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Abstract— We study stochastic dynamical systems in settings
where only partial statistical information about the noise is
available, e.g., in the form of a limited number of noise
realizations. Such systems are particularly challenging to analyze
and control, primarily due to an absence of a distributional
uncertainty model which: (1) is expressive enough to capture
practically relevant scenarios; (2) can be easily propagated
through system maps; (3) is closed under propagation; and
(4) allows for computationally tractable control actions. In
this paper, we propose to model distributional uncertainty
via Optimal Transport ambiguity sets and show that such
modeling choice satisfies all of the above requirements. We
then specialize our results to stochastic LTI systems, and start
by showing that the distributional uncertainty can be efficiently
captured, with high probability, within an Optimal Transport
ambiguity set on the space of noise trajectories. Then, we show
that such ambiguity sets propagate exactly through the system
dynamics, giving rise to stochastic tubes that contain, with high
probability, all trajectories of the stochastic system. Finally, we
show that the control task is very interpretable, unveiling an
interesting decomposition between the roles of the feedforward
and the feedback control terms. Our results are actionable and
successfully applied in stochastic reachability analysis and in
trajectory planning under distributional uncertainty.

I. INTRODUCTION

In the era of data science, it is increasingly common to
encounter stochastic (dynamical) systems for which only
partial statistical information on the noise is available (e.g.,
samples). We are therefore confronted with so-called distri-
butional uncertainty, whereby not only is the system affected
by noise but also the underlying noise probability distribution
is unknown and only partially observable.

In Operation Research and Machine Learning, Wasserstein
ambiguity sets have emerged as a prominent model for
distributional uncertainty. These are balls in the probability
space defined in terms of the Wasserstein distance [1], a
distance between probability distributions, and centered at
a reference distribution P̂. Examples of applications are
distributionally robust optimization [2], [3], regression and
classification [4]–[6], adversarial training [7], etc.

More recently, Wasserstein ambiguity sets, and more
generally optimal transport, penetrated the control community,
with application in uncertainty quantification in dynamical sys-
tems [8], [9], model predictive control [10]–[12], distribution
steering [13], optimal control [14], multi-agent stochastic op-
timization [15], [16], linear quadratic differential games [17],
probability/multi-agent control [18], and filtering [19]–[22],
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to name a few. In this paper, we demonstrate that Optimal
Transport (OT) ambiguity sets, which encompass Wasserstein
ambiguity sets, are also easy to propagate. This makes them
very natural to model distributional uncertainty in the context
of dynamical systems, enjoying the following three desirable
features:

• Expressivity. They are rich enough to capture relevant
stochasticity of real-world systems; see Section II.

• Propagation. They are easily and exactly propagated
through linear maps and they are closed under the
propagation (i.e., the result of the propagation is itself
an OT ambiguity set); see Section III.

• Computation. They allow for computationally tractable
decision-making (e.g., computing worst-case risk over
the uncertainty set); see Sections II and V.

More specifically, our contributions are threefold. First, we
study the propagation of OT ambiguity sets through linear
maps and show that the propagation of an OT ambiguity set
is itself an OT ambiguity set or can be tightly upper bounded
by an OT ambiguity set. Second, we instantiate our results
in the context of stochastic linear time-invariant systems and
unveil a decomposition between the roles of the feedforward
and feedback control terms. Finally, we deploy our results for
stochastic reachability analysis and trajectory planning under
distributional uncertainty. Among others, we demonstrate that
OT ambiguity sets enable the data-driven robust design of
reachability sets and feedforward input trajectories. This way,
decisions perform well for the true (but unknown) probability
distribution governing the noise even if the decision-maker
only disposes of a few samples.

This theory is successfully exploited in the concomitant
paper [12] to formulate a Wasserstein Tube MPC capable of
optimally trading between safety and performance.

A. Mathematical Preliminaries and Notation

Throughout the paper, P(Rd) denotes the space of proba-
bility distributions over Rd. Given P,Q ∈ P(Rd), we denote
by P ⊗ Q their product distribution and by P⊗t the t-fold
product distribution P ⊗ . . . ⊗ P with t terms. The delta
probability distribution at x ∈ Rd is denoted by δx. We focus
on two classes of transformations of probability distributions:
pushforward via a linear transformation and the convolution
with a delta distribution. We start with the pushforward:

Definition 1. Let P ∈ P(Rd) and A ∈ Rm×d. The
pushforward of P via the linear map x 7→ Ax is denoted by
A#P, and is defined by (A#P)(B) := P(A−1(B)), for all
Borel sets B ⊂ Rm.
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Equivalently, Definition 1 says that if x ∼ P, then A#P is
the probability distribution of the random variable y = Ax.

Example 1. Let P̂ = 1
n

∑n
i=1 δx̂(i) be an empirical distri-

bution. Then, A#P̂ = 1
n

∑n
i=1 δAx̂(i) is empirical as well,

supported on the propagated samples.

Moreover, given x ∼ P on Rd and y ∈ Rd, x + y is
distributed according to the convolution δy ∗P defined below.

Definition 2. Let P ∈ P(Rd) and y ∈ Rd. Then, the
convolution of P and δy is denoted by δy ∗ P, and is defined
by (δy ∗ P)(A) = P(A− y), for all Borel sets A ⊂ Rd.

Finally, we are interested in probabilistic constraints based
on the conditional value-at-risk (CVaR). Given f : Rd → R
and a random variable x ∼ Q on Rd, the CVaR of f(x) at
probability level 1− γ is defined as

CVaRQ
1−γ(f(x)) = inf

τ∈R
τ +

1

γ
EQ [max{0, f(x)− τ}] . (1)

II. CAPTURE DISTRIBUTIONAL UNCERTAINTY

We start by formalizing the notion of OT ambiguity sets
and exposing their expressivity and their geometric, statistical,
and computational features and guarantees.

A. Definition of Optimal Transport ambiguity sets

Consider a non-negative lower semi-continuous function
c : Rd → R≥0 (henceforth, referred to as transportation cost)
and two probability distributions P,Q ∈ P(Rd). Then, the
OT discrepancy between P and Q is defined by

W c(P,Q) := inf
γ∈Γ(P,Q)

∫
Rd×Rd

c(x1 − x2)dγ(x1, x2), (2)

where Γ(P,Q) is the set of all probability distributions over
Rd×Rd with marginals P and Q, often called transport plans
or couplings [1]. The semantics are as follows: we seek the
minimum cost to transport the probability distribution P onto
the probability distribution Q when transporting a unit of
mass from x1 to x2 costs c(x1 − x2). Intuitively, W c(P,Q)
quantifies the discrepancy between P and Q and it naturally
provides us with a definition of ambiguity in the space of
probability distributions. In particular, the OT ambiguity set
of radius ε centered at P is defined by

Bc
ε(P) := {Q ∈ P(Rd) :W c(P,Q) ≤ ε} ⊂ P(Rd). (3)

In words, Bc
ε(P) includes all probability distributions onto

which P can be transported with a budget of at most ε.

B. Properties of Optimal Transport ambiguity sets

OT ambiguity sets are attractive to capture distributional
uncertainty for various reasons, which we detail next.

a) Expressivity: OT ambiguity sets are highly expres-
sive: they contain both continuous and discrete distributions,
distributions not concentrated on the support of P, and even
distributions whose mass asymptotically escapes to infinity:

Example 2. Let c(x1 − x2) = |x1 − x2|2 on R, ε > 0,
and let Q be the Gaussian distribution with mean 0 and

variance ε. Then, W c(δ0,Q) = EQ

[
|x|2

]
= ε. Moreover,

W c(δ0, δ√ε) = ε, and W c(δ0, ε
1
n2 δn + (1− ε 1

n2 )δ0) = ε.

These properties cease to hold if the discrepancy between
probability distributions is measured via the Kullback-Leibler
(KL) divergence or Total Variation (TV) distance [23].

b) Geometric properties: OT ambiguity sets encapsulate
the geometry that the transportation cost c induces on Rd;
e.g., if x0, x1 satisfy c(x0 − x1) ≤ ε, then δx1

∈ Bc
ε(δx0

).
Moreover, (2) and (3) readily show that ambiguity sets are
well-behaved under monotone changes in c and ε:

Lemma 1. Let P ∈ P(Rd), c, c1, c2 be transportation costs
over Rd, and ε, ε1, ε2 > 0. Then,
(i) if ε1 ≤ ε2 then Bc

ε1(P) ⊆ Bc
ε2(P);

(ii) if c1 ≤ c2, then Bc2
ε (P) ⊆ Bc1

ε (P).

In words, an increase in the transportation cost shrinks the
ambiguity set, whereas an increase of the radius enlarges it.
These simple observations arm practitioners with actionable
knobs to control the level of distributional uncertainty.

c) Statistical properties: In most applications, proba-
bility distributions are not directly observable and must be
estimated from data. Specifically, suppose one has access
to n i.i.d. samples {x̂(i)}ni=1 from P, and constructs the
empirical probability distribution P̂ := 1

n

∑n
i=1 δx̂(i) . A

straightforward generalization of [24, Theorem 2] stipulates
that if c(x1 − x2) ≤ ∥x1 − x2∥p for some p ≥ 1 and the
true distribution P is light-tailed, then P ∈ Bc

ε(P̂) with high
probability, provided that the radius ε is carefully chosen.

d) Computational tractability: For any P-integrable
upper semi-continuous function ℓ : Rd → R, the evaluation of
the worst-case risk over OT ambiguity sets admits a powerful
dual reformulation [25],

sup
Q∈Bc

ε(P)

EQ [ℓ(x)] = inf
λ≥0

λε+ EP

[
sup
ξ∈Rd

ℓ(ξ)− λc(ξ − x)

]
,

which collapses to computationally tractable finite-
dimensional optimization problems for many cases of
practical interest [3].

III. PROPAGATE DISTRIBUTIONAL UNCERTAINTY

In this section, we study how OT ambiguity sets propagate
via linear transformations. Before doing so, we show that
naive approaches (in particular, propagation of the center only,
or propagation based on Lipschitz bounds) fail to effectively
capture the propagation of distributional uncertainty.

A. Naive Approaches and their Shortcomings

Given the OT ambiguity set Bc
ε(P), one might be tempted

to approximate the result of the propagation A#Bc
ε(P) by

Bc
ε(A#P). This approach suffers from fundamental limitations

already in very simple settings, easily resulting in crude
overestimation or in catastrophic underestimation of the
ambiguity set, as shown in the next example.

Example 3. Let c(x1 − x2) = |x1 − x2| on R, and ε > 0.
• Let A = 0. Then, A#Bc

ε(P) only contains δ0, whereas
Bc
ε(A#P) = Bc

ε(δ0) contains all distributions whose first
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moment is at most ε. Therefore, Bc
ε(A#P) overestimates

the true distributional uncertainty.
• Let A = 2x, and P = δ0. Then, Bc

ε(A#P) = Bc
ε(δ0).

In Theorem 2 we show that A#Bc
ε(P) = Bc

2ε(δ0). Thus,
Bc
ε(A#P) underestimates the true uncertainty.

Moreover, one might be tempted to bound the propagated
distributional uncertainty with the Lipschitz constant L of
A, i.e., to “upper bound” A#Bc

ε(P) with Bc
Lε(P). However,

this approach suffers from two major limitations. First, the
transportation cost c(x1−x2) might not be ∥x1 − x2∥, which
makes the Lipschitz bound not directly applicable. Indeed,
already in Example 3, an increase by a factor of 2 in the
radius does not alleviate the underestimation of the true
ambiguity set: one needs to use L2 = 22 to account for the
transportation cost not being ∥x1 − x2∥. Second, even if the
transportation cost is ∥x1 − x2∥, Lipschitz bounds might be
overly conservative, as shown next.

Example 4. Let c(x1−x2) = ∥x1−x2∥ on Rd, ε > 0, and A
be a diagonal matrix with diagonal entries {0, 0, . . . , n} (thus,
L = n). Then, A#Bc

ε(P) eliminates all the distributional
uncertainty in the first d− 1 dimensions. However, Bc

nε(δ0)
contains, among others, all distributions of the form δ0 ⊗ Q
with δ0 ∈ P(R), and Q ∈ P(Rd−1) satisfying EQ [∥x∥] ≤ nε.

These shortcomings of naive uncertainty propagation
prompt us to study the propagation of OT ambiguity sets.

B. Propagation via Linear Transformations

We now investigate how OT ambiguity sets are propagated
through linear transformations defined by the matrix A ∈
Rm×d. To do so, we require the following mild structural
assumption on the transportation cost.

Assumption 1. The transportation cost c is orthomonotone:
c(x1 + x2) ≥ c(x1) for all x1, x2 ∈ Rd satisfying x⊤1 x2 = 0.

Remark. All transportation costs of the form c(x1 − x2) =
ψ(∥x1 − x2∥), where ∥·∥ is the Euclidean norm and ψ :
R≥0 → R≥0 is monotone and lower semi-continuous, are
orthomonotone: for x1, x2 ∈ Rd such that x⊤1 x2 = 0

ψ(∥x1 + x2∥) = ψ

(√
∥x1∥2 + ∥x2∥2

)
≥ ψ(∥x1∥).

We can now state our main result on the propagation via
linear transformations.

Theorem 2 (Linear transformations). Let P ∈ P(Rd)
c : Rd → R≥0 satisfy Assumption 1. Consider a linear
transformation defined by a matrix A ∈ Rm×d. Then,

A#Bc
ε(P) ⊆ Bc◦A†

ε (A#P), (4)

with A† the Moore–Penrose pseudoinverse of A. Moreover,
if the matrix A is full row-rank, then

A#Bc
ε(P) = Bc◦A†

ε (A#P). (5)

with A† = A⊤(AA⊤)−1.

The proof of this and all subsequent results is deferred
to the online extended version [26]. In words, Theorem 2

asserts that the result of the propagation A#Bc
ε(P) is itself an

OT ambiguity set, with the same radius ε, propagated center
A#P, and an A-induced transportation cost c ◦A†.

Remark. Theorem 2 continues to hold if the OT ambiguity
set Bc

ε(P) is defined over a subset X ⊂ Rd, with P ∈ P(X ),
c : Rd → R≥0, and A : X → Y := AX . In that case, the
propagated ambiguity set Bc◦A†

ε (A#P) is restricted to all
distributions supported on AX .

The following example shows that the equality (5) does
generally not hold for non-surjective linear maps.

Example 5. Consider A := [ 1 0
0 0 ] with pseudoinverse A† = A,

the quadratic transportation cost c(x1 − x2) = ∥x1 − x2∥2,
the probability distribution P = δ(0,0) ∈ P(R2), and
an arbitrary radius ε > 0. Let Q = δ(0,1) ∈ P(R2).
Since (0, 1) ̸∈ Range(A), Q does not belong to A#Bc

ε(P).
However, W c◦A†

(Q,P) =
∥∥A†[ 00 ]−A†[ 01 ]

∥∥2 = 0. Thus,
Q ∈ Bc◦A†

ε (A#P), and A#Bc
ε(P) ⊊ Bc◦A†

ε (A#P).

IV. STOCHASTIC LINEAR CONTROL SYSTEMS

In this section, we focus on the stochastic linear time-
invariant control system

xt+1 = Axt +But +Dwt

ut = Kxt + vt
(6)

and show that the theory of Section III can be efficiently
exploited to capture, propagate, and even control distributional
uncertainty. We assume that the system matrices A ∈ Rd×d,
B ∈ Rd×m, D ∈ Rd×r are known, the initial condition
x0 ∈ Rd is known and deterministic, and the noise sequence
{wt}t∈N ⊂ Rr is i.i.d. according to an unknown light-tailed
distribution P that belongs to the OT ambiguity set B∥·∥2

2
ε (P̂),

with reference distribution P̂ and (translation-invariant and
orthomonotone) transportation cost c(·) = ∥ · ∥22.

Remark. Modelling the noise using the OT ambiguity set
B∥·∥2

2
ε (P̂) allows us to capture many important scenarios. First,

we generalize the works which assume the noise to belong
to a specific class of distributions (e.g., Gaussian). Second, it
allows us to robustly capture the system uncertainty when only
partial statistical information about the noise is available (e.g.,
samples, moments, etc.). In many such cases, P ∈ B∥·∥2

2
ε (P̂)

can be guaranteed with high probability (see the statistical
properties in Section II-B).

A. Capture Distributional Uncertainty in Linear Systems

We start by defining, for any t ∈ N, the vectors v[t−1] =[
v⊤t−1 · · · v⊤0

]⊤
and w[t−1] =

[
w⊤

t−1 · · · w⊤
0

]⊤
, and

rewriting the system dynamics (6) in the form

xt = (A+BK)tx0 +Bt−1v[t−1] +Dt−1w[t−1],

Bt−1 =
[
B (A+BK)B . . . (A+BK)t−1B

]
,

Dt−1 =
[
D (A+BK)D . . . (A+BK)t−1D

]
.

(7)

Eq. (7) unveils that the distributional uncertainty of the state
xt can be characterized through the pushforward via the
matrix Dt−1 of the OT ambiguity set associated to w[t−1].
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The following lemma explains how to construct the OT
ambiguity set of the noise trajectory w[t−1], starting from the

ambiguity set of w0, i.e., B∥·∥2
2

ε (P̂). Since w[t−1] is composed
of t i.i.d. random variables distributed according to P, its
distribution is the t-fold product distribution P⊗t.

Lemma 3. Let P ∈ B∥·∥2
2

ε (P̂) with probability 1−δ, for some
δ ≥ 0. Then,

P⊗t ∈ B∥·∥2
2

tε (P̂⊗t), with probability 1− δ.

The true power of Lemma 3 is revealed in data-driven
scenarios in the settings of control tasks over a specified
prediction horizon t ∈ N (e.g., model predictive control). In
such cases, we have access to only n i.i.d. noise samples
{ŵ(i)}ni=1 from P, and we construct the empirical distribution
P̂ = 1

n

∑n
i=1 δŵ(i) . By [24, Theorem 2], P ∈ Bc

ε(P̂)
with high probability, provided that the radius ε is in
the order of n−1/max{2,r}. Then, Lemma 3 guarantees
that the distribution P⊗t of the noise trajectory w[t−1]

belongs, with high-probability, to B∥·∥2
2

ε1 (P̂⊗t), with radius
ε1 in the order of tn−1/max{2,r}. This is preferable over
the alternative strategy of working directly with n noise
trajectories {(ŵ(i)

t−1, . . . , ŵ
(i)
0 )}ni=1, and constructing an OT

ambiguity set B∥·∥2
2

ε1 (Q̂) around the empirical distribution
Q̂=

1
n

∑n
i=1 δ(ŵ(i)

t−1,...,ŵ
(i)
0 )

based solely on [24, Theorem 2]. In

that case, the radius should be in the order of n−1/max{2,tr}.
In practical cases, where the dimension of the noise r is low,
the linear dependence on the horizon in tn−1/tr ensures that
the ambiguity radius shrinks much faster with the number
of samples n, as opposed to the exponential dependence in
n−1/max{2,tr}.

B. Propagate and Control Distributional Uncertainty

We can now study the propagation of the uncertainty from
the noise w[t−1] to the state xt. Importantly, the resulting OT
ambiguity set capturing the distributional uncertainty of xt
unveils the role of the two components in the control input
ut = Kxt + vt: the feedforward term vt controls the center,
while the feedback gain matrix K controls the shape and size
of this OT ambiguity set. This is explained in the following
proposition and the subsequent discussion.

Proposition 4. Consider the linear control system (6),
with i.i.d. noise {wt}t∈N. Moreover, let B∥·∥2

2
ε (P̂) capture

the distributional uncertainty of wt, ∀t ∈ N . Then, the
distributional uncertainty of xt is captured by

B
∥·∥2

2◦D
†
t−1

tε (δ(A+BK)tx0+Bt−1v[t−1]
∗ (Dt−1#P̂⊗t)). (8)

Recall from Theorem 2 that the propagation of the
distributional uncertainty via Dt−1 is exact whenever the
matrix Dt−1 is full row-rank. This trivially holds when D
is the identity matrix, and more generally can be guaranteed
by an appropriate choice of the feedback gain matrix K. In
the following, we inspect the three components of the OT
ambiguity set (8) to shed light on the roles of the feedforward
control trajectory v[t−1] and of the feedback gain matrix K.

(1) Ambiguity radius tε. This quantity grows linearly in
the horizon t, and can be shrunk only by shrinking ε. This,
in turn, requires having access to a higher number of noise
samples {ŵ(i)}ni=1 (recall that ε decreases as n−1/max{2,r}).

(2) Center δ(A+BK)tx0+Bt−1v[t−1]
∗ (Dt−1#P̂⊗t). The

center distribution is influenced by both K and v[t−1]. In
particular, K determines the shape of the center distribution
(through the pushforward via the matrix Dt−1); v[t−1],
instead, translates the support of the center distribution
in Rd. This observation becomes more clear in the data-
driven scenario: if P̂ is the empirical distribution supported
on the points {ŵ(i)}ni=1, then the distribution P̂⊗t is the
empirical distribution supported on the noise trajectories
ŵ

(i)
[t−1]

:=
[
(w(i1))⊤ · · · (w(it))⊤

]⊤
, for i = [i1, . . . , it],

ij ∈ [n], j ∈ [t]. In that case, the center distribution becomes
the empirical distribution supported on the points

(A+BK)tx0 +Bt−1v[t−1] +Dt−1ŵ
(i)
[t−1].

Thus, Dt−1 (and consequently, K) maps the noise trajectory
to the point (A + BK)tx0 + Dt−1ŵ

(i)
[t−1] ∈ Rd, and

Bt−1v[t−1] controls this point in Rd.
(3) Transportation cost ∥ · ∥22 ◦ D†

t−1. This function
influences both the shape and size of the OT ambiguity set.
For ease of exposition, we assume that Dt−1 is full row-rank.
Then, D†

t−1 = D⊤
t−1(Dt−1D

⊤
t−1)

−1. Moreover, if UΣV ⊤ is
the SVD of Dt−1, then V Σ†U⊤ is the SVD of D†

t−1. In
particular, the singular values of D†

t−1 are obtained by taking
the inverse of the singular values of Dt−1. Consequently, if
{σi}di=1 are the singular values of Dt−1 and {ui}di=1 are the
orthonormal columns of U , the transportation cost becomes

∥D†
t−1(x1 − x2)∥22 =

d∑
i=1

1

σ2
i

∣∣u⊤i (x1 − x2)
∣∣2 .

In words, the cost of moving probability mass from the center
distribution in the direction ui costs ∥x1 − x2∥2/σ2

i (indeed,
u⊤i (x1 − x2) is the orthogonal projection of x1 − x2 onto
u1). The feedback gain matrix K controls the amount of
mass moved in this direction through the singular value σi
of the matrix Dt−1. Specifically, the higher the value of
σi, the more probability mass is moved in the direction ui.
Similarly, the lower the value of σi, the less probability mass
is moved in the direction ui. This way, we can precisely
control the displacement of probability mass from the center
distribution and so the shape and size of the OT ambiguity
set (8). Alternatively, if only the size of (8) is of interest, the
maximum singular value of Dt−1 yields the upper bound

B
∥·∥2

2◦D
†
t−1

tε (P̃) ⊆ B
σmin(D

†
t−1)

2∥·∥2
2

tε (P̃) = B∥·∥2
2

tεσmax(Dt−1)2
(P̃)

with P̃ := δ(A+BK)tx0+Bt−1v[t−1]
∗ (Dt−1#P̂⊗t).

Summarizing, the careful inspection of the OT ambiguity
set (8) brings to light the separation of the control tasks
carried out by the two components of ut. On the one hand,
the feedforward term vt controls the position in Rd of the
support of the center distribution (and, with it, the position
of the OT ambiguity set). On the other hand, the feedback
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gain matrix K controls the shape and size of the center
distribution, as well as the shape and size of the displacement
of probability mass from the center distribution (through the
transportation cost).

V. APPLICATIONS

In this section, we apply our theoretic results to stochastic
reachability analysis and trajectory planning. In our setting,
the decision-maker has only access to finitely many samples
(i.e., noise trajectories) and seeks a deterministic set capturing
the state of the system (in reachability analysis) or the
cheapest control input to reach a given target (in trajectory
planning) which perform well under the true distribution.

A. Preliminaries

Before diving into details, we fix the notation and present
a preliminary result in distributionally robust optimization.
Henceforth, we assume that the matrix Dt−1 is full row-rank
and that we have access to n noise sample trajectories

ŵ
(i)
[t−1] :=

[
(ŵ

(i)
t−1)

⊤ . . . (ŵ
(i)
0 )⊤

]⊤
,

for i ∈ {1, . . . , n}, which yield the empirical distribution
P̂t =

1
n

∑n
i=1 δŵ(i)

[t−1]

. Moreover, we assume that the distribu-
tional uncertainty of w[t−1] is captured by the OT ambiguity

set B
∥·∥2

2
ε (P̂t). This encompasses (and relaxes) the setting of

the previous section, where statistical considerations forced
ε and P̂t to be of the form tε̃ and P̃⊗t, for some ε̃ > 0
and some empirical distribution P̃ on Rr, respectively. Then,
similarly to Proposition 4, the distributional uncertainty of
xt is captured by

St(v[t−1]) :=B
∥·∥2

2◦D
†
t−1

ε (δ(A+BK)tx0+Bt−1v[t−1]
∗(Dt−1#P̂t)).

The center of the ambiguity set (8) is supported on the n
controlled state samples

x̂
(i)
t = (A+BK)tx0 +Bt−1v[t−1] +Dt−1ŵ

(i)
[t−1].

Consider now the polyhedral constraint set

X :=

{
x ∈ Rd : max

j∈[J]
a⊤j x+ bj ≤ 0, J ∈ N

}
, (9)

where aj ∈ Rd, bj ∈ R, and [J ] := {1, . . . , J}. For some γ ∈
(0, 1), we impose the distributionally robust CVaR constraint
(with CVaR defined in (1))

sup
Q∈St(v[t−1])

CVaRQ
1−γ

(
max
j∈[J]

a⊤j xt + bj

)
≤ 0. (10)

By [3, Proposition 2.12 and Theorem 2.16], (10) can be
reformulated as a set of convex deterministic constraints:

Proposition 5. Constraint (10) is equivalent to the following
set of convex constraints, denoted by Γt(v[t−1], A, b):

∀i ∈ [N ],∀j ∈ [J + 1] :
τ ∈ R, λ ∈ R+, si ∈ R

λεN +
∑N

i=1 si ≤ 0

α⊤
j x̂

(i)
t + βj(τ) +

1
4λα

⊤
j

(
(D†

t−1)
⊤D†

t−1

)−1

αj ≤ si
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Fig. 1: Set containing the state of the system at time t for various
radii ε. In red, the training samples (i.e., the samples available to
the decision maker); in blue, the testing samples (i.e., samples used
to test the decision of the decision-maker). The radius ε arbitrates
performance and robustness: smaller radii lead to smaller sets, which
however perform poorly on unseen data points; larger radii result
in bigger sets, which well capture unseen samples.

with αj := aj/γ and βj(τ) := (bj + γτ − τ)/γ, for j ∈ [J ],
as well as αJ+1 := 0 and βJ+1(τ) := τ .

B. Distributionally Robust Reachability Analysis
In the setting of stochastic reachability analysis, for a

given feedforward input v[t−1], we look for the smallest
(deterministic) set which contains, with high confidence, the
state xt of a stochastic linear time-invariant system at some
future time t. Specifically, for predefined aj ∈ Rn, ∀j ∈ [J ],
we parametrize the set as a polyhedron (9) and seek to solve

max
∑

j∈[J] bj

s. t. sup
Q∈St(v[t−1])

CVaRQ
1−γ

(
max
j∈[J]

a⊤j xt + bj

)
≤ 0.

Proposition 5 directly gives the convex reformulation

max
∑

j∈[J] bj
s. t. b ∈ Γt(v[t−1], A, b).

We evaluate our methodology on the two-dimensional linear
system A = 1

2

[
1 −1
2 1

]
, B = I , and D = 0.1I , with K being

the LQR controller (designed with Q = R = I) and t = 10.
We suppose that the decision-maker has access to 5 noise
sample trajectories (the red points in Fig. 1) and that vt = 0
(so, v[t−1] = 0). We select γ = 0.05 and choose J = 8

hyperplanes with aj =
[
i j

]⊤
with i, j ∈ {0,±1} (without

the trivial case aj = 0). We repeat our experiments for three
values of ε. Our results are in Fig. 1. For low ε, the optimal
set tightly includes the state resulting from the 5 samples
trajectories but performs very poorly on unseen samples (blue
crossed Fig. 1). A larger ε, instead, leads to an increasingly
larger set, which performs well on test samples, so that ε
arbitrates between performance and robustness.
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Fig. 2: Distributionally robust steering of a system from the origin
to a target set (in grey) for various radii ε. Filled circles (with solid
lines) are the training samples and crosses (with dotted lines) are
testing samples. Small radii lead to trajectories approaching the
boundary of the target, which however might not reach the target
under different noise realizations (in red); larger radii, instead, push
the trajectory to the interior of the target (in green).

C. Distributionally Robust Trajectory Planning

Our second example concerns (distributionally robust)
trajectory planning. Given a deterministic initial condition, we
look for the cheapest feedforward input vt steering the system
to a given target, expressed in the form of a polyhedral set
(cf. (9)) Accordingly, the trajectory planning problem reads

min
∑t−1

t=0 ∥vt∥
2
2

s. t. sup
Q∈St(v[t−1])

CVaRQ
1−γ

(
max
j∈[J]

a⊤j xt + bj

)
≤ 0.

Proposition 5 readily gives the convex reformulation

min ∥v[t−1]∥22
s. t. v[t−1] ∈ Γt(v[t−1], A, b).

We apply our methodology to the setting described in Sec-
tion V-B and choose the set [1, 2]× [1, 2] as the target (grey
in Fig. 2). As shown in Fig. 2, the feedforward input resulting
from ε = 0 (red in Fig. 2) performs well on the 5 sample
trajectories, steering them to the boundary of the target set,
but yields poor performance on unseen samples. For larger ε
(blue and green in Fig. 2), instead, the system trajectories are
successfully steered to the target set, even for unseen noise
realizations, at the price of a slight increase in cost.
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