to generate a piecewise linear function that is equal
to the difference of the weigthed sum, if the difference is non-
negative, and zero otherwise. This operation is equivalent to
a ReLU activation function.

Let us compute the equilibria of system (1)-(3). By setting
equation (3) to zero, we have:

c̄ =
γ

δ + θ
ȳz̄. (4)

Then, z̄ is obtained by setting both equations (1) and (2) to
zero:

z̄ =
w1x1 − δȳ

γȳ
=

w2x2

γ δ
θ+δ ȳ + δ

. (5)

We thus obtain the second order polynomial

Aȳ2 +Bȳ + C = 0, (6)

where

A =
δ

θ + δ
,

B =
1

δ

[
w2x2 −

δ

θ + δ
w1x1

]
+
δ

γ
,

C = −w1x1
γ

.

Since A > 0 and C < 0, equation (6) admits a single
positive real solution, which is:

ȳ =
−B +

√
B2 − 4AC

2A
. (7)

Relying on approximations that are valid in the fast
association regime (i.e., γ arbitrarily large), we can consider
the following approximated steady-state value for y:

lim
γ→∞

ȳ =
1

δ
max

{
0, w1x1 −

(
1 +

θ

δ

)
w2x2

}
. (8)

In fact, by defining L := limγ→∞ −B/A and M :=
4w1x1(θ + δ)/δ, we have

lim
γ→∞

ȳ = lim
γ→∞

L+
√

L2 +M/γ

2
=

{
0 if L ≤ 0

L if L > 0

with

L = lim
γ→∞

1

δ

[
w1x1 −

(
1 +

θ

δ

)
w2x2 −

(δ + θ)δ

γ

]
=

1

δ

[
w1x1 −

(
1 +

θ

δ

)
w2x2

]
.

Equation (8) resembles the output of a ReLU activation
function for two inputs: x1, with a positive weight +w1,
and x2, with a negative weight −w∗

2 = −
(
1 + θ

δ

)
w2, as

shown in Fig. 1B. Decreasing the association rate constant
γ makes the input-output response look like a soft-ReLU.
When θ = 0, the enzyme-substrate association reaction
(akin to molecular sequestration) is the core of the system.
Therefore, we can abstract our enzymatic network as a
molecular perceptron, as shown in Fig. 1 C.
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The steady-state input-output map of system (1)-(3) can
be computed by evaluating equation (7) when the inputs (x1
and x2) range from 0 to 1. In the heat plot shown in Fig. 1
D, the white region corresponds to an output close to zero,
while the blue range corresponds to an output larger than
zero. The black dashed line represent the decision boundary
that separates the white and blue regions. This computed
input-output map is equivalent to a linear classifier, because
the decision boundary is a line dividing the input domain in
two regions. The system output produces a response larger
than zero only when the input combination (x1, x1) falls in
the blue region.

We can also find a closed-form expression for the decision
boundary (the black dashed line in Fig. 1 D). For this
purpose, we rewrite equation (5):

w1x1 −

(
ȳ

δ
θ+δ ȳ +

δ
γ

)
w2x2 = δȳ. (9)

This equation describes the relationship between x1 and x2
when y is constant, as a function of the network reaction
rate parameters. Fig. 1 D shows the decision boundary for
ȳ = 0.1. In the fast association regime (γ → ∞), the decision
boundary becomes:

w1x1 −
(
1 +

θ

δ

)
w2x2 = δȳ.

C. Boundedness and equilibria

All the state variables of system (1)-(3) are bounded,
for all possible nonnegative initial conditions, if the inputs
w1x1 =: α and w2x2 =: β are constant and bounded. In
fact, since the system is positive (each state variable has a
nonnegative derivative when its value is zero), y, z, c ≥ 0.
Moreover,

d

dt
(y + c) = −δ(y + c)− θc+ α ≤ −δ(y + c) + α,

hence y + c is bounded, and similarly

d

dt
(z + c) = −δ(z + c)− θc+ β ≤ −δ(y + c) + β,

hence z+c is bounded. Therefore both y and z are bounded,
because all the variables are nonnegative. Finally, from (3),
c is also bounded.

Rewriting the dynamics of system (1)-(3), assuming con-
stant inputs, with the new state variables υ = y + c, and
ζ = z + c yields the ODE system

υ̇ = α− δυ − θc (10)
ζ̇ = β − δζ (11)
ċ = γ(υ − c)(ζ − c)− (δ + θ)c (12)

Since y, z, c are nonnegative variables, we have

υ − c = y ≥ 0 and ζ − c = z ≥ 0.

The system (10)-(12) has bounded solutions, for all possible
nonnegative initial conditions with c ≤ min{υ, ζ}. In fact,
ζ is bounded as it obeys to equation (11); then also c is

bounded by ζ; and, from equation (10), also υ is bounded,
because c is bounded.

Boundedness implies the existence of an equilibrium [14]–
[16]. For system (1)-(3), the equilibrium has been computed
in Section II-B. For system (10)-(12), the equilibrium can be
computed as follows. First, from (11), ζ̄ = β/δ. Then, by
setting to zero equation (12), we obtain

(ῡ − c̄)(ζ̄ − c̄) =
(δ + θ)c̄

γ
. (13)

Since c is bounded by ζ regardless of the value of γ, for
γ → ∞ the right-hand-side of equation (13) converges to 0,
and hence the limit equation is (υ − c)(ζ − c) = 0, which
means that either υ− c = 0 or ζ− c = 0. On the other hand,
since c is upper bounded by both υ and ζ, for γ → ∞ the
equilibrium becomes

c̄ = min
{
ῡ, ζ̄
}
. (14)

Now we can distinguish two cases.
First case: if ζ̄ ≤ ῡ, then c̄ = ζ̄ = β/δ.
Second case: if ζ̄ > ῡ, then c̄ = ῡ. By setting to zero

equation (10), we get

0 = α− δῡ + θc̄ = α− δῡ + θῡ

and hence c̄ = ῡ = α/(δ + θ).
Therefore, in the fast association regime (γ → ∞),

lim
γ→∞

c̄ = min

{
α

δ + θ
,
β

δ

}
= min

{
w1x1
δ + θ

,
w2x2
δ

}
. (15)

Then, the equilibrium value for υ in the fast association
regime is

lim
γ→∞

ῡ =
α

δ
− θ

δ
lim
γ→∞

c̄

= max

{
α

δ
− αθ

δ(δ + θ)
,
α

δ
− βθ

δ2

}
= max

{
α

δ + θ
,
α

δ
− βθ

δ2

}
.

D. Stability analysis
We now assess the stability of the equilibrium that we

have computed. Since system (10)-(12) is obtained from
system (1)-(3) through a linear coordinate transformation,
the stability properties of the equilibrium are identical in the
two cases.

We start by proving its local asymptotic stability, which
holds structurally, i.e., regardless of parameter values [17].

Proposition 1. The equilibrium point of system (10)-(12)
(equivalently, of system (1)-(3)) is structurally locally asymp-
totically stable.

Proof. At steady-state, we have that ῡ − c̄ = ȳ ≥ 0 and
ζ̄ − c̄ = z̄ ≥ 0, while c̄ > 0. Therefore, we can prove that
the equilibrium (ῡ, ζ̄, c̄) is structurally asymptotically stable
[17], regardless of parameter values. Indeed the Jacobian of
system (10)-(12) is

J =

−δ 0 −θ
0 − δ 0
γz̄ γȳ −k

 ,
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where k := γȳ + γz̄ + (δ + θ). Its characteristic polynomial
ψ(s) = det(sI − J) is Hurwitz, since it can be factored out
as ψ(s) = (s+δ)

[
s2 + s(δ + k) + δk + γθz̄

]
, and therefore

all its roots must have a strictly negative real part.

We can actually prove global stability of the equilibrium,
again structurally [17]. Consider again the original represen-
tation, which we report here for convenience:

ẏ = α− δy − γyz, (16)
ż = β − δz − γyz + θc, (17)
ċ = γyz − δc− θc, (18)

where α and β are constant positive inputs. We recall that
the shifted variable

ζ := z + c

satisfies the differential equation

ζ̇ = β − δζ. (19)

Hence, ζ (namely, z + c) exponentially converges to the
variety

z + c =
β

δ

.
= ζ̄. (20)

We can then prove convergence inside this variety. Consider
the first two equations and write them as

ẏ = α− δy − γyz, (21)
ż = β − δz − γyz + θ(ζ̄ − z). (22)

Denoting by ȳ and z̄ the equilibrium values corresponding
to the given α and β, we now consider the shifted system in
the variables p = y − ȳ and q = z − z̄:

ṗ = −δp− γg(p, q), (23)
q̇ = −δq − γg(p, q)− θq, (24)

where we denoted g(p, q) := (p + ȳ)(q + z̄) − ȳz̄. Since
g(0, 0) = 0, the new system admits the equilibrium (p, q) =
(0, 0).

To structurally prove global asymptotic stability, we apply
the theory developed in [18], [19]. We write

g(p, q) = Dpp+Dqq,

where Dp(p, q) and Dq(p, q) are positive functions; for
instance, yz − ȳz̄ = z̄(y − ȳ) + y(z − z̄) = z̄p + yq. Then,
the system can be written as

d

dt

[
p
q

]
=

[
−δ − γDp −γDq

−γDp −δ − γDq − θ

] [
p
q

]
=: H

[
p
q

]
.

Since matrix H is column diagonally dominant and strictly
nonsingular, it admits the 1-norm as a Lyapunov function.
Therefore, the asymptotic stability of the equilibrium is
global, and it is structural since it holds regardless of the
values of the positive parameters.

We formalize these results in the following statement.

Proposition 2. For any initial condition and constant posi-
tive inputs, and for all values of the positive parameters, the
state of system (1)-(3) (equivalently, of (10)-(12)) converges

to the affine variety (20). Then, for any initial state in
this variety, the system state structurally converges to the
(unique) equilibrium. Therefore, the equilibrium is struc-
turally globally asymptotically stable.

III. MULTI-INPUT LINEAR CLASSIFIER

In the previous sections we examined a perceptron that
achieves linear classification by only processing two inputs
x1 and x2. Here, through numerical simulations, we compute
the decision boundary for perceptrons with three inputs, as
shown in Fig. 2 A. The system now includes three inputs
X1, X2, and X3, associated with positive weights w1, w2,
and w3. Each of the inputs produces species Y . We introduce
a bias input species X0, associated with a negative weight
w0, which produces species Z. The association reaction
between Y and Z is the same as in the two-input perceptron.
All species dilute/degrade at the same rate constant δ. We list
below all the chemical reactions networks, which reflect the
abstract design in Fig. 2 A:

X0
w0−−−⇀ X0 + Z, X1

w1−−−⇀ X1 + Y, Production

X2
w2−−−⇀ X2 + Y, X3

w3−−−⇀ X3 + Y, Production

Y + Z
γ−−−⇀ C, Association

C
θ−−−⇀ Z, Enzymatic degradation

Y
δ−−−⇀ ∅, Z

δ−−−⇀ ∅, C
δ−−−⇀ ∅. Dilution/Degradation

Next, using mass conservation, we can write the ODEs:

ẏ = w1x1 + w2x2 + w3x3 − δy − γyz, (25)
ż = w0x0 − δz − γyz + θc, (26)
ċ = γyz − δc− θc. (27)

Following similar steps as in the perceptron case, we can
compute the decision boundary at the steady-state, which for
the multi-input linear classifier becomes

w1x1 + w2x2 + w3x3 −
ȳ

δ
θ+δ ȳ +

δ
γ

w0x0 = δȳ. (28)

Equation (28) describes a plane in the space x1, x2, x3,
assuming large association constant (γ → ∞), as shown
in Fig. 2B. When the combination of inputs is located in
the right side of the plane, the output is larger than zero.
In contrast, when the combination of input corresponds to a
point below the plane, the output is zero. By changing the
weights of the inputs, we can tune the decision boundary as
shown in Fig. 2B.

IV. NONLINEAR CLASSIFIER

In this section, we report computational simulations that
illustrate the behavior of multiple interconnected perceptrons.
Through these interconnections, we show that we can create
classifiers with nonlinear decision boundaries.

For this purpose, we design a two-layer classifier as shown
in Fig. 3 A. The first layer consists of two enzymatic
perceptrons, labeled 1 and 2 and represented as gray nodes
in the perceptron network in Fig. 3 A and B. The first node
process the inputs x1 and x2 with positive weight w1

1 and a
negative weight w1

2 respectively; this node also processes the
bias input x0 with a negative weight w1

0 . The second node
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Fig. 2. A: Schematic of a three-input perceptron. B: Simulations showing
how the decision boundary depends on the input weights.

takes in the inputs x1 and x2 with positive weights w2
1 and

w2
2 , and it processes the bias input x0 with a negative weight

w2
0 . The second layer consists of a single node, represented in

green in Fig. 3 A and B. So far, we have taken the substrate
species Y as the output of the perceptron. Here, we take the
complex C as the output, and show that we can produce a
nonlinear decision boundary based on the outputs of the first
layer. In this layer, we remove the enzymatic degradation
step, but preserve the molecular association at the core of
this node. In fact, from equation (15) we see that in the fast
association regime, even when θ = 0, the complex output is
the minimum of the two inputs, suitably scaled.

Using the reactions represented in the schematic in Fig. 3
B, we can derive the ODEs describing the dynamics of the
first node:

ẏ1 = w1
1x1 − δy1 − γy1z1, (29)

ż1 = w1
0x0 + w1

2x2 − δz1 − γy1z1 + θc1, (30)
ċ1 = γy1z1 − δc1 − θc1. (31)

At steady-state, we can find the decision boundary, which is
described by the linear equation:

(w1
1x1)−

(
ȳ1

δ
θ+δ ȳ1 +

δ
γ

)
(w1

0x0 + w1
2x2) = δȳ1. (32)

The input-output steady-state map of the first node is shown
in Fig. 3 C, left. The decision boundary in Equation (32)
is the dashed line separating the blue region from the white
area. Similarly, given the schematic in Fig. 3 B we can find
the ODEs describing the dynamics of node 2 in layer 1:

ẏ2 = w2
1x1 + w2

2x2 − δy2 − γy2z2, (33)
ż2 = w2

0x0 − δz2 − γy2z2 + θc2, (34)
ċ2 = γy2z2 − δc2 − θc2. (35)

As we did before, we find the equation that describes the
decision boundary for the node:

(w2
1x1 + w2

2x2)−

(
ȳ2

δ
θ+δ ȳ2 +

δ
γ

)
(w2

0x0) = δȳ2. (36)

Fig. 3 C, middle, shows the steady-state input-output map
of the second node. For both nodes 1 and 2, the computed

decision boundaries separate the white region from the
blue region. Input combinations associated with points in
the plane above the decision boundary correspond to node
outputs larger than zero. In contrast, input combinations as-
sociated with points below the decision boundary correspond
to an output equal to zero.

Finally, we can write the equations corresponding to the
second layer, which includes a single node that has the
complex c3 as an output:

ẏ3 = w3
1y1 − δy3 − γy3z3 (37)

ż3 = w3
2y2 − δz3 − γy3z3 (38)

ċ3 = γy3z3 − δc3 (39)

Resorting to the same derivations as in Section II-C, we find
that, in the fast association regime, the output c computes
the minimum of its inputs, suitably scaled, at steady-state.
In particular, taking θ = 0, equation (15) leads to:

c̄3 =
1

δ
min

(
w3

1 ȳ1, w
3
2 ȳ2
)
. (40)

Now, by interconnecting the input-output maps of the first
layer with the second layer, we can predict the overall output
of the classifier. The output of node 3 is the scaled minimum
of its two inputs. Therefore, when the output of either node
1 or node 2 is in the white region, the output c3 is also in
the white region. The overall decision boundary for node 3
(i.e., the second layer) can be visualized by overlapping the
decision boundaries of nodes 1 and 2 (i.e., the first layer), as
shown in Fig. 3 C (right), which yields a nonlinear blue area.
Thus, the combination of the linear decision boundaries from
the first layer (node 1 and 2) sets the boundaries of the output
of the node 3. For this reason, by tuning the individual linear
decision boundaries of each node, we can tune the nonlinear
decision boundary of the whole network. If the output of
node 3 is either the substrate y3 or the enzyme z3, then
the classifier retains a nonlinear decision boundary as shown
in Fig. 3 D, however its shape can no longer be intuitively
mapped to the boundaries of nodes 1 and 2.

TABLE I
TABLE 1. PARAMETERS USED IN COMPUTATIONAL SIMULATIONS.

Parameter Unit Value Figure
δ h−1 1 all
θ h−1 1 all
γ µM−1h−1 100 all

w1 = w2 h−1 1 Fig. 1
w1 = w2 = w3 h−1 1 Fig. 2

w0x0 µMh−1 0.6 Fig. 2
w1

1 = 2w1
2 h−1 1 Fig. 3

w1
0x0 µMh−1 0 Fig. 3

w2
1 = w2

2 h−1 1 Fig. 3
w2

0x0 µMh−1 0.4 Fig. 3
w3

1 = w3
2 h−1 1 Fig. 3

w3
0x0 µMh−1 0 Fig. 3

V. DISCUSSION

We have demonstrated that suitably designed enzymatic
reactions can asymptotically give rise to an ideal perceptron
implementing a linear classifier, when the association rate is
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Fig. 3. A: Schematic of a two-layer classifier. B: Reaction schematics
corresponding to each node of the classifier. C: Computationally generated
input-output map of each node. Node 3 shows a nonlinear decision boundary.
D: Input-output behavior observed when the output of node 3 is either the
substrate or the enzyme.

sufficiently large, and can process multiple inputs with both
positive and negative weights. By composing multiple layers,
we can realize nonlinear classifiers in a predictable, tunable
and intuitive manner. This work expands the repertoire
of sequestration- and phosphorylation-based Biomolecular
Neural Networks that can realize complete ideal ANNs.
In vitro strand displacement Neural Networks can only be
used to design linear classifiers [5], and it is challenging
to assemble multi-layer neural networks to get nonlinear
classifiers or to translate such circuits into living systems.
PEN neural networks are challenging to implement in living
systems because of the non-ideal operating conditions they
require [6]. Although transcriptional-based neural networks
can realize nonlinear decision making [1], [20], they do not
behave as ideal perceptrons, which makes it difficult to com-
pose multiple layers and optimize computationally. Winner-
takes-all networks [10] are limited to linear classification
due to the multiple interconnections that arise from each
implementation. These limitations raise the open question:
what are the key design principles of molecular perceptrons?

The realization of molecular perceptrons based on various
mechanisms – such as sequestration [3], phosphorylation [4],
and enzymatic reactions (as in this work) – suggests that
endogenous networks may be able to perform pattern recog-

nition. However, the networks constructed so far lack the
complexity of endogenous networks, which arises e.g. due to
combinatorial binding [2], shared resources [21], and other
cellular contexts. This complexity makes it challenging to
evaluate how different endogenous networks are from an
ideal ANN; this is a fascinating avenue for future work.
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