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Abstract— This work presents a novel approach for achieving
state synchronization of homogeneous LTI agents to a trajectory
generated by a prescribed reference generator under intermit-
tent and asynchronous communication. The proposed protocol
involves emulating “ideal” global analog dynamics at each agent
to generate the control signal between samples. Each agent
transmits the centroid state of its local emulator rather than
its own state vector, which is used to update the emulators at
the receiving end. The paper guarantees synchronization with
a prescribed reference generator under mild assumptions on
the system’s structure, persistency of connectivity, and uniform
boundedness of sampling intervals. Additionally, the controller
parameters are independent of the sampling interval, allowing
it to be designed without any a priori knowledge of the sampling
sequence. Lastly, a simplified and scalable implementation
whose dimension is independent of the number of agents is
also proposed.

Index Terms— Sampled-data systems, network control sys-
tems.

I. INTRODUCTION

Over the past two decades, control problems involving
autonomous agents interacting via communication networks
have grown in significance. A central subclass of these are
agreement problems, often referred to as either consensus
[1], [2] or synchronization [3], [4]. In agreement problems,
the agents are tasked with asymptotically converging to a
common trajectory without a uniform reference signal. Given
the absence of such reference, agents must exchange infor-
mation to ensure their convergence. However, in practical
applications, their communication may be limited in various
ways. It is convenient to divide these constraints into two
categories: spatial and temporal.

Spatial constraints dictate that agents can only communi-
cate with a specific subset, termed their neighbors [5], [6].
This type of constraint is especially prevalent in agreement
problems and is often analyzed through a blend of system
and graph theoretic methods [7], [8]. Temporal constraints
determine when these agents can interact, typically confining
them to discrete time instances. As a result, agents must
generate their control signal based on intermittently available
information from the group.

Multi-agent problems with a singular communication con-
straint are well-studied. When subject to spatial constraints
control laws are often rooted in the consensus protocol [1],
employing graph-theoretical constructs such as the graph
Laplacian to naturally restrict the spatial structure. For
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homogeneous linear time-invariant (LTI) agents doing this
reduces the problem to simply designing a local controller
that is robust to certain perturbations, see [6] or [8, Sec. 8.3].
Similarly, temporally constrained control laws with a full
spatial structure are also generally well understood, even for
intermittent and asynchronous sampling [9]. However, the
same cannot be said when attempting to address problems
subject to both constraints simultaneously, even when con-
sidering only LTI agents, see [10] and the references therein.

In such problems, the common practice is to use a sequen-
tial design. First, design a spatially constrained control law
assuming continuous (analog) communication and then mod-
ify it to conform with the actual sampled communication.
Such modifications usually introduce conservatism to the
design. For example, zero-order hold (ZOH) discretization
enforces sufficiently small and conservative gains even for
integrator agents under synchronous and periodic sampling
[1]. Other methods such as the input-delay approach, e.g.
[11], [12], treat the sampling as a perturbation, making them
inherently conservative.

This work argues that the “design, discretize, robustify”
approach might introduce unnecessary conservatism, which
can be mitigated by leveraging sophisticated hold (D/A)
devices and exploiting the problem’s different time scales.
A staple of lumped sampled-data control, generalized hold
functions can enhance performance [13] while also ac-
commodating intricate sampling patterns [14]. Furthermore,
while inter-agent communication may be limited and spo-
radic, it is reasonable to assume that agents are equipped to
continuously (or considerably faster) monitor their own state.
Building on this, recent research [15] tackled the integrator
consensus problem with complex communication constraints
by designing a generalized hold function that emulates an
analog (continuous) consensus protocol between samples.
The agents exchanged the centroids of these emulations when
possible and used the incoming information to update their
local emulators.

We aim to extend the results of [15] to a more general sce-
nario. Specifically, a leaderless group of homogeneous finite-
dimensional LTI agents, tasked with synchronizing their state
to a time-varying trajectory. This scenario poses distinct
technical challenges. Unlike the integrator case, the resulting
closed-loop cannot be decoupled into a series interconnection
of purely discrete and continuous systems. To address these
complexities, we leverage the freedom in designing the
hold function. Instead of emulating a distributed control
law, like the consensus protocol, we mimic a centralized
controller derived directly from the objective. This analog
component is complemented by a discrete consensus-like
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Fig. 1. Sampled-data multi-agent control architectures.

update mechanism that incorporates new information from
neighbors.

The proposed design approach has several appealing quali-
ties compared to standard sampled-data design methods. First
and foremost, the feedback gain can be designed without
any prior knowledge of either the sampling sequence or the
spatial topology. This is a stark contrast to the previously
mentioned approaches where synthesizing the controller gain
requires known bounds on the dwell time, sampling intervals,
and at times the Laplacian eigenvalues. Moreover, treating
the spatial and temporal constraints simultaneously allows
us to reduce the problem to a variant of discrete agreement
over switching graphs. Hence, agreement is reached under a
standard joint connectivity assumption on the induced graphs
even for intermittent and asynchronous sampling. Finally,
we show that the availability of local information can be
leveraged to obtain a reduced order implementation which is
independent of the number of agents.

This paper is organized as follows. Section II sets up the
problem and communication constraints, followed by Section
III which outlines the proposed design approach. The main
result is derived in Section IV, §IV-A analyzes the hybrid
closed-loop dynamics and proves that they indeed reach
asymptotic agreement, while §IV-B proposes a reduced-order
and simplified implementation. We end this note with a
numerical example in Section V and concluding remarks and
future outlook in Section VI.

Notation: The sets of all non-negative integers are denoted
as ℤ+ and ℕa ≔ {𝑖 ∈ ℤ | 1 ≤ 𝑖 ≤ a}. Sequences with
indices from ℤ+ are indicated as {𝑠𝑖}. The sets of real and
complex numbers are denoted by ℝ and ℂ, respectively, and
ℂ0 ≔ {𝑠 ∈ ℂ | Re 𝑠 > 0}. By 𝑒𝑖 we understand the 𝑖th
standard basis vector in ℝa and by 𝟙a , or simply 𝟙 when
the dimension is clear from the context, the all-ones vector
from ℝa . The complex-conjugate transpose of a matrix 𝑀 is
denoted by 𝑀 ′. The image (range) and kernel (null space) of
a matrix 𝑀 are notated Im 𝑀 and ker 𝑀 , respectively. The
orthogonal projection onto Im 𝟙a is 𝑃𝟙 ≔ 𝟙a𝟙

′
a/a. Given two

matrices (vectors) 𝑀 and 𝑁 , 𝑀 ⊗𝑁 denotes their Kronecker
product, while spec(𝑀) refers to the set of all eigenvalues
of 𝑀 .

II. PROBLEM SETUP

Consider a homogeneous agents, each with linear dynam-
ics given by

¤𝑥𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡), 𝑥𝑖 (0) = 𝑥𝑖,0, 𝑖 ∈ ℕa (1)

for some matrices 𝐴 ∈ ℝ𝑛×𝑛 and 𝐵 ∈ ℝ𝑛×𝑚, where 𝑥𝑖 (𝑡)
and 𝑢𝑖 (𝑡) are the 𝑖th state and control signal respectively.
As mentioned in the Introduction, the agents are subject to
complex communication constraints, which manifest as re-
strictions on the information each agent may use to generate
𝑢𝑖 (𝑡). To this end, we define 𝑧𝑖 (𝑡) as the local information
the 𝑖th agent may transmit to its neighbors.

The spatial constraints are represented by neighborhood
sets, N𝑖 (𝑡) ⊂ ℕa \ {𝑖}, where each N𝑖 (𝑡) denotes the
neighbors of agent 𝑖 at time 𝑡. This implies that 𝑢𝑖 (𝑡)
is some function of the local state, 𝑥𝑖 (𝑡), and any 𝑧 𝑗 (𝑡)
such that 𝑗 ∈ N𝑖 (𝑡). Mathematically this may be written
as 𝑢𝑖 (𝑡) = ^(𝑥𝑖 , 𝑧N𝑖 (𝑡 ) ) where ^ is some function and
𝑧N𝑖 (𝑡 ) represent the neighbors of agent 𝑖 at time 𝑡. The
temporal constraints are represented by a strict monotonically
increasing of sampling instances {𝑠𝑘}, 𝑘 ∈ ℤ+, where agents
may interact only on time instances 𝑡 = 𝑠𝑘 . We also use
the convention that 𝑡 = 𝑠𝑘 corresponds to the time at the
receiving agent. When combined, the two restrict the 𝑖th
control signal to be of the form

𝑢𝑖 (𝑡) = ^(𝑥𝑖 (𝑡), 𝑧N𝑖 (𝑠𝑘 ) ), 𝑠𝑘 ≤ 𝑡 < 𝑠𝑘+1. (2)

Consequently, at each 𝑠𝑘 the collection of neighborhoods
N𝑖 [𝑘] induces a directed graph, G[𝑘], determining the per-
mitted information exchange. This is illustrated in Fig. 1(a).

Remark 2.1 (Scope of communication constraints): Note
that we only assume the existence of the sampling sequence
{𝑠𝑘} and not how it is generated. For example, it can
be time-triggered, event-triggered, stochastic, or periodic
without loss of generality. Second, note that {𝑠𝑘} is a
sequence of sampling instances for the entire ensemble,
thus N𝑖 [𝑘] can be empty for certain agents at some 𝑡 = 𝑠𝑘 .
This allows our framework to encompass asynchronous
communication since {𝑠𝑘} is a sequence of all instances on
which at least one of the agents received information. ▽

We consider the following objective in the spirit of [4].

Ps: Given a matrix 𝐴0 ∈ ℝ𝑛×𝑛 with spec(𝐴0) ∈ ℂ \ℂ0, de-
sign control signals 𝑢𝑖 (𝑡) satisfying the spatio-temporal
constraints that ensures

lim
𝑡→∞

∥𝑥𝑖 (𝑡) − e𝐴0𝑡𝑟0∥ = 0, ∀𝑖 ∈ ℕa (3)

for some constant 𝑟0 ∈ ℝ𝑛 and all initial conditions of
agents (1).

It shall be emphasized that the matrix 𝐴0 does not represent
a leader node, but rather the shape of required agreement
trajectories. Because setting 𝐴0 = 0 recovers the consensus
problem and setting 𝐴0 = 𝐴 recovers the classical synchro-
nization [3], Ps may be viewed as a generalization of both.
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III. PROPOSED ARCHITECTURE

The spatial and temporal constraints completely character-
ize the permitted information exchange that any permissible
controller must respect. When compared with (2), it is clear
that simply incorporating a ZOH synchronized with {𝑠𝑘} is
just a particular option. Such controllers keep the control
signal constant between updates, an additional constraint
imposed by the designer rather than by the communication
network. We opt for a different solution, one employing a
generalized hold function [13] designed for the objective at
hand. This is a well-known principle in lumped sampled-data
control systems where, in the absence of an optimal solution,
common wisdom dictates that the hold should attempt to
reconstruct a “good” LTI continuous-time control law [16,
§6.1]. In other words, it should locally emulate an analog
closed loop, in an open-loop fashion, between samples.

To be more precise, assume that Ps is solved by some
control law 𝑢𝑖 (𝑡) = ^(𝑥𝑖 (𝑡), 𝑧N𝑖 (𝑡 ) ). Instead of holding the
signal constant between samples, we wish to implement
a variant of this signal, 𝑢𝑖 (𝑡) = ^(𝑥𝑖 (𝑡), `𝑖 (𝑡)), where `𝑖
is an auxiliary signal with `𝑖 (𝑡) ∈ ℝa𝑛 that we term the
emulator of agent 𝑖. Each local emulated group evolves as
the ensemble would under the desired analog control law
between samples and is updated at sampling instances. In
effect, each agent implements a model of the entire world
around it and uses it to generate the control signal locally.
When new measurements are received each agent updates the
emulated states, effectively closing the loop only at sampling
instances. This logic is illustrated in Fig. 1(b).

The resulting controller has two components that must
be designed: i) an analog control law to emulate and ii) a
discrete update mechanism to incorporate new information
into the emulators. The analog control law is motivated and
designed in §III-A, while the update mechanism and overall
controller are discussed in §III-B.

A. The analog control law

The paradigm described hitherto served as the guiding
principle in [15], where each agent locally emulated the
consensus protocol over some agreed-upon spatial topology.
Interestingly, the emulated topology could be chosen as the
complete graph, i.e. centralized control law, and still result
in a distributed controller respecting the communication
constraints. This may be attributed to the fact that the
emulators are local in nature and the particular structure of
the update mechanism. Motivated by this, we shall design
an unconstrained control law to emulate via the generalized
hold.

To this end, consider the aggregation of the agents

¤𝑥(𝑡) = (𝐼a ⊗ 𝐴)𝑥(𝑡) + (𝐼a ⊗ 𝐵)𝑢(𝑡), 𝑥(0) = 𝑥0, (4)

where 𝑥(𝑡) and 𝑢(𝑡) correspond vectors stacking their local
counterparts 𝑥𝑖 (𝑡) and 𝑢𝑖 (𝑡). To satisfy (3) the agents must
track a common trajectory, implying that asymptotically the
aggregate state must lie in the agreement space, Im(𝟙a ⊗

𝐼𝑛). Introducing the orthogonal projection onto the agreement
space, 𝑃𝟙 ⊗ 𝐼𝑛, the aggregate state can be decomposed as

𝑥(𝑡) = 𝛿(𝑡) + (𝟙a ⊗ 𝐼𝑛)𝑥(𝑡). (5)

where 𝛿(𝑡) B
(
(𝐼a − 𝑃𝟙) ⊗ 𝐼𝑛

)
𝑥(𝑡) is the disagreement and

𝑥(𝑡) B (1/a) (𝟙′a ⊗ 𝐼𝑛)𝑥(𝑡) is the centroid. This facilitates
the decomposition of (3) into two objectives, one for the
disagreement

lim
𝑡→∞

𝛿(𝑡) = 0, (6a)

and one for the centroid

lim
𝑡→∞

∥𝑥(𝑡) − e𝐴0𝑡𝑟0∥ = 0. (6b)

Because (𝑃𝟙 ⊗ 𝐼𝑛)𝑥 = (𝟙a ⊗ 𝐼𝑛)𝑥, the centroid and disagree-
ment are orthogonal and the two objectives are independent,
making it natural to propose some 𝑢𝛿 (𝑡) and �̄�(𝑡) to inde-
pendently satisfy (6). A state-feedback control in this vein
would be

𝑢(𝑡) = (𝐼a ⊗ 𝐹d)𝛿(𝑡) + (𝟙a ⊗ �̄�)𝑥(𝑡) (7)

for some gains 𝐹d and �̄�, under which straightforward
algebra results in the following independent dynamics for
the disagreement and the centroid,

¤𝛿(𝑡) = (𝐼a ⊗ (𝐴 + 𝐵𝐹d))𝛿(𝑡)
¤̄𝑥(𝑡) = (𝐴 + 𝐵�̄�)𝑥(𝑡).

Note that the disagreement dynamics are in fact a identical
and independent copies of the same 𝑛th order system, while
the centroid dynamics are simply one 𝑛th order system.
Therefore, (6a) holds iff

𝐴d ≔ 𝐴 + 𝐵𝐹d

is Hurwitz and (6b) holds whenever 𝐴0 = 𝐴 + 𝐵�̄�. Hence,
(7) can solve the problem if we assume that
A 1: the pair (𝐴, 𝐵) is stabilizable and there is �̄� such that

𝐴0 = 𝐴 + 𝐵�̄�.
The above is required for Ps to be solved by some uncon-
strained state-feedback, as is the control law to be emulated.
It is possible to consider a more general dynamic controller,
such as the one in [4], which would result in a different
solvability assumption.

B. Sampled-data control law

Let `𝑖 (𝑡) ∈ ℝa𝑛 denote the 𝑖th agent’s emulation of
the entire ensemble under control law (7). Accordingly, by
`𝑖 𝑗 (𝑡) ∈ ℝ𝑛 we identify the 𝑖th agent’s emulation of the 𝑗 th
agent’s state with the convention that `𝑖𝑖 (𝑡) = 𝑥𝑖 (𝑡). As in
§III-A we can define the local disagreement of emulator 𝑖 as

Δ𝑖 B
(
(𝐼a − 𝑃𝟙) ⊗ 𝐼𝑛

)
`𝑖

and the centroid of the 𝑖th emulator as

¯̀𝑖 B
1
a
(𝟙′a ⊗ 𝐼𝑛)`𝑖 .

Between sampling instances `𝑖 emulates system (4), as if
controlled by (7), and evolves continuously according to

¤̀𝑖 (𝑡) =
(
𝐼a ⊗ 𝐴d + 𝑃𝟙 ⊗ (𝐵(�̄� − 𝐹d))

)
`𝑖 (𝑡), (8)
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for some initial conditions `𝑖 (0) = `𝑖,0. Each agent is
controlled by a local version of (7) based upon Δ𝑖 and ¯̀𝑖
instead of their analog counterparts, viz.

𝑢𝑖 (𝑡) = (𝑒′𝑖 ⊗ 𝐹d)Δ𝑖 (𝑡) + �̄� ¯̀𝑖 (𝑡). (9)

As previously discussed, (8) and (9) cannot solve Ps on their
own since each version of (8) evolves independently from the
others. Hence, it must be accompanied by some information
exchange mechanism that updates the local emulators while
satisfying the spatio-temporal constraints.

In §III-A we have seen that the cooperative aspect of Ps
can be reduced to a requirement on the centroid given by
(6b). Motivated by this, we propose an update mechanism
based on the local emulated centroids. Namely, at sampling
instances, each local emulator is updated according to a
discrete system given by

`𝑖 𝑗 (𝑠+𝑘) = `𝑖 𝑗 (𝑠𝑘) − 𝛼𝑖 𝑗

∑︁
𝑙∈N𝑖 [𝑘 ]

( ¯̀𝑖 (𝑠𝑘) − ¯̀𝑙 (𝑠𝑘)) , (10)

for all 𝑖 ≠ 𝑗 and some gains 𝛼𝑖 𝑗 ∈ ℝ. If gains 𝛼𝑖 =[
𝛼𝑖1 · · · 𝛼𝑖a

] ′ are chosen such that 𝑒′
𝑖
𝛼𝑖 = 0 for all 𝑖 ∈ ℕa ,

then the closed-loop system of agents (4) controlled by (9)
which is generated by (8) and (10) is given by{

¤̀ (𝑡) =
(
𝐼a ⊗

(
𝐼a ⊗ 𝐴d + 𝑃𝟙 ⊗ 𝐵(�̄� − 𝐹d)

) )
`(𝑡)

`(𝑠+𝑘) = (𝐴jmp [𝑘] ⊗ 𝐼𝑛)`(𝑠𝑘), `(0) = `0
(11)

where

𝐴jmp [𝑘] = 𝐼a2 − 1
a

a∑︁
𝑖=1

∑︁
𝑙∈N𝑖 [𝑘 ]

(𝑒𝑖 (𝑒𝑖 − 𝑒𝑙)′) ⊗ (𝛼𝑖𝟙
′
a). (12)

Note that the agents communicate only through (10) which
is spatially distributed, thus the controller respects the spatio-
temporal constraints.

Clearly to solve Ps we must make some assumption on
the information exchange. Indeed, if new information does
not persistently arrive at the agents their trajectories will be
governed by the non-interacting flow dynamics. To ensure
sufficient information flow we assume that

A 2: there is a strictly increasing sub-sequence of sampling
indices {𝑘 𝑝} such that for all 𝑝 ∈ ℤ+ (i) the intervals
𝑠𝑘𝑝+1−𝑠𝑘𝑝 are uniformly bounded and (ii) ∪𝑘𝑝+1

𝑘=𝑘𝑝+1G[𝑘]
contains a directed rooted tree.

The above is a standard connectivity assumption [2], [5],
[17] guaranteeing that, over bounded intervals of time, new
information reaches every agent.

Now, with a controller at hand, we are set to show that it
solves Ps.

IV. THE MAIN RESULT

In §III-A we saw that the disagreement and centroid
dynamics were decoupled by (7), which in turn enabled Ps to
be reduced into two independent problems. Inspired by this,
consider the following partition of the stacked emulators

`(𝑡) = (𝐼a ⊗ 𝟙a ⊗ 𝐼𝑛) ¯̀(𝑡) + Δ(𝑡) ∈ ℝa2𝑛.

Now, ¯̀(𝑡) is an (𝑛a) × 1 block vector, where the 𝑖th 𝑛 × 1
block contains the centroid of the 𝑖th emulator. Similarly,
Δ(𝑡) is a block vector where blocks Δ𝑖 (𝑡) contain the local
disagreement vector of emulator 𝑖. Recall that 𝑥𝑖 (𝑡) = `𝑖𝑖 (𝑡),
hence the aggregate state is given by

𝑥(𝑡) = ¯̀(𝑡) +
a∑︁
𝑖=1

(
(𝑒𝑖 (𝑒′𝑖 ⊗ 𝑒′𝑖)) ⊗ 𝐼𝑛

)
Δ(𝑡).

The above allows us to pose equivalent conditions for the
solution of Ps in the same vein as those presented in (6).
Namely, if the emulator disagreements asymptotically vanish,

lim
𝑡→∞

Δ(𝑡) = 0, (13a)

and the emulator centroids verify

lim
𝑡→∞

∥ ¯̀(𝑡) − 𝟙a ⊗ e𝐴0𝑡𝑟0∥ = 0, (13b)

then Ps is satisfied.

A. Centroid-disagreement separation and synchronization

Unlike their analog counterparts, ¯̀(𝑡) and Δ(𝑡) are cou-
pled through (10). However, for some choices of update
gains 𝛼𝑖 they take on a simple structure, allowing for a more
streamlined analysis.

Lemma 4.1: If 𝟙′a𝛼𝑖 = 1 for all 𝑖 ∈ ℕa , then the
disagreements dynamics are given by{

¤Δ(𝑡) = (𝐼a2 ⊗ 𝐴d)Δ(𝑡), Δ(0) = Δ0

Δ(𝑠+𝑘) = Δ(𝑠𝑘) +
(
(𝐵jmp [𝑘]L[𝑘]) ⊗ 𝐼𝑛

)
¯̀(𝑠𝑘),

(14a)

with

𝐵jmp [𝑘] B
a∑︁
𝑖=1

(𝑒𝑖𝑒′𝑖) ⊗ (𝟙a/a − 𝛼𝑖),

and L[𝑘] is the Laplacian matrix associated with G[𝑘] [7,
§2.3.5]. In addition, the centroid dynamics are given by

¤̀̄ (𝑡) = (𝐼a ⊗ (𝐴 + 𝐵�̄�) ¯̀(𝑡), ¯̀(0) = ¯̀0

¯̀(𝑠+𝑘) = ((𝐼a −
1
a
L[𝑘]) ⊗ 𝐼𝑛) ¯̀(𝑠𝑘)

(14b)

Proof: The flow dynamics mirror the analog case. Note
that 𝐴jmp [𝑘] is defined identically to the jump map in [15,
Lemma 2], hence the result follows from applying it to the
jump map of (11).

There are two immediate consequences of Lemma 4.1: i)
the dynamics of ¯̀(𝑡) are autonomous and do not depend on
those of Δ(𝑡) and ii) ¯̀(𝑡) can be thought of as a discrete
input affecting Δ(𝑡) at time instances 𝑡 = 𝑠𝑘 . Consequently,
finding conditions under which the centroids satisfy (13b)
can be done independently of Δ(𝑡). This is the purpose of
the following result.

Lemma 4.2: If A 1,2 holds and �̄� is chosen such that 𝐴 +
𝐵�̄� = 𝐴0, then the emulated centroids (14b) satisfy (13b)
with 𝑟0 B

(∑a
𝑖=1 𝑞𝑖 ¯̀𝑖,0

)
= (𝑞′ ⊗ 𝐼𝑛) ¯̀0 where 𝑞 is some

constant vector which depends on the sequence of graphs.
Proof: Omitted because of space limitations.

Utilizing A 1, the flow map ensures that each ¯̀𝑖 (𝑡) aligns
precisely with the intended trajectory shape. However, if the
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initial conditions differ the trajectories would be different.
This cannot be remedied by the non-interacting flows. On
the other hand, the jump map mirrors discrete consensus
dynamics. Under A 2, this map will asymptotically steer
a constant vector to a fixed consensus point within the
agreement space. Thus, only the combined flow and jump
dynamics under both assumptions guarantee the solution of
Ps for ¯̀(𝑡). Hence, Lemma 4.2 proves that under A 1,2 and
a proper choice of �̄�, ¯̀(𝑡) asymptotically satisfy (13b). The
final step would be to show the stability of (14a), which can
be thought of as an LTI system with ¯̀ as an impulsive input.
Moreover, the “input matrix” for these impulses includes
a, possibly different, graph Laplacian matrix at each 𝑘 .
In particular, for any graph 𝟙a ∈ ker L[𝑘], therefore if
¯̀(𝑠𝑘) ∈ Im 𝟙a ⊗ 𝐼a then (14a) will contain no jumps. This
is a key property in proving the main result, which is stated
below.

Theorem 4.3: Consider agents (1) controlled by (9), gen-
erated by emulators (11) and update law (10). If A 1,2 holds,
then control law (9) solves Ps for all gains 𝐹d and �̄� such
that 𝐴d = 𝐴 + 𝐵𝐹d is Hurwitz and 𝐴 + 𝐵�̄� = 𝐴0 and all
emulator update gains 𝛼𝑖 𝑗 such that 𝟙′a𝛼𝑖 = 1 for all 𝑖 ∈ ℕa .
Moreover, the emulators asymptotically agree and remain
bounded if e𝐴0𝑡 is bounded.

Proof: By assumption, 𝟙′a𝛼𝑖 = 1 for all 𝑖 ∈ a, therefore
the condition for Lemma 4.1 holds. Define the centroid error
𝜖 (𝑡) B ¯̀(𝑡) − 𝟙a ⊗ e𝐴0𝑡𝑟0 where 𝑟0 is in Lemma 4.2. By
assumption 𝐴+𝐵�̄� = 𝐴0, and 𝐴d is Hurwitz and A 1,2 holds,
thus from Lemma 4.2 we know that ¯̀(𝑡) → 𝟙a ⊗ e𝐴0𝑡𝑟0, or
equivalently that 𝜖 (𝑡) → 0 from every initial condition. Note
that 𝟙a ∈ ker L[𝑘] for all 𝑘 , thus we can rewrite the jump
part of (14a) as

Δ(𝑠+𝑘) = Δ(𝑠𝑘) +
(
𝐵jmp [𝑘] ⊗ 𝐼𝑛

) (
L[𝑘] ⊗ 𝐼𝑛

)
𝜖 (𝑠𝑘).

Since 𝜖 (𝑡) → 0 and is bounded, the sequence {(L[𝑘] ⊗
𝐼𝑛)𝜖 (𝑠𝑘)} is bounded and vanishes asymptotically, reducing
(14a) to an LTI system with a bounded and asymptotically
vanishing input. The stability of LTI systems with bounded
and vanishing inputs is independent of the actual input,
therefore since 𝐴d is Hurwitz Δ(𝑡) → 0. Combining with
(13) yields

lim
𝑡→∞

𝑥(𝑡) = lim
𝑡→∞

¯̀(𝑡) = 𝟙a ⊗ e𝐴0𝑡𝑟0,

implying that the agents agree. Similarly, taking the limit for
`(𝑡) yields

lim
𝑡→∞

`(𝑡) = lim
𝑡→∞

(𝐼a ⊗ 𝟙a ⊗ 𝐼𝑛) ¯̀(𝑡) = 𝟙a2 ⊗ e𝐴0𝑡𝑟0,

therefore the emulators also agree and remain bounded if
e𝐴0𝑡 is bounded.

B. Can we agree to not disagree?

The obvious drawback of emulation-based control archi-
tectures is that each agent must locally emulate the entire
group, yielding local controllers whose dimension grows
linearly with 𝑛a. This may not be feasible for large networks

of high-order agents. In an effort to circumvent that, consider
a different representation of (9),

𝑢𝑖 (𝑡) = 𝐹d`𝑖𝑖 (𝑡) + (�̄� − 𝐹d) ¯̀𝑖 (𝑡), (9′)

which is obtained by substituting Δ𝑖 (𝑡) = `𝑖 (𝑡) − (𝟙a ⊗
𝐼𝑛) ¯̀𝑖 (𝑡). Control law (9′) requires two 𝑛th order states, the
local emulated centroid and local emulated state, hinting that
it might be possible to obtain a reduced order implementa-
tion.

Corollary 4.4: If A 1,2 holds and each agent can contin-
uously measure its own state then the following 𝑛th order
local controllers

¤̀̄
𝑖 (𝑡) = (𝐴 + 𝐵�̄�) ¯̀𝑖 (𝑡), ¯̀𝑖 (0) = ¯̀𝑖,0

¯̀𝑖 (𝑠+𝑘) = ¯̀𝑖 (𝑠𝑘) −
1
a

∑︁
𝑙∈N𝑖 [𝑘 ]

( ¯̀𝑖 (𝑠𝑘) − ¯̀𝑙 (𝑠𝑘))

𝑢𝑖 (𝑡) = 𝐹d𝑥𝑖 (𝑡) + (�̄� − 𝐹d) ¯̀𝑖 (𝑡)

(15)

solves Ps for all gains 𝐹d, �̄� such that 𝐴 + 𝐵�̄� = 𝐴0 and 𝐴d
is Hurwitz.

Proof: By definition `𝑖𝑖 (𝑡) = 𝑥𝑖 (𝑡) which is locally
available continuously by assumption, substituting `𝑖𝑖 (𝑡)
with 𝑥𝑖 (𝑡) in (9′) gives the first equivalence. Since 𝑥𝑖 (𝑡) is
locally available, to implement the control each agent needs
to implement only ¯̀𝑖 (𝑡). By Lemma 4.1 we know that ¯̀(𝑡) is
independent of Δ(𝑡) thus the rest of (15) follows immediately
from considering the local version of (14b).

The above implementation is still distributed and adheres
to the spatial and temporal constraints, but now each local
controller is only of dimension 𝑛 regardless of the number
of agents. This agrees with the intuition behind the analog
control law from §III-A: the agents must track the centroid
and drive the disagreements to zero.

Remark 4.1 (Disturbance rejection): The logic is remi-
niscent of a classic servo-regulation problem, where the
control law has a stabilizing component acting on the state
and a tracking component acting on the reference signal. This
raises the natural question of how will this structure behave
in the presence of disturbances, something synchronizing
systems tend to do poorly [18]. ▽

V. ILLUSTRATIVE EXAMPLE

To illustrate the proposed sampled-data protocol, consider
a simple system comprised of a = 3 agents with

¤𝑥𝑖 (𝑡) =
[

4 9
1 4

]
𝑥𝑖 (𝑡) +

[
2
1

]
𝑢𝑖 (𝑡)

trying to synchronize to 𝐴0 =
[ 0 1
−1 0

]
. In this case

�̄� = −
[

2 4
]

and 𝐹d =
[
−34.6 39.2

]
satisfy the requirements of Theorem 4.3.

We further assume that communication between agents
is intermittent and asynchronous, meaning that each agent
transmits only at a subset of sampling instances. At each
sampling instance G[𝑘] is a union of any nonempty combi-
nation of the three graphs in Fig. 2. The system is simulated
for time interval 𝑡 ∈ [0, 30], the results of which are shown
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in Fig. 3. The sampling instances, shown by abscissa ticks,
are a random variable such that 𝑠𝑘+1 − 𝑠𝑘 ∈ 0.3ℕ6. Major
ticks indicate the sub-sequence of sampling instances {𝑘 𝑝}
satisfying A 2. The synchronous trajectory as defined in
Lemma 4.2 is plotted in lavender.

x1

x2 x3

G2

x1

x2 x3

G1

x1

x2 x3

G3

Fig. 2. The three possible graphs.

Fig. 3(a) presents the time evolution of the agents states.
It can be seen that each component of the state converges
to a common trajectory as stated in Theorem 4.3. Fig. 3(b)
shows the decay of the emulator disagreement norm, namely
∥Δ𝑖 (𝑡)∥, on a logarithmic scale. We can see that ∥Δ𝑖 (𝑡)∥ is
not monotonically decreasing, which is due to the hybrid
nature of the system. The signals ∥Δ𝑖 (𝑡)∥ sharply decrease
between samples, but might jump up at 𝑡 = 𝑠𝑘 , when
new information is brought in. Still, there are exponentially
decreasing functions upperbounding the combined disagree-
ments norms. The phase portrait of ¯̀𝑖 (𝑡) is given in Fig. 3(c)
and displays similar discontinuous behaviour, where each
centroid sharply changes its trajectory when the emulators
are updated, until they all converge to a common trajectory.

VI. CONCLUDING REMARKS

In this note, we addressed time-varying state synchroniza-
tion of general LTI agents under complex communication
constraints. The synchronization is not limited to trajec-
tories generated by the open-loop dynamics, but rather to
any dynamics reachable by local state-feedback. We were
able to guarantee global asymptotic agreement under mild
assumptions on the persistent connectivity of the graphs
and sampling instances. Moreover, the control parameters
are independent of both the sampling sequence and spatial
graphs. These properties are facilitated by a separation
between the control law and the information processing
mechanism, hinting at possible extensions to more general
setups. In particular, extensions to output feedback, distur-
bance rejection, and systems affected by delays are currently
being considered.
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